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Abstract 
Let R be a ring with center , and n, m are arbitrary positive integers. We 

show that a semiprime ring R with suitable - restriction must contain a nonzero 
central ideal, if it admits a derivation d which is nonzero on a non trivial left ideal U 
of R and the map  satisfies one of the following: 

)R(Z

)]x(d,x[x m
i- n - commuting on U. 
ii- n - skew - commuting on U. 

  
 الخلاصة             

 تحت Rبينا في هذا البحث ان الحلقة الاولية ,  اعداد صحيحة موجبةZ(R) ,m,n حلقة مركزها Rلتكن 
 d بوجـود اشــتقاق غيـر صــفري Rاذا سـمحت , مثــالي مركـزي غيـر صــفريشـروط مناسـبة يجــب ان تحـوي علـى 

  :  تحقق احد الشروط الاتيةX← [xm,d(x)] غير تافه والدالة R من Uعلى مثالي يساري 
  .U على  n –ابدالية  .1
  . U على n –ابدالية ملتوية  .2

 
Introduction 

Let R be a ring with center , S be 

a nonempty subset of R and n be a positive 
integer, A mapping F of R into itself is called n - 
centralizing on S (resp n-commuting), if 

for all  (resp 

  for all ). For 

)R(Z

S
n

)R(Z)]x(F,x[ n 

0)]x(F,x[ n 

x

Sx  1 , 

F is simply called centralizing on S (resp 
commuting on S) and F is n - skew - centralizing 
(resp n - skew - commuting) if 

 for all )R(Zx)x(F)x(Fx nn  Sx   

(resp  for all 

). The classical result of Posner [6] states 
that the existence of a nonzero centralizing 
derivation on a prime ring forces the ring to be 
commuting. A lot of work has done during the 
last twenty-five years in this field (see [1, 2, 3, 4, 
5, 7 and 8]). For n , Majeed and 

Niufengwen studied these maps [5], and they 
proved the following theorem. 

0x n 

1

)x(F)x(Fx n 
Sx 

 
Theorem A 

Let n be a positive integer, R be a 
semiprime ring, which is (  torsion - free 

if , and 6-torsion - free if  , and let 
U be a nonzero left ideal of R. if R admits a 
derivation d which is nonzero on U, and the map 

 is n-centralizing on U, then R 

contains a nonzero central ideal. 

)1n 
n2n 

,x[

1

)]x(dx

In this paper we generalize theorem A and we 
give an analogous result when the map 

 is n - commuting or n - 

skew - commuting. 
)]x(d,x[x m

 
§ 1 Preliminaries 

We begin with some definitions, remarks 
and lemmas, that we use in the proof of the main 
theorem. 
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Let R be a semiprime ring, U is a nonzero left 
ideal of R, d is a derivation on R, and  

  be family of prime ideals 

of  R, such that . If  has any one of 

the following properties,    

}/P{  




 P }0{ P

(a) .     PU
(b) , 

 P)U(d
 (c)   where m 

denotes an arbitrary positive integer, then we call 
 an extraordinary prime ideal. The ideals will 

be denoted by . 

m)P/R(char0  

1
P

Remark 1: 

If  then  

for all . 
1P 

x 
 P)]]x(d,x[,x[!m n

U
 
Remark 2: 
If for each ,  

for all . Then 

 for all . 

P
U

x(d,x[

 P)]]x(d,x[,x[!m n

0)]]  Ux 
x

,nx[!m
Now we give several lemmas, that we 

need in the proof of the main result. 
Lemma 1: [3] 

Let n be a positive integer, R be an n! - 
torsion - free ring, and f be an additive map on R. 
For  let  be a 

generalized polynomial which is homogenous of 
degree i in the nonzero commuting 
indeterminates X and Y. 

n,...,2,1i  )Y,X(F i

Let , and  the additive subgroup 
generated by a, if 

Ra 

))x(f,x(

 a

))x(f,x( )R(Z))x(f,x(F...FF 11nn  

 a )R(Z))a(f,a(i


 F

  

for all then x    

for  . n,...,2,1i 
 

Lemma 2: [3] 
Let n be a positive integer, R be a ring, and 

P be a prime ideal of R such that 
0)P/R(char    or  0)P/R(char  . 

Let f, F be as in lemma 1, if 
P))x(f,x(F... 1))x(f,x(F))x(f,x(F 1nn 
P))a(f,a(Fi

 
 ax  for all , then    

for  . n,...,2,1i 
Lemma 3: [3] 

Let R be a ring and P be a prime ideal of R 
such that n)P/R(char 

1na,..., 

. if 

 are elements of R such that 

 for all 

21 a,a

Pxa...xaxaa 1nn321  Rx  , 

then Pa i    for some  1n,...,2,1i 

)]x(d,x[)]x(d,x[ nn 

1n

. 

Lemma 4: [3] 
Let R be a ring and U is a nonzero left 

ideal of R containing no nonzero nilpotint 
elements, then U contains nonzero elements 
which are left zero divisors in R. 
 
§ 2 A Theorem on Commuting Maps 
Lemma 5: 

Let n be a positive integer and R is a ring. 
If R admits a nonzero derivation d then 

 for all . Ux 

1n 
Proof: 

The proof is by induction, if , the 
relation is clear; suppose that the relation is true 
for   that is 

. )]

x[ n

(d,x

x 

x(d,

)!

x(d,x[)]x(d,x[ 1n1n  

)]x(d,x[x)]x(d,x[ 1nn  

(d,x[)]x(dx,x[ 1n  
)x(d)]x(dx,x[ 1n1n  

x[

We have to prove the relation is true for n. 

x)]x(d, 21

]x)x 1n 

x(d,x[ n

)]

 

 

)]
One can easily prove the following remark. 
Remark 3: 

Let n be a positive integer and R is a ring 
that admits a nonzero map d. if d is n - 
centralizing on R then  is n-

commuting. 
The main results. 
Theorem 1: 

Let n, m be a positive integers and R is 
semiprime ring. Which is mn( 

)]x(d,x[x m

P{

 - torsion - 

free, let U be a left ideal of R. Suppose R admits 
a derivation d which is nonzero on U. if the map 

 satisfies one of the 

following conditions: 
i) n - commuting on U. 
ii) skew - n - commuting on U. 

Then R contains a nonzero central ideal. 
In order to prove the theorem, we need the 
following lemma. 
Lemma 6: 

Let R satisfy the hypothesis of the above 
theorem and let }/  

  be 

family of prime ideals such that 


  }0{P . 

Let }P)U(d/P{1   and 

1/P  . If Ua   and  then Pa 2  Pa  . 
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Proof: 
If d satisfies part (I), then  
 

0)]]x(d,x[,x[ mn 
Ux 

.……… (1) for all 

 
 

x)x(dx)x(dx mnmn 
 

 ……..(2) 

for all  . Replacing x by ra in (2), we get 

0x)x(dx)x(dx nmnm  

Ux 
 

)ra)(ra(d)ra()ra(d)ra( mnmn 

0)ra)(ra(d)ra)(ra(d)ra( nmnm  

R

… (3) 

for all r 

Pa 2 
Pa)a(rd)ra( n2 

. Right multiplying (3) by a, and 
using the hypothesis , we get  

. 

Then by lemma (3). 
 

Pa)a(d  .……..(4) 

Linearizing (1) and using lemma (1) we get 
...yxxyx[ 2n1n  

x[)]]x(d,x[,yx m1n   xyxyx[, 2m1mn  

0)]]y(d,m x[,x[)]]x(d,yx... n1m  

Uy,x 

…(5)  

for all  . 

Replacing x by ra and y by a in (5), then by (4) 
and , we obtain Pa 2 

[,)ra[()]]ra(d,)ra(a[ n1n  ,)ra( m  

)]]a(d,)ra[()]]ra(d,)ra(a[ m1m   
1n1mn )(ra(d)ra(a)ra(d)ra(a    

m1nmm )ra)(ra(d)ra(a)ra(d)ra()ra(  

  1mn1n )ra(d)ra(a)ra()ra(d

 n1m1mn )ra)(ra(d)ra(a)ra(a)ra(d)ra(

  mnn1m )a(d)ra()ra()ra(a)ra(d

 

 

nmmn )ra)(a(d)ra()ra(a)a(d)ra(  
1mnnm )ra(a)ra)(a(d  

m1n ra(a)ra)(ra(d)ra(a)ra(d  
)(a(d)ra()a(d)ra( nmn 

ra)(a(d)ra()ra)(a(d mm 

n1m )ra)(ra(d) 

)ra()ra nm 

)ra(d) n   

   . 0)ra( nm 

Thus 

  1n1mn d)ra(a)ra(d)ra(a

 1mm )(ra(d)ra(a)ra)(ra( n)rad  

P)]]a(d,)ra[(,)ra[( mn  .…. (6) 

Replacing x by ra and y by ara in (5), then by 

(3), (4) and using , we get 
 

Pa 2 
)]]ra(d  )ra[(,)ra(,)ra)(ara[( nm1n 

,)ra[(,)ra[()]]ra(d,)ra)(ara[(, mn1m 

 

)ra(a)ra(d)ra(a)]]ara(d nmn    

)ra(d)ra(a)ra(d)ra()ra)(ra(d nmm   

)ra(d)ra(a)ra()ra)(ara()ra( mn1nm   

)ra(d)ra(a)ra(a)ra(d)ra( mmn   

)ara(d)ra()ra)(ra(d)ra( mnnmn    

)ara(d)ra()ra)(ara(d)ra( mmn   

)ra(d)ra(a)ra)(ara(d)ra( mnnmn  

)a(d)ra(a)ra)(ra(d)ra(a m1mn     

)ra)(a(d)ra()ra)(a(d)ra()ra( 1mnmnn  

)ra(ad)ra)(a(d)ra( 1nm    

)ra[(a)ra)(a(d)ra( n1nmmn    

0ra)]]a(d,)ra[()]a(d,)ra[(, mm  . 

From (1), we get 
 

Pra)]]a(d,)ra[(,)ra[( mn 
R

.  ….…. (7) 

For all r  . 
Right multiply (6) by ra and comparing the result 
with (7), we obtain  

)ra)(ra(d1)ra(a)ra)(ra(d)ra(a 1mn1mn  

P)ra)(ra(d)ra(a 1n1m   , left 

multiplying the result by r and using (2), we get 
 

P)ra)(ra(d 1mn   …….. (8) for all 

Rr   
Linearizing (8) and using lemma (2), we obtain 

P)yaxa)(yaxa(d 1mn   , implies 

that  
 

...)ya()xa){(xa(d mn   

P)xa)(ya(d})xa)(ya( 1mnmn   …… (9) 

for all  Ry,x  . 

Taking ay   in (9), we conclude that  

P)xa)(a(d 1mn2 

P)a(ada)a(d

 for all , by 

lemma (3), we get  then 

Rx 
P)a(d 2

 , and by (4), yield 

 
P)a(ad  . ……… (10) 

From (8), (7), we obtain 
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P)ra)(a(d 1mn   for all Rr
P

, by 

lemma (3), either  or . We may 

assume that  otherwise we are 

finished. 

Pa 
)a(d 

)a(d

P

For a giving, Rr P)a 2  , 

 same way, either ara  r 
ara(d

, Uara    and 

so by the
ar(

P   o
P) . 

The sets of r which alternatives hold are additive 
subgroup of R, therefore, either   or 

  for all 

PaRa 
P)ara(d  Rr  . 

The first of these forces , so we assume 
hence forth that  and 

Pa 
P)a(d  P)ara(d    for all 

Pr  . 
Replacing r by xy, we get 
 

P)ya(axdya)ax(d)axya(d 
Ry,x 

… (11)   

for all .  

Noting that by (3), we have 

)ya)(ya(d)ya()ya)(ya(d nmmn    

)ya(d)ya()ya)(ya(d)ya( mnmn   

  n1m )ya)(ya)a(d)aya(d(y)ya(  

  m1n )ra)(ya)(a(d)aya(d(y)ya(

P)ya)a(d)aya(d(y)ya( 1mn    .  

For all Ry . 

Right multiply (11) by  and using the last 

result, we have  

mn)ya( 

P)ya)(ax(d 1mn    for all Ry,x  , 

hence,   for all P)ax(d  Rx 
)x(ad

R(aRd

. Therefore, 

, thus,   for all 

.Therefore, 

Px)a(d)x(ad 
Rx 

R)R(a

P

P)d)RR(ad 
P)R(aR

, 

hence  d 

Pa 

, then , 

contradicting the fact that , therefore, 

. 

P)R( 

1

d

/P 

Now if d satisfies (ii) then 
 

0x)]x(d,x[)]x(d,x[x nmmn 
Ux 

….. (12)   

for all  . 
The proof can be completed in a way similar to 
the proof of part (i), except replacing equation (1) 
by (12). 
 
Proof of theorem 1: 

Since R is semiprime then R has a family 
 of prime ideals. such that }/P{  




  }0{P

/P{1 

.and 

}P)U(d   [2]  

i) for each P

 x[)!mn( m

Ux

 we have to show that  

 

 P)]]x(d,x[, m … (13)   

for all  . 
By remark 1, the equation (13) holds for each 

1P 

P

, so we have to show that equation (13) 

holds for each 1/ . Substituting  

in (5) and using lemma (1), we have 

1mxy 

 x[)]]x(d
 )]]x( 1m

x[n)]]x(d 

)]]x(d,x m

x[x nm 

)]]x(d,m

x[)]]x( n

,x[)]]x( n

[,x[nx mn

d,x[, mm

 ,x[,nx[ mmn

 d,x[,x[ mn

,x[,x[nx mmn

[,x[mx nm
)]]x(dx[,x[ mn

x[,x[x nm

d,x[,x[nx mmn

d,x[,x[nx nmn

x[x)mn( n
Ux

)]]x(d,mx[, m2n  

  

x)]]x(d,x[, mmn  

m  

x]])x(d,x[, mm  

P . 

Using (1), we obtain 

Px)]]x(d,x[, m 

Px)]]x(d,x[ m2 

P)]]x(d,x m 

; using lemma (5) on the last result, we get  

. Therefore, , 

also  
 

P)]]x(  … (14)    

for all   . 
By lemma (4), the left ideal P/PU   of  
contains no elements which are nonzero left zero 
divisors in , hence, (4) shows that  

P/R

P/R
 x[,x[)!mn( m

Ux
P)]]x(d,m  , for all  

 . And . Therefor, 

 , for each 
1/

)]] 
P 

x(d,x[, m Px[)!mn( m
P

x(d,x[)!mn( m
. Hence, 

}0{P)] 




)!

 

since R is mn(   - torsion - free then 

  for all  . 0)]]x 

0)]] 

 x)[yx m1n

 ...y1n

yx... 1m 

(d,x[,x[ mm

x(d,x[,x[ m

 ...yx( 1n

x)](x(d,x[ m

yx[x 1mn 

Ux 
By the same way we can get 

 for the last equation. 

Then by theorem A the proof is finished. 
ii) linearizing (12) and using lemma 1 give 
 

)]x(d,  

    )yx 1n

)]x(d,   
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)]y(d,x[xx)]x(d,yx...yx[ mnn1m1m  

0x)]y(d,x[ nm  …..  (15)  

for all  . Ux 
We have to show that for each 1/P    

 for all 

. 

P)]]x(d,x[,x[)!mn( mm 
Ux 

Substituting  in (15), we get 1mxy 
  mnnmmn x)]x(d,x[n)]x(d,x[nx  

 nm2m2n x)]x(d,x[m)]x(d,x[mx  
n1mmmn x)]x(d,x)]1m(d,x[x   

x)]x(d,x[x)]x(d,x[x(n mmnmmn    

)]x(d,x[x)]x(d,x[x mmmn   
mmnmn )]x(d,x[x(m)x    

nnmmmmn xx)]x(d,x[xx)]x(d,x[x   
mmnmnm x)]x(d,x[x)x)]x(dx[   

nmmmmmn x)]x(d,x[x)]x(d,x[x   

 )]x(d,x[x(x(nx)]x(d,x[ mmn1nmm

 )]x(d,x[x()x)]x(d,x[ mnmm  

)]x(d,x[x(x(m)x)x)]x(d,x[ mnmmnm   

)]x(d,x[x()x)]x(d,x[ mnnm   
mmnmnm x)]x(d,x[x)x)x)]x(d,x[   

nm1nmm x(xx)]x(d,s[    

0)x)]x(d,x[)x(d,x[ nmm   

using (1) and lemma 5, we get 
 

0)x)]x(d,x[)]x(d,x[x(x(n mmmmn  ….. (16) 

therefore, 
.  P)]]x(d,x[,x[x)!mn( mmn 

By lemma (6) and lemma (4), the left ideal 
P/PU   of P/R  contains no nonzero divisors 

in , hence, (15) shows that  P/R
P)]]x(d,x[,x[)!mn( mm  . So we 

have  
(17) …..  

for all , for each . By remark 

2, (17) holds for each 

P)]]x(d,x[,x[)!mn( mm 
U 1/P 

1P 
x

  then 




 P)]]x(d,x[,x[)!mn( mm

Ux 

   for 

all . 
Therefor  . 0)]]x(d,x[,x[)!mn( mm 
Since R is  - torsion - free we have )!mn( 

0)]]x(d,x[,x[ mm   for all . Ux 

The proof can be completed in a way similar to 
the proof of (I), we get  

0)]x(d,x[ m   for all . Ux 
Then by theorem A, R contains a nonzero central 
ideal. 
Before we state next theorem we need the 
following lemma 
Lemma 8: 
Let R be semiprime ring, R is (2n)! - torsion - 
free if  and 6 - torsion - free if 2n  1n  , 
where n denotes an arbitrary positive integer. Let 
U be an additive subgroup closed under squaring 
and d a derivation on R. if the map 

 is n - centralizing, then this 

map is n - commuting on U. 

)][x  x(d,x n

Proof: 
We have  

)R(Z)]]x(d,x[,x[ nn  ………. (18)  

for all Ux  . 
Linearizing (18) and applying lemma 1 give 

)]]x(d,x[yx...yxxyx[ n1n2n1n    

,yx...yxxyx[,x[ 1n2n1nn    

)R(Z)]]y(d,x[x[)]]x(d nn 
Ux

 for all   

 . 

Replacing y by  
1n2x 

)]]x(d,x[,x[n)]]x(d,x[,nx[ n3nnn3 

d,x[x[nx)]]x(d,x[ nn2n1n2n    

)]]y(d,x[,x[nx)]]x( n2nn   

]x)]x(d,x[,x[nx)]]x(d,x[,x[n2 n2nnn2nn 
 n2nn )]]x(d,x[x,x[



 

 1nnnnnn2 x]])x(d,x[)]]x(d,x[,x[x)1n6(

)R(Zx)]x(d,x[,x[x nnnn  . 

By the lemma 4 yields 

)]]x(d,x[,x[x)1n6( nnn2   

,x[,x[nxx)]]x(d,x[,x[nx nn1n21nnn1n  

)R(Z)]]x(d,x[,x[x)1n8(x)]x(d nnn2 
)1n8(.Since R is   - torsion - free, we get    

. )R(Z)]]x(d,x[,x[x nnn2 

Commuting (19) with  and 

commuting the result with [ , we get 

)]x(d,x[ n

)]x(d,x n

0)]]x(d,x[,x[ 3nn     for all Ux  . 

Since the center al semiprime ring contains no 
nonzero nilpotent elements, we have 

 for all . 0)]]x(d,x[,x[ 3nn  Ux 
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6. J. Vukman (1995), Derivations on Semiprime 
Rings, Bul. Austral. Math.    Soc., 53; 353 - 
359. 

The following theorem is a new generalization of 
theorem 1 in [8]; the proof is easy and hence, is 
omitted. 
Theorem 2: 7. M. Breser (1995), Centralizing mappings and 

derivations in prime rings, J.   Algebra, 156, 
385-394. 

Let n be a positive integer, R is a semiprime ring 
which is  - torsion - free when , and 6 
- torsion - free when , and let U be a 
nonzero left ideal of R. suppose that R admits a 
derivation d which is nonzero on U. if the map 

 satisfies one of the 

following conditions  

!n2

,x n

2n 
1n 

)]x(d[x 

8. Q. Dong., and H. E. Bell (1995). On 
derivations and commutativity in   semiprime 
rings, Comm. Algebra, 23 (10), 3705-3712. 

 
 

 
i) n - centralizing on U. 

 ii) Skew - n - commuting on U. 
 Then R contains a nonzero central ideal. 

The following corollaries show that under certain 
conditions, R is commutative. The proofs are 
simple. 
Corollary 1: 
Let n be a positive integer, R is a prime ring such 
that  or , and U is a 
nonzero left ideal of R. Suppose R admits a 
nonzero derivation d. if the map 

 satisfies one of the 

following conditions: 

n2charR 

)]x(d,x[ n

0charR 

x

i) n - commuting on U. 
ii) Skew - n - commuting on U. 

Then R is commutative. 
Corollary 2: 
Let n, m be a positive integers, R is a prime ring 
such that mncharR   or 0charR  , 
and d is derivation. If the map 

 satisfies one of the 

conditions: 
)]x(d,mx[x 

iii) n - commuting on U. 
iv) Skew - n - commuting on U. 

Then R is commutative. 
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