Some Results on (σ,τ) – Lie Ideals in Prime rings

Abdul-Ruhman Hameed and Kassim Abdul-Hameed

Department of Mathematics, College of Science, University of Baghdad. Baghdad-Iraq.

Abstract

Let R be a prime with characteristic not equal two, $\sigma,\tau: R \longrightarrow R$ be two automorphisms of R. and d be a nonzero derivation of R commuting with σ,τ . It is proved that:

- 1) Assume U ba $a(\sigma,\tau)$ -left Lie ideal of R.
- (a) If $[U,U]_{\sigma,\tau} \subset C_{\sigma,\tau}$ and [U,U]=(0), then $U \subset Z(R)$.
- (b) If $[U,U]_{\sigma,\tau} \subset C_{\sigma,\tau}$, then $U \subset Z(R)$.
- (c) If $\sigma(v)+\tau(v)\not\in Z(R)$, for some $v\in U$, then there exists a nonzero left ideal A of R and a nonzero right ideal B of R such that $[R,A]_{\sigma,\tau}\subset U$, $[R,B]_{\sigma,\tau}\subset U$ but $[R,A]_{\sigma,\tau}\not\subset C_{\sigma,\tau}$ and $[R,B]\not\subset C_{\sigma,\tau}$.
- (d) If ad(U) = (0) (or d(U)a = (0)) for $a \in R$, then a=0 or $\sigma(u)+\tau(u) \notin Z(R)$, for all $u \in U$.
- 2) If U be $a(\sigma,\tau)$ -Lie ideal of R for

$$a\in R, d(U)a\subset C_{\sigma,\tau}(or\ ad(U)\subset C_{\sigma,\tau})\,, a\in Z(R)\,, \text{ then}\quad a=0\quad \text{ or } U\subset Z(R)\,.$$

Also, in this paper we study some results when characteristic of R equal two and we show that the condition characteristic of R not equal two can not be excluded.

الخلاصة

```
R \leftarrow R:d لتكن R \to R التين متكافئة تشاكليا و وكانت R \leftarrow R:\sigma,\tau 2 التين متكافئة تشاكليا و وكانت R \leftarrow R:\sigma,\tau 2. R \to R:\sigma,\tau 1. R \to R:\sigma,\tau 2. R \to R:\sigma,\tau 2. R \to R:\sigma,\tau 3. R \to R:\sigma,\tau 4. R \to R:\sigma,\tau 4. R \to R:\sigma,\tau 6. R \to R:\sigma,\tau 7. R \to R:\sigma,\tau 8. R \to R:\sigma,\tau 9. R \to R:\sigma,\tau
```

أيضا ,خلال هذا البحث سندرس بعض تلك النتائج عندما يكون ممثل الحلقة R يساوي 2 , وسنلاحظ إن ممثل الحلقة R لا يساوى 2 شرط لايمكن الاستغناء عنه .

Introduction

Let R be a ring, U be an additive subgroup of R, σ , τ : $R \rightarrow R$ be two mappings. Then

- 1) *U* is called a (σ, τ) right Lie ideal of *R* if $[U,R]_{\sigma,\tau} \subset U$.
- 2) *U* is called a (σ, τ) left Lie ideal of *R* if $[R,U]_{\sigma,\tau} \subset U$.
- 3) *U* is called a (σ,τ) Lie ideal of *R* if *U* is both (σ,τ) right Lie ideal and (σ,τ) left Lie ideal of *R*.

Let R be a prime with characteristic not equal two, $d: R \rightarrow R$ be a derivation of R.In [1] Aydin N. proved that if U is a (σ,τ) -left Lie ideal of R such that $[U,U]_{\sigma,\tau} = (0)$ and [U,U] = (0), then $U \subset Z(R)$, and if for $\sigma(v) + \tau(v) \notin Z(R)$, for some $v \in U$, then there exists a nonzero left ideal A of R and a nonzero right ideal B of R such that $[R,A]_{\sigma\tau} \subset U$, $[R,B]_{\sigma,\tau}\subset U$ but $[R,A]_{\sigma,\tau}\not\subset Z(R)$ $[R,B]\not\subset Z(R)$.In[4] Aydin,N.,Kaya,K. Golbasi, O. proved that if U is a noncentral (σ, τ) left Lie ideal of R and if ad(U)=0, then a=0 or $\sigma(u)+\tau(u)\notin Z(R)$, for all $u\in U$. In [5] Aydin, N. and Soyturk, M. proved that if U is called a (σ, τ) -Lie ideal of for $a \in R, d(U)a = (0) (or ad(U) = (0)),$ then a=0 or $U\subset Z(R)$.

In this paper, we generalized and extended these results, and we study some results in [1],[2],[5],[6],[7],when characteristic of R equal two and we show that the condition characteristic of R not equal two can not be excluded.

§1 Basic Lemmas

In this section we recall some results that interesting in our study.

Lemma (1.1):-[1]

Let U be both a (σ,τ) -left Lie ideal of R and a subring of R, then either $\sigma(u)+\tau(u)\in Z(R)$, for all $u\in U$ or U contains a nonzero left ideal and a nonzero right ideal of R.

Lemma (1.2):-[1]

Let U is a (σ,τ) -left Lie ideal of R such that $\sigma(v) + \tau(v) \notin Z(R)$, for some $v \in U$ and $a,b \in R$. If aUb = (0), then a=0 or b=0.

Lemma (1.3):-[5]

Let U be a (σ,τ) -Lie ideal of R. If $d(U) \subset C_{\sigma,\tau}$, then $U \subset Z(R)$.

Remark (1.4):-[2]

Let R be a ring and let U be a nonzero (σ,τ) -left Lie ideal of R. We shall define the set $T(U) = \{a \in R \mid [R,a]_{\sigma,\tau} \subset U\}$. Clearly $U \subset T(U)$. On the other hand, if $a,b \in T(U)$ and $x \in R$, then $[x,ab]_{\sigma,\tau} = [x\sigma(a),b]_{\sigma,\tau} + [\tau(b)x,a]_{\sigma,\tau} \in U$. That is, $[x,ab]_{\sigma,\tau} \in U$. Therefore, T(U) is both a subring and a (σ,τ) -left Lie ideal of R.

Lemma (1.5):-[7, theorem2]

Let U be a (σ,τ) - right Lie ideal of R .If $[U,U]_{\sigma,\tau} \subset C_{\sigma,\tau}$, then either $U \subset Z(R)$ or $U \subset C_{\sigma,\tau}$

Lemma (1.6):-[7, theorem3]

If U is both a nonzero (σ,τ) -right Lie ideal of R and a subring of R, then one of the following holds:-

(i) $U \subset Z(R)$.(ii) $U \subset C_{\sigma,\tau}$.(iii) U contains a nonzero ideal of R.

Lemma (1.7)[2,lemma2]

If U is a (σ,τ) -right Lie ideal of R and $a \in R$ such that $[U,a]_{\sigma,\tau} \subset C_{\sigma,\tau}$, then $a \in Z(R)$ or $U \subset C_{\sigma,\tau}$.

Lemma (1.8))[2,theorem1]

If *U* is a (σ,τ) -right Lie ideal of *R* and $a \in R$ such that [U,a] = (0), then $a \in Z(R)$ or $U \subset C_{\sigma,\tau}$.

Lemma (1.9)[2,corollary2]

Let U be a nonzero (σ,τ) -Lie ideal of R such that $U \not\subset Z(R)$ and $U \not\subset C_{\sigma,\tau}$ and $a,b \in R$. If $a \cup b = (0)$, then a = 0 or b = 0.

Lemma (1.10)[1,theorem5]

Let U be a nonzero (σ,τ) -Lie ideal of R such that $U \subset C_{\sigma,\tau}$. Then $\sigma = \tau$ or R is commutative.

Lemma (1.11)[1,theorem2]

Let *U* be a (σ,τ) -left Lie ideal of *R*, such that $[U,U]_{\sigma,\tau} = (0)$ and [U,U] = (0). Then $U \subset Z(R)$.

Lemma (1.12)[5,theorem1]

Let U be a (σ,τ) -right Lie ideal of R and d be a derivation of R. If $d(U) \subset C_{\sigma,\tau}$, then R is commutative or $U \subset C_{\sigma,\tau}$.

Lemma (1.13)[5,lemma5]

Let U be a (σ,τ) -Lie ideal of R d be a derivation of R and $a \in R$. If d(U)a = (0) or ad(U) = (0), then a = 0 or $U \subset Z(R)$.

§2Extensions and generalizations

In this section we shall extend and generalized some results and give their details.

Theorem (2.1):-

Let U be a (σ,τ) -left Lie ideal of R such that $(0) \neq [U,U]_{\sigma,\tau} \subset C_{\sigma,\tau}$ and [U,U]=(0). Then $U \subset Z(R)$.

Proof:-

By assumption $0 \neq [U,U]_{\sigma,\tau} \subset C_{\sigma,\tau}$, then for all $u,v \in U$, $x \in R$, we have $C_{\sigma,\tau} \ni \left[[x\sigma(u),u]_{\sigma,\tau},v \right]_{\sigma,\tau} = \left[[x,u]_{\sigma,\tau}\sigma(u),v \right]_{\sigma,\tau}$

$$= [x,u]_{\sigma,\tau}[\sigma(u),\sigma(v)] + \big[[x,u]_{\sigma,\tau},v\big]_{\sigma,\tau}\sigma(u)$$
 . Since $[U,U]=(0)$, we get $\big[[x,u]_{\sigma,\tau},v\big]_{\sigma,\tau}\sigma(u) \in C_{\sigma,\tau}$. That is, $\big[[[x,u]_{\sigma,\tau},v]_{\sigma,\tau}\sigma(u),r\big]_{\sigma,\tau}=0$, for all $r \in R$. This implies

$$\begin{aligned} & \left[\left[x, u \right]_{\sigma, \tau}, v \right]_{\sigma, \tau} \sigma(u) \sigma(r) - \\ & \tau(r) \left[\left[x, u \right]_{\sigma, \tau}, v \right]_{\sigma, \tau} \sigma(u) = 0 \end{aligned}$$

Then

$$\begin{aligned} & \left[\left[x, u \right]_{\sigma, \tau}, v \right]_{\sigma, \tau} \sigma(u) \sigma(r) - \\ & \left[\left[x, u \right]_{\sigma, \tau}, v \right]_{\sigma, \tau} \sigma(r) \sigma(u) = 0 \end{aligned}$$

and we have $\left[[x,u]_{\sigma,\tau},v \right]_{\sigma,\tau} [\sigma(u),\sigma(r)] = 0$, for all $u,v \in U$, $x,r \in \mathbb{R}$. By a primeness of R and $\left[[x,u]_{\sigma,\tau},v \right]_{\sigma,\tau} \neq 0$, we get $\sigma([u,r]) = 0$. This implies $u \in Z(R)$, for all $u \in U$. Hence, $U \subset Z(R)$.

Remark (2.2):-

In Theorem (2.1), we can exclude the condition [U,U]=(0) as below.

Theorem (2.3):-

Let U be a (σ,τ) -left Lie ideal of R such that $(0) \neq [U,U]_{\sigma,\tau} \subset C_{\sigma,\tau}$. Then $U \subset Z(R)$.

Proof:-

Since $[U,U]_{\sigma,\tau} \subset C_{\sigma,\tau}$, then for any $u \in U$, we have

$$\begin{split} & \left[\left[\tau(u)\sigma(u), u \right]_{\sigma,\tau}, u \right]_{\sigma,\tau} = \\ & \left[\left[\tau(u), u \right]_{\sigma,\tau}, \sigma(u), u \right]_{\sigma,\tau} = \\ & \left[\left[\tau(u), u \right]_{\sigma,\tau}, u \right]_{\sigma,\tau} \sigma(u) \in C_{\sigma,\tau} \end{split}$$

That is, for all $r \in R$, we have $[[[\tau(u),u]_{\sigma,\tau},u]_{\sigma,\tau}\sigma(u),r]_{\sigma,\tau}=0$. This implies

$$\begin{aligned} & \left[\left[\tau(u), u \right]_{\sigma, \tau}, u \right]_{\sigma, \tau} \left[\sigma(u), \sigma(r) \right] + \\ & \left[\left[\left[\tau(u), u \right]_{\sigma, \tau}, u \right]_{\sigma, \tau}, r \right]_{\sigma, \tau} \sigma(u) = 0 \end{aligned}$$

Also, we have

$$\begin{split} & [[\tau(u),u]_{\sigma,\tau},u]_{\sigma,\tau}[\sigma(u),\sigma(r)] = 0 \text{ . Since } R \\ & \text{is a prime ring} \quad \text{and} \quad (0) \neq [U,U]_{\sigma,\tau} \text{ ,then} \\ & \sigma([u,r]) = 0 \quad \text{for all } \quad u \in U, r \in R \text{ . Thus,} \\ & [u,r] = 0 \text{ for all } \quad u \in U, r \in R \text{ . Hence,} \\ & U \subset Z(R) \text{ .} \end{split}$$

Theorem (2.4):-

Let U be a (σ,τ) -left Lie ideal of R such that $\sigma(v)+\tau(v)\not\in Z(R)$, for some $v\in U$. Then there exists a nonzero left ideal A of R and a nonzero right ideal B of R such that $[R,A]_{\sigma,\tau}\subset U$ and $[R,B]_{\sigma,\tau}\subset U$ but $[R,A]_{\sigma,\tau}\not\subset C_{\sigma,\tau}$ and $[R,B]_{\sigma,\tau}\not\subset C_{\sigma,\tau}$.

Proof:-

Let $T(U) = \left\{x \in R : [R,x]_{\sigma,\tau} \subset U\right\}$. By Remark (1.4), T(U) is both a (σ,τ) -left Lie ideal and a subring of R such that $U \subset T(U)$. Since $\sigma(v) + \tau(v) \not\in Z(R)$ for some $v \in U$, then by Lemma (1.1), T(U) must contains a nonzero left ideal A of R and a nonzero right ideal B of R. From the definition of T(U), we obtain $[R,A]_{\sigma,\tau} \subset U$ and $[R,B]_{\sigma,\tau} \subset U$. If $[R,A]_{\sigma,\tau} \subset C_{\sigma,\tau}$, then for any $a \in A$, $x \in R$, we have $[\tau(a)x,a]_{\sigma,\tau} = \tau(a)[x,a]_{\sigma,\tau} \in C_{\sigma,\tau}$, that is, $[\tau(a)[x,a]_{\sigma,\tau},r]_{\sigma,\tau} = 0$, for all $r \in R$. This implies that

$$0 = \tau(a) [[x,a]_{\sigma,\tau}, r]_{\sigma,\tau} + [\tau(a), \tau(r)][x,a]_{\sigma,\tau}$$

= $[\tau(a), \tau(r)][x,a]_{\sigma,\tau}$, for all $r \in R$.

Taking ry, $y \in R$ instead of r in the last equation, then $[\tau(a), \tau(r)]R[x, a]_{\sigma, \tau} = (0)$. By a primeness of R we get either $[\tau(a), \tau(r)] = 0$ or $[x, a]_{\sigma, \tau} = 0$.

If $[\tau(a), \tau(r)] = 0$, then $a \in Z(R)$. Therefore $A \subset Z(R)$. If $[x, a]_{\sigma, \tau} = 0$, for all $x \in R$.

Replacing x by xy, $y \in R$, such that $[xy,a]_{\sigma,\tau}=0$. That is, $0=[xy,a]_{\sigma,\tau}=x[y,a]_{\sigma,\tau}+[x,\tau(a)]y=[x,\tau(a)]y$

for all $x,y\in R$. Hence, $[R,\tau(a)]R=(0)$. By the primeness of R we get $a\in Z(R)$. Therefore $A\subset Z(R)$. So, for all $x,y\in R, a\in A$, we have

0 = [x,ya] = y[x,a] + [x,y]a = [x,y]a. Hence, [R,R]A = (0), by primeness of R we have R is commutative, then $U \subset Z(R)$ so, $\sigma(u) + \tau(u) \in Z(R)$, for all $u \in U$ and this is a contradiction. That is, $[R,A]_{\sigma,\tau} \not\subset C_{\sigma,\tau}$.

Similarly, using the identity $[x, \sigma(b), b]_{\sigma, \tau} = [x, b]_{\sigma, \tau} \sigma(b)$ to prove that $[R, B]_{\sigma, \tau} \not\subset C_{\sigma, \tau}$.

Theorem (2.5):-

Let U be a (σ,τ) -Lie ideal of R. If $d(U)a \subset C_{\sigma,\tau}$ (or $ad(U) \subset C_{\sigma,\tau}$) and $a \in Z(R)$, then a = 0 or $U \subset Z(R)$.

Proof:-

For all $u \in U, x \in R$, we have $[ad(u), x]_{\sigma, \tau} = 0$. Hence,

$$0 = [ad(u), x]_{\sigma,\tau} =$$

$$a[d(u),x]_{\sigma,\tau} + [a,\tau(x)]d(u) = a[d(u),x]_{\sigma,\tau}$$

That is, $0 = a[d(U), x]_{\sigma, \tau}$, for all $x \in R$. By a primenss of R, we get either a = 0 or $d(U) \subset C_{\sigma, \tau}$. If $d(U) \subset C_{\sigma, \tau}$, then by Lemma (1.3), we have $U \subset Z(R)$.

By the same way when $d(U)a\subset C_{\sigma,\tau}$, we can show that either a=0 or $U\subset Z(R)$.

Theorem (2.6)

Let U be a (σ,τ) -left Lie ideal of R and $a \in R$. If ad(U)=(0) (or d(U)a=(0)), then $\sigma(u)+\tau(u)\in Z(R)$, for all $u\in U$ or a=0.

Proof:-

Assume $v \in U$ such that $\sigma(v) + \tau(v) \notin Z(R)$. Then, by assumption ad(U) = (0), we have $0 = ad([r\sigma(u), u]_{\sigma, \tau}) = ad([r, u]_{\sigma, \tau}\sigma(u))$ $= ad([r, u]_{\sigma, \tau})\sigma(u) + a[r, u]_{\sigma, \tau}d(\sigma(u)) = a[r, u]_{\sigma, \tau}d(\sigma(u))$ Replace $r\sigma(u)$ instead of r in the last equation, we get $0 = a[r\sigma(u), u]_{\sigma, \tau}d(\sigma(u)) = a[r, u]_{\sigma, \tau}\sigma(u)d(\sigma(u))$. Hence, $a[r, u]_{\sigma, \tau}\sigma(u)d(\sigma(u)) = 0$.

Also, we get $0 = \sigma^{-1}(a[r,u]_{\sigma,\tau})ud(u)$ for all $u \in U$. Therefore,

 $\sigma^{-1}(a[r,u]_{\sigma,r})Ud(u) = (0)$.By Lemma (1.2), we obtain either d(u)=0 or $a[r,u]_{\sigma,r}=0$

If d(u)=0, then d(U)=(0). That is, $d(U)\subset Z(R)$, so $\sigma(u)+\tau(u)\in Z(R)$, for all $u\in U$ and that is, a contradiction . If $a[r,u]_{\sigma,\tau}=0$. Replace rx instead of r, we get $0=a[rx,u]_{\sigma,\tau}=ar[x,\sigma(u)]+a[r,u]_{\sigma,x}=ar[x,\sigma(u)]$. That is, $ar[x,\sigma(u)]=0$.

Since R is a prime ring, then we have a=0.

§3Examples when Chr=2:-

In this section we study the results in [1],[2],[5],[6],[7], when characteristic of R equal two and we show that the condition characteristic of R not equal two can not be excluded.

Let
$$R = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} x, y, z, t \in F \right\}$$
, where F is

a field of ChF=2 be a ring of 2x2 matrices with respect to the usual operation of addition and multiplication, then R is a prime ring ,see[6].

Example_(3.1):-

Let $U=\left\{\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a,b \in F \right\}$ be an additive subgroup of R. Assume $\sigma,\tau: R \to R$ be two automorphisms, such that

$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix},$$

$$\tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & -y \\ -z & t \end{pmatrix}. \text{ Then,}$$

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} - \begin{pmatrix} x & -y \\ -z & t \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} =$$

$$\begin{pmatrix} ax + bz & ay + bt \\ az & at \end{pmatrix} - \begin{pmatrix} xa & xb - ya \\ -za & -zb + ta \end{pmatrix}$$

$$= \begin{pmatrix} bz & bt - xb \\ 0 & zb \end{pmatrix} \in U.$$

The hypothesis of Lemma (1.5) is satisfied but $U \not\subset Z(R)$ and $U \not\subset C_{\sigma,\tau}$.

Example (3.2):-

Let
$$U = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a,b \in F \right\}$$
 be an additive

subgroup of R. Assume σ,τ : $R \to R$ be two automorphisms, such that

$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix},$$

$$\tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & -y \\ -z & t \end{pmatrix}.$$

The hypothesis of Lemma (1.6) is satisfied, but $U \not\subset Z(R)$, $U \not\subset C_{\sigma,\tau}$ and U doesn't contain a nonzero ideal of R.

Example (3.3):-

Let
$$U = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in F \right\}$$
 be an additive

subgroup of R . Assume $\sigma,\tau: R \to R$ be two automorphisms , such that

$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix},$$

$$\tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & -y \\ -z & t \end{pmatrix}.$$

Let $a \in R$ such that $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Assumption of

Lemma (1.7) is satisfied, but $a \notin Z(R)$ and $U \not\subset C_{\sigma,\tau}$.

Example (3.4):-

Let
$$U = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in F \right\}$$
 be an additive

subgroup of R. Assume σ,τ : $: R \to R$ be two automorphisms, such that

$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix},$$

$$\tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & -y \\ -z & t \end{pmatrix}.$$

Let $a \in R$ such that $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. The hypothesis of Lemma (1.8) is satisfied, but $a \notin Z(R)$ and

Example (3.5):-

 $U \not\subset C_{\sigma,\tau}$.

Let $U = \left\{ \begin{pmatrix} u & v \\ 0 & u \end{pmatrix} \mid u, v \in F \right\}$ be an additive

subgroup of R. Assume σ,τ : $:R \to R$ be two automorphisms, such that

$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix},$$

$$\tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & -y \\ -z & t \end{pmatrix}. \text{Let}$$

$$a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

The hypothesis oh Lemma (1.9) is satisfied but $a \neq 0$ and $b \neq 0$.

Example (3.6):-

Let
$$U = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} , a \in F \right\}$$
 be an additive

subgroup of R

Assume σ,τ : $R \to R$ be two automorphisms, such that

$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix},$$

$$\tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & -y \\ -z & t \end{pmatrix}.$$

The hypothesis of Lemma (1.10) is satisfied, but $\sigma \neq \tau$ and R is not commutative.

Example (3.7):-

Let
$$U = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a,b \in F \right\}$$
 be an additive

subgroup of R. Assume σ,τ : $R \to R$ be two automorphisms, such that

$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix},$$

$$\tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & -y \\ -z & t \end{pmatrix}.$$

The hypothesis of Lemma (1.11) is satisfied, but $U \not\subset Z(R)$.

Example (3.8):-

$$U = \left\{ \begin{pmatrix} b & a \\ a & 0 \end{pmatrix} , a, b \in F \right\}$$
 be an additive

subgroup of R .Let σ , $\tau: R \to R$ be two automorphisms, such that

$$\sigma\begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix}, \ \tau\begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} t & -z \\ -y & x \end{pmatrix}$$

Also, $d: R \to R$, defined by

$$d\begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 0 & -y \\ z & 0 \end{pmatrix}$$
, be a derivation of R .

The assumption of Lemma (1.12) is satisfied, but $U \not\subset C_{\sigma,\tau}$ and R is not commutative.

Example (3.9):-

$$U = \left\{ \begin{pmatrix} u & v \\ 0 & u \end{pmatrix}, u, v \in F \right\}$$
 be an additive

subgroup of R. Assume $\sigma, \tau: R \to R$ be two automorphisms such that

two automorphisms such that
$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \text{ and }$$

$$\tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & -y \\ -z & t \end{pmatrix}.$$
 Also $d: R \to R$, defined by
$$d \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 0 & -y \\ z & 0 \end{pmatrix}, \text{ is a derivation of } R.$$
 Let $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Assumption of Lemma (1.13) is satisfied, but $U \not\subset Z(R)$ and $a \ne 0$.

References

- 1. Aydin, N. (1997) On one sided (σ,τ) -Lie ideals in prime rings Tr. J. of Math., 21,295-301.
- 2. Aydin, N. and Kandamar, H. (σ,τ)-Lie ideals in prime rings. Tr.j. of Mathematics, 18(1994), 143-148.
- 3. Aydin, N. and Kaya, K. (1996) Some results on generalized Lie ideals. Balikesir University of Math. Symposium Mayis. 23-26.
- 4. Aydin, N. Kaya ,K. Golbasi,O. .,(2002), Some results on one sided generalized Lie ideals with derivation. Mathematical Notes, volpp 83-89.
- 5. Aydin ,N. Soyturk, M. (1995) (σ,τ)-Lie ideals in prime ring with derivation .Tr.J. of Math., 19,239-244.
- 6. Aydin, N. Kaya ,K. Golbasi,O. (2001) Some results for generalized Lie ideals with derivation II. Applied Mathematics E-Notes 1, 24-30.
- 7. *Kaya*, *K.* **(1992)** (σ,τ)- *Lie ideals in prime rings*, *An Univ. Timisoara* . Stiinite Mat. 30, No. 2-3, 251-255.