N - Commuting Maps on Semiprime Rings

Adil G. Naoum, A. H. Majeed and Samer K. Hassin

Department of Mathematics, College of Science, University of Baghdad. Baghdad-Iraq. Received: 19/11/2002 Accepted: 2/3/2003

Abstract

Let R be a ring with center $Z(R)$, and n, m are arbitrary positive integers. We show that a semiprime ring R with suitable - restriction must contain a nonzero central ideal, if it admits a derivation d which is nonzero on a non trivial left ideal U of R and the map $x \to [x^m, d(x)]$ satisfies one of the following:

i- n - commuting on U.

ii- n - skew - commuting on U.

الخلاصة

لتكن R حلقة مركزها (R(Z, n,m اعداد صحيحة موجبة, بينا في هذا البحث ان الحلقة الاولية R تحت شـروط مناسـبة يجـب ان تحـوي علـى مثـالي مركـزي غيـر صـفري , اذا سـمحت R بوجـود اشـتقاق غيـر صـفري d X)] ←x(d, تحقق احد الشروط االتية: m على مثالي يساري U من R غير تافه والدالة x[1. ابدالية n – .U على 2. ابدالية ملتوية n – . U على

Introduction

Let R be a ring with center $Z(R)$, S be a nonempty subset of R and n be a positive integer, A mapping F of R into itself is called n centralizing on S (resp n-commuting), if $[x^n, F(x)] \in Z(R)$ for all $x \in S$ (resp $[x^n, F(x)] = 0$ for all $x \in S$). For $n = 1$, F is simply called centralizing on S (resp commuting on S) and F is n - skew - centralizing (resp n - skew - commuting) if $x^{n}F(x) + F(x)x^{n} \in Z(R)$ for all $x \in S$ $(\text{resp } x^n F(x) + F(x)x^n = 0 \quad \text{for all}$ $x \in S$). The classical result of Posner [6] states that the existence of a nonzero centralizing derivation on a prime ring forces the ring to be commuting. A lot of work has done during the last twenty-five years in this field (see [1, 2, 3, 4, 5, 7 and 8]). For $n > 1$, Majeed and Niufengwen studied these maps [5], and they proved the following theorem.

Theorem A

Let n be a positive integer, R be a semiprime ring, which is $(n + 1)$ torsion - free if $n \ge 2$, and 6-torsion - free if $n = 1$, and let U be a nonzero left ideal of R. if R admits a derivation d which is nonzero on U, and the map $x \rightarrow [x, d(x)]$ is n-centralizing on U, then R contains a nonzero central ideal.

In this paper we generalize theorem A and we give an analogous result when the map $x \rightarrow [x^m, d(x)]$ is n - commuting or n skew - commuting.

§ 1 Preliminaries

We begin with some definitions, remarks and lemmas, that we use in the proof of the main theorem.

Let R be a semiprime ring, U is a nonzero left ideal of R, d is a derivation on R, and $\Omega = \{P_{\alpha} / \alpha \in \Lambda\}$ be family of prime ideals of R, such that $_{\text{OP}}$. If P_a has any one of $\bigcap P_{\alpha} = \{0\}$. If P_{α} $\alpha \in \Lambda$

the following properties,

(a) U \subseteq P_a.

 $(b) d(U) \subseteq P_{\alpha}$,

(c) $0 < \text{char}(R / P_\alpha) \le m$ where m denotes an arbitrary positive integer, then we call P_{α} an extraordinary prime ideal. The ideals will

be denoted by Ω_1 .

Remark 1:

If $P_{\alpha} \in \Omega_1$ then $m![x^n,[x,d(x)]] \in P_{\alpha}$ for all $x \in U$.

Remark 2:

If for each $P_{\alpha} \in \Omega$, m![xⁿ,[x,d(x)]] $\in P_{\alpha}$ for all $x \in U$. Then

 $m![x^n,[x,d(x)]] = 0$ for all $x \in U$.

Now we give several lemmas, that we need in the proof of the main result.

Lemma 1: [3]

Let n be a positive integer, R be an n! torsion - free ring, and f be an additive map on R. For $i = 1, 2, \dots, n$ let $F_i(X, Y)$ be a generalized polynomial which is homogenous of degree i in the nonzero commuting indeterminates X and Y.

Let $a \in R$, and $\langle a \rangle$ the additive subgroup generated by a, if $F_n(x, f(x)) + F_{n-1}(x, f(x)) + ... + F_1(x, f(x)) \in Z(R)$ for all $X \in$ > then $F_i(a, f(a)) \in Z(R)$ for $i = 1, 2, \dots, n$.

Lemma 2: [3]

Let n be a positive integer, R be a ring, and P be a prime ideal of R such that char $(R / P) > 0$ or char $(R / P) = 0$. Let f, F be as in lemma 1, if $F_n(x, f(x)) + F_{n-1}(x, f(x)) + ... + F_1(x, f(x)) \in P$ for all $X \in$, then $F_i(a, f(a)) \in P$ for $i = 1, 2, \dots, n$.

Lemma 3: [3]

Let R be a ring and P be a prime ideal of R such that char $(R / P) \ge n$. if

 a_1 , a_2 ,..., a_{n+1} are elements of R such that

 a_1 xa₂ xa₃ ... a_n x_{n+1} \in P for all x \in R, then $a_i \in P$ for some $i = 1, 2, ..., n + 1$.

Lemma 4: [3]

Let R be a ring and U is a nonzero left ideal of R containing no nonzero nilpotint elements, then U contains nonzero elements which are left zero divisors in R.

§ 2 A Theorem on Commuting Maps Lemma 5:

 $[x^n, d(x)] = [x, d(x^n)]$ for all $x \in U$. Let n be a positive integer and R is a ring. If R admits a nonzero derivation d then **Proof:**

for $n-1$ that is The proof is by induction, if $n = 1$, the relation is clear; suppose that the relation is true $[x^{n-1}, d(x)] = [x, d(x^{n-1})]$.

We have to prove the relation is true for n.

$$
[x^{n}, d(x)] = x^{n-1}[x, d(x)] + [x^{n-1}, d(x^{2})]x
$$

= [x, xⁿ⁻¹d(x)] + [x, d(x, d(xⁿ⁻¹)x]
= [x, xⁿ⁻¹d(x)] + d(xⁿ⁻¹)x = [x, d(xⁿ)]
One can easily prove the following remark

One can easily prove the following remark. **Remark 3:**

centralizing on R then $[x, d(x)]$ is n-Let n be a positive integer and R is a ring that admits a nonzero map d. if d is n commuting.

The main results.

Theorem 1:

semiprime ring. Which is $(n + m)!$ - torsion -Let n, m be a positive integers and R is $x \rightarrow [x^m, d(x)]$ free, let U be a left ideal of R. Suppose R admits a derivation d which is nonzero on U. if the map satisfies one of the following conditions:

i) n - commuting on U.

ii) skew - n - commuting on U.

Then R contains a nonzero central ideal.

In order to prove the theorem, we need the following lemma.

Lemma 6:

theorem and let $\Omega = \{P_{\alpha} / \alpha \in \Lambda\}$ be Let R satisfy the hypothesis of the above family of prime ideals such that $\bigcap P_{\alpha} = \{0\}$. $\alpha\in\Lambda$

Let Ω_1 = {P_{α} $\in \Omega$ / d(U) \subseteq P_{α}} and $P \in \Omega/\Omega_1$. If $a \in U$ and $a^2 \in P$ then $a \in P$.

Proof:

If d satisfies part (I), then

0)]]x(d,x[,x[mn Ux .……… (1) for all x)x(dx)x(dx mn ⁿ ^m ……..(2) for all . Replacing x by ra in (2), we get 0x)x(dx)x(dx ^m ⁿ nm Ux)ra)(ra(d)ra()ra(d)ra(mn ⁿ ^m 0)ra)(ra(d)ra)(ra(d)ra(^m ⁿ nm R … (3) for all r Pa ² Pa)a(rd)ra(n2 . . Right multiplying (3) by a, and using the hypothesis , we get

Then by lemma (3).

 $d(a) a \in P$ (4) Linearizing (1) and using lemma (1) we get $\int x^{n-1}y + x^{n-2}yx + ...$ $+$ vx $^{n-1}$, $[x^{m}, d(x)]$ + $[x^{n}, [x^{m-1}y + x^{m-2}xy]$ $(x, y) + ... + yx^{m-1}, d(x)] + [x^{n}, [x^{m}, d(y)]] = 0... (5)$ for all $x, y \in U$. Replacing x by ra and y by a in (5) , then by (4) and $a^2 \in P$, we obtain $[a (ra)^{n-1}, (ra)^m, d (ra)]] + [(ra)^n,$ $[a (ra)^{m-1}, d (ra)]$] + $[(ra)^m, d (a)]$] $= a(\text{ra})^{n+m-1} d(\text{ra}) - a(\text{ra})^{n-1} d(\text{ra})$ $(\text{ra})^m - (\text{ra})^m d(\text{ra})a(\text{ra})^{n-1} + d(\text{ra})(\text{ra})^m$ $d (ra)^{n-1} + (ra)^n a (ra)^{m-1} d (ra) \int$ (ra)ⁿ d(ra)a(ra)^{m-1} a(ra)^{m-1} d(ra)(ra)ⁿ + $d(\text{ra})a(\text{ra})^{m-1}(\text{ra})^n + (\text{ra})^{n+m}d(a)$ $(\text{ra})^n \text{d}(a) a(\text{ra})^m (\text{ra})^m d(a)(\text{ra})^n +$ $d(a)(ra)^{m+n} = a(ra)^{n+m-1}$ $d(ra) - a(ra)^{n-1} d(ra)(ra)^m - a(ra)^{m-1} d(ra)(ra)^n$ $(\text{ra})^{n+m} d(a) - (\text{ra})^{n} d(a)(\text{ra})^{m} - (\text{ra})^{n}$ $d(a)(ra)^m - (ra)^m d(a)(ra)^n + d(ra)$ $(\text{ra})^{m+n} = 0$. Thus $a(\text{ra})^{n+m-1} d(\text{ra}) - a(\text{ra})^{n-1}$ $d (ra)(ra)^m - a (ra)^{m-1} d (ra)(ra)^n +$ $[(\text{ra})^n, [(\text{ra})^m, d(a)]] \in P \dots (6)$

Replacing x by ra and y by ara in (5) , then by (3), (4) and using $a^2 \in P$, we get $[($ ara $)($ ra $)^{n-1}$, $(\text{ra})^m$, $d(\text{ra})$]] + $[($ ra $)^n$, $[(\text{ara})(\text{ra})^{m-1}, d(\text{ra})]] + [(\text{ra})^n, [(\text{ra})^m]$

$$
d(ara)]] = a (ra)^{n+m} d(ra) - a (ra)^{n}
$$

\n
$$
d(ara) (ra)^{m} - (ra)^{m} d(ra) a (ra)^{n} + d(ra)
$$

\n
$$
(ra)^{m} (ara) (ra)^{n-1} + (ra)^{n} a (ra)^{m} d(ra)
$$

\n
$$
- (ra)^{n} d(ra) a (ra)^{m} - a (ra)^{m} d(ra)
$$

\n
$$
(ra)^{n} + d(ra)(ra)^{m+n} + (ra)^{n+m} d(ara)
$$

\n
$$
- (ra)^{n} d(ara) (ra)^{m} - (ra)^{m} d(ara)
$$

\n
$$
(ra)^{n} + d(ara) (ra)^{m+n} = a (ra)^{n+m} d(ra)
$$

\n
$$
- a(ra)^{n} d(ra)(ra)^{m+1} - a(ra)^{m} d(a)
$$

\n
$$
(ra)^{n} + (ra)^{n+m} d(a)(ra) - (ra)^{n} d(a)(ra)^{m-1}
$$

\n
$$
- (ra)^{m} d(a) (ra)^{n+1} + ad (ra)
$$

\n
$$
(ra)^{n+m} + d(a) (ra)^{m+n+1} = a[(ra)^{n}
$$

\n
$$
, [(ra)^{m}, d(a)] + [(ra)^{m}, d(a)]] ra = 0
$$
.
\nFrom (1), we get

$$
[(\text{ra})^n, [(\text{ra})^m, d(a)]] \text{ ra } \in P \quad \dots \dots \quad (7)
$$

For all $r \in R$.

Right multiply (6) by ra and comparing the result with (7), we obtain

$$
a(ra)^{n+m+1} d(ra)(ra) - a(ra)^n - 1d(ra)(ra)^{m+1}
$$

- a (ra)^{m-1} d (ra)(ra)ⁿ⁺¹ \in P , left
multiplying the result by r and using (2), we get

 $d (ra)(ra)^{n+m+1} \in P$ (8) for all $r \in R$

Linearizing (8) and using lemma (2), we obtain $d(xa + ya)(xa + ya)^{n+m+1} \in P$, implies that

$$
d (xa) \{ (xa)^{n+m} (ya) + ...
$$

+ (ya)(xa)^{n+m} } + d(ya) (xa)^{n+m+1} \in P ... (9)
for all x, y \in R .
Taking y = a in (9), we conclude that

$$
d(a^{2})(xa)^{n+m+1} \in P \text{ for all } x \in R, bylemma (3), we get
$$
d(a^{2}) \in P \text{ then}
$$

$$
d(a)a + ad(a) \in P, and by (4), yield
$$
$$

ad $(a) \in P$ ……… (10) From (8) , (7) , we obtain

 $d(a)(ra)^{n+m+1} \in P$ for all $r \in R$, by lemma (3), either $a \in P$ or $d(a) \in P$. We may assume that $d(a) \in P$ otherwise we are finished.

For a giving, $r \in R$, $ara \in U$ and $(ara)^2 \in P$, so by the same way, either $ara \in P$ or $d(\text{ara}) \in P$.

The sets of r which alternatives hold are additive subgroup of R, therefore, either $aRa \subseteq P$ or $d(ara) \in P$ for all $r \in R$.

The first of these forces $a \in P$, so we assume hence forth that $d(a) \in P$ and $d(\text{ara}) \in P$ for all $r \in P$

Replacing r by xy, we get

 $d(axya) = d(ax)ya + axd(ya) \in P ... (11)$ for all $x, y \in R$. Noting that by (3), we have $d(va)(va)^{n+m} = (ya)^{m} d(ya)(ya)^{n}$

+
$$
(ya)^n d(ya) (ya)^m - (ya)^{n+m} d(ya)
$$

\n= $(ya)^{m-1} y (d(aya) - d(a)ya) (ya)^n$
\n+ $(ya)^{n-1} y (d(aya) - d(a) (ya) (ra)^m -$
\n $(ya)^{n+m-1} y (d(aya) - d(a) ya) \in P$.
\nFor all $y \in R$.

Right multiply (11) by $(ya)^{n+m}$ and using the last result, we have

 $d(ax)(ya)^{n+m+1} \in P$ for all $x,y \in R$, hence, $d(ax) \in P$ for all $x \in R$. Therefore, ad $(x) d(a) x \in P$, thus, ad $(x) \in P$ for all $x \in R$. Therefore,

 $ad(RR) = ad(R)R + aRd(R) \subseteq P$,

hence aRd $(R) \subseteq P$, then $d(R) \subseteq P$, $a \in P$. contradicting the fact that $P \in \Omega / \Omega_1$, therefore,

Now if d satisfies (ii) then

 x^{n} [x^m, d(x)] + [x^m, d(x)] x^{n} = 0 (12) for all $x \in U$.

The proof can be completed in a way similar to the proof of part (i) , except replacing equation (1) by (12).

Proof of theorem 1:

Since R is semiprime then R has a family $\Omega = \{P_{\alpha} / \alpha \in \Lambda\}$ of prime ideals. such that

 $\bigcap P_{\alpha} = \{0\}$ and $\alpha \in \Lambda$ $\Omega_1 = \{P_\alpha \in \Omega / d(U) \subseteq P_\alpha \}$ [2] i) for each $P_{\alpha} \in \Omega$ we have to show that

$$
(n + m)![xm, [xm, d(x)]] \in P_{\alpha} ...
$$
 (13)
for all $x \in U$.

By remark 1, the equation (13) holds for each $P_{\alpha} \in \Omega_1$, so we have to show that equation (13) holds for each $P \in \Omega / \Omega_1$. Substituting $y = x^{m+1}$ in (5) and using lemma (1), we have $\left[\right]$ nx^{n+m}, $\left[x^{m}, d(x)\right]$] + $\left[x^{n}, \left[mx^{2m}, d(x)\right]\right]$ $+$ $\lceil x^{n}, x^{m}, d(x^{m+1}) \rceil =$ \max ⁿ [x^m, [x^m, d(x)]] + n[xⁿ, [x^m, d(x)]] x^m $+ \max$ ^m [xⁿ,[x^m,d(x)]] + m $[x^{n}, [x^{m}d(x)]]x^{m} + [x^{n}, [x^{m}, d(x)^{m}]]x$ $+ x^m [x^n, [x^m, d(x)]] \in P$. $\max^{n}[x^{m}, [x^{m}, d(x)]] + [x^{n}, [x^{m}, d(x)]]]x \in P$ Using (1), we obtain

 $nx^{n}[x^{m}, [x^{n}, d(x)]] + [x^{n}, [x^{2m}, d(x)]]x \in P$ Therefore, $nx^{\text{n}}[x^{\text{m}}, [x^{\text{m}}, d(x)]] \in P$, ; using lemma (5) on the last result, we get also

 $(n + m)x^{n} [x^{m}, [x^{m}, d(x)]] \in P ... (14)$ for all $x \in U$.

By lemma (4), the left ideal $U + P/P$ of R/P contains no elements which are nonzero left zero divisors in R / P , hence, (4) shows that $(n + m)![x^m,[x^m,d(x)]]P_\alpha \in \Omega$, for all

 $x \in U$. \in U. And $P \in \Omega / \Omega_1$. Therefor, $(n + m)! [x^m, [x^m, d(x)]] \in P$, for each $P \in \Omega$. Hence, $(n + m)![x^m, d(x)] \in \bigcap P_{\alpha} = \{0\}$

 $\alpha \in \Lambda$ since R is $(n + m)!$ - torsion - free then $[x^m,[x^m,d(x)]] = 0$ for all $x \in U$. $[x^m, [x, d(x)]] = 0$ for the last equation. By the same way we can get Then by theorem A the proof is finished. ii) linearizing (12) and using lemma 1 give

$$
(x^{n-1}y + ... + yx^{n-1})[x^{m}, d(x)] +
$$

\n $[x^{m}, d(x)](x^{n-1}y + ... + yx^{n-1}) +$
\n $x^{n}[x^{m-1}y + ... + yx^{m-1}, d(x)] +$

 $[x^{m-1}y + ... + yx^{m-1}, d(x)]x^{n} + x^{n}[x^{m}, d(y)]$ $[x^m, d(y)]x^n = 0 \dots (15)$ for all $x \in U$. We have to show that for each $P \in \Omega/\Omega_1$ $(n + m)![x^m,[x^m,d(x)]] \in P$ for all $x \in U$. Substituting $y = x^{m+1}$ in (15), we get nx^{n+m} $[x^m, d(x)] + n[x^n, d(x)]x^{n+m}$ + mx n [x^{2m}, d(x)] + m [x^{2m}, d(x)]xⁿ + x^{n} [x^{m} , $d(m + 1)$] + x^{m} , $d(x^{m+1})$] x^{n} $= n(x^{n+m} [x^m,d(x)] + x^n [x^m,d(x)]x^m$ $- x^n [x^m, d(x)]x^m + [x^m, d(x)]$ x^{n+m}) + m (x^{n+m} [x^{m} , d(x)] + x^{n} [x^{m} , $d(x)$] x^{m} + x^{m} [x^{m} , $d(x)$] x^{n} - x^{n} $\left[x^{m} d(x)\right] x^{n+m}$ + $x^{n} \left[x^{m}, d(x^{m})\right] x +$ x^{n+m} x^{m} , $d(x)$] + x^{m} x^{m} , $d(x^{m})$ x^{n} $[x^m, d(x^m)]x^{n+1} = n(x^n(x^m [x^m, d(x)])$ $-$ [x^m,d(x)]x^m) + (xⁿ[x^m,d(x)] + $[x^m, d(x)]x^n$ $(x^m) + m(x^m(x^n[x^m, d(x)])$ $+[x^m, d(x)]x^n$ $]+ (x^n[x^m, d(x))]$ $+$ [x^m,d(x)]xⁿ)x^m) + xⁿ[x^m,d(x^m)]x $+ [s^m, d(x^m)]x^{n+1} + x^m (x^n)$ $[x^m, d(x) + [x^m, d(x)]x^n] = 0$ using (1) and lemma 5, we get

 $n(x^{n}(x^{m}[x^{m},d(x)] - [x^{m},d(x)]x^{m}) = 0$ (16) therefore,

 $(p + m)! x^n [x^m, [x^m, d(x)]] \in P$. By lemma (6) and lemma (4), the left ideal $U + P/P$ of R/P contains no nonzero divisors in R/P , hence, (15) shows that

 $(n + m)![x^m,[x^m, d(x)]] \in P$. So we have (17) ….. $(n + m)![x^m,[x^m, d(x)]] \in P$

for all $x \in U$, for each $P \in \Omega / \Omega_1$. By remark 2, (17) holds for each $P \in \Omega_1$ then $m \sim m$ $f_{\Omega}r$

$$
(n + m)![xm, [xm, d(x)]] \in \bigcap_{\alpha \in \Lambda} P_{\alpha}
$$
 for all $x \in U$.

Therefor $(n + m)![x^m,[x^m, d(x)]] = 0$. Since R is $(n + m)!$ - torsion - free we have $[x^m,[x^m,d(x)]] = 0$ for all $x \in U$.

The proof can be completed in a way similar to the proof of (I) , we get

 $[x^m, d(x)] = 0$ for all $x \in U$.

Then by theorem A, R contains a nonzero central ideal.

Before we state next theorem we need the following lemma

Lemma 8:

Let R be semiprime ring, R is $(2n)!$ - torsion free if $n \ge 2$ and 6 - torsion - free if $n = 1$, where n denotes an arbitrary positive integer. Let U be an additive subgroup closed under squaring and d a derivation on R. if the map $x \rightarrow [x^n, d(x)]$ is n - centralizing, then this map is n - commuting on U.

Proof: We have

 $[x^n,[x^n,d(x)]] \in Z(R)$ ………. (18) for all $x \in U$ Linearizing (18) and applying lemma 1 give $[x^{n-1}y + x^{n-2}yx + ... + yx^{n-1}[x^n, d(x)]]$ $+ [x^n, [x^{n-1}y + x^{n-2}yx + ... + yx^{n-1}]$ $d(x)$]] + [xⁿ [xⁿ, $d(y)$]] $\in Z(R)$ $x \in U$. for all

Replacing y by x^{2n+1} $\left[\right.nx^{3n},\left[x^{n},d(x)\right]\right]+n\left[\left.x^{n},\left[x^{3n},d(x)\right]\right]$ $+ [x^n, d(x^{2n+1})]] = nx^{n} [x^{2n} [x^n, d]]$ (x)]] + nxⁿ [xⁿ, [x²ⁿ, d(y)]] + $2n[x^n,[x^n,d(x)]]x^{2n}+n[x^n,[x^n,d(x)]x^{2n}]$ $+$ [xⁿ, x[xⁿ, d(x²ⁿ)]] = $(n+1)x^{2n}[x^n,[x^n,d(x)]]+[x^n,d(x)^n]x^{n-1} +$ $x^n[x^n,[x^n,d(x^n)]x \in Z(R)$. By the lemma 4 yields $(6n + 1)x^{2n}[x^n,[x^n, d(x)]] +$ $nx^{n-1}[x^n,[x^n,d(x)]]x^{n+1}+nx^{2n-1}[x^n,[x^n,$ $d(x)|x=(8n+1)x^{2n}[x^n,[x^n,d(x)]] \in Z(R)$. Since R is $(8n + 1)$ - torsion - free, we get $X^{2n}[X^n,[X^n,d(X)]] \in Z(R)$. Commuting (19) with $[x^n, d(x)]$ and commuting the result with $\left[x^{n}, d(x)\right]$, we get $[x^n,[x^n,d(x)]]^3 = 0$ for all $x \in U$.

Since the center al semiprime ring contains no nonzero nilpotent elements, we have $[x^n, [x^n, d(x)]]^3 = 0$ for all $x \in U$.

The following theorem is a new generalization of theorem 1 in [8]; the proof is easy and hence, is omitted.

Let n be a positive integer, R is a semiprime ring which is 2n! - torsion - free when $n \ge 2$, and 6 - torsion - free when $n = 1$, and let U be a nonzero left ideal of R. suppose that R admits a derivation d which is nonzero on U. if the map satisfies one of the following conditions $x \rightarrow [x^n, d(x)]$

i) n - centralizing on U.

ii) Skew - n - commuting on U.

Then R contains a nonzero central ideal.

The following corollaries show that under certain conditions, R is commutative. The proofs are simple.

Corollary 1:

Let n be a positive integer, R is a prime ring such that charR $> 2n$ or charR $= 0$, and U is a nonzero left ideal of R. Suppose R admits a nonzero derivation d. if the map satisfies one of the following conditions: $x \rightarrow [x^n, d(x)]$

i) n - commuting on U.

ii) Skew - n - commuting on U.

Then R is commutative.

Corollary 2:

Let n, m be a positive integers, R is a prime ring such that charR $> n + m$ or charR $= 0$, and d is derivation. If the map satisfies one of the conditions: $x \rightarrow [x^m, d(x)]$

- iii) n commuting on U.
- iv) Skew n commuting on U.

Then R is commutative.

References

- 1. A. H. Majeed and Niufengwen (**1998**), N-*Centralizing mappings in semiprime rings*, northeast. Math. J, 14 (3), 300-304.
- 2. E. Posner (**1990**), *Derivations in prine rings*, proc. Amer. Math. Soc, 8 , 1093-1100.
- 3. H. E. Bell and W. S. Martindal III (**1987**), *Centralizing mappings of semiprime rings*, Cand. Math. Bull. 30, 92 - 101.
- 4. J. H. Mayane (**1984**), *Centralizing mappings of prime rings*, Cand. Math. Bull, 27 (1), 122 - 126.
- 5. J. Vukman (**1990**), *Commuting and Centralizing Mappings in Prime Rings*; Proc. Amer. Math. Soc., 190, 47 - 52.
- 6. J. Vukman (**1995**), *Derivations on Semiprime Rings*, Bul. Austral. Math.Soc., 53; 353 - 359.
- **Theorem 2:** 7. M. Breser (**1995**), *Centralizing mappings and derivations in prime rings*, J. Algebra, 156, 385-394.
	- 8. Q. Dong., and H. E. Bell (**1995**). *On derivations and commutativity in semiprime rings*, Comm. Algebra, 23 (10), 3705-3712.