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Abstract  

     An ecological model consisting of prey-predator system involving the prey’s 

fear is proposed and studied. It is assumed that the predator species consumed the 

prey according to prey square root type of functional response. The existence, 

uniqueness and boundedness of the solution are examined. All the possible 

equilibrium points are determined. The stability analysis of these points is 

investigated along with the persistence of the system. The local bifurcation analysis 

is carried out. Finally, this paper is ended with a numerical simulation to understand 

the global dynamics of the system. 
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 ديناميكية انموذج الفريسة والمفترس ذو الجذر التربيعي مع الخوف
 

، رائد كامل ناجي *حسين فخري  أنب  
 قدم الخياضيات ، كمية العمهم ، جامعة بغجاد ، بغجاد ، العخاق

 

 الخلاصة
تم اقتخاح ودراسة نظام بيئي يتكهن من نظام الفخيدة والمفتخس والمتضمن الخــــهف.   ان المفتخس يفتخس      

الفخيدــة بمهجب دالــة الاستجابة ذات الجحر التخبيعـي.  وجهد ووحجانيــة وحجود الحل درســت. جميـــــــع نقاط 
نقاط بحثت مع اصخار النظام.كما تم اجخاء تحميل التفخع التهازن الممكنة حدبت. تحميل الاستقخارية لتمك ال

 المحمي. واخيخا اختتم البحث بحل النظام عجديا لفهم الجيناميكية الذاممة لمنظام
 

1. Introduction 
 It is well known that the dynamic relationship between prey and predator is very essential in both 

ecology and mathematical ecology due to its universal existence and importance. Mathematical 

modeling is one of the tools to study the effects of biological factors on the ecological systems, 

including the prey-predator system. This is the main reason in developing and studying different types 

of ecological models [1-3]. 

 Many prey–predator models have been proposed and studied extensively in which either the 

predator kills the prey (direct effect) or that the presence of the predator affects the behavior of the 

prey population due to the fear of predation process (indirect effect). Most of these studies have been 

conducted with prey-dependent type of functional responses [4-6], general predator-dependent 

functional responses [7-8], and ratio-dependent functional responses [9-12]. In all the previously 

mentioned references, the functional responses only reflect the direct effect. 

 Later on, Zanette et al. [13] reached the conclusion that “fear of predation risk is powerful enough 

to affect wildlife populations even when predators are prevented from directly killing any prey”. 
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Therefore, the indirect effect is also important for understanding the behavior of the prey-predator 

system and needs to be investigated in more details. Accordingly, a number of researchers have 

recently taken into account studying the prey-predator system with the effects of fear to understand 

the effect of this factor on the dynamical behavior of the system [13-16]. A predator–prey model 

incorporating the cost of fear into prey reproduction was proposed and studied by Wang et al. [14]. 

They showed that high levels of fear can stabilize the predator–prey system by excluding the 

existence of periodic solutions. However, Panday et al. [15] investigated the impact of fear in a tri-

trophic food chain model with Holling type II of functional responses. They concluded that chaotic 

dynamics can be controlled by fear factors. Later on, Pal et al. [16] investigated the impact of fear in a 

predator–prey model, where predator–prey interaction follows Beddington–DeAngelis functional 

response. They concluded that fear of predation risk can have both stabilizing and destabilizing 

effects. 

Keeping the above in view, in this paper we modified the prey-predator model proposed by Pal et al. 

[17] so that it involves the effects of fear and then discussed their dynamical behavior in details. 

2. The Model and Analysis 

 In this section, the prey-predator real-world system is formulated mathematically using square 

root functional response for describing the predation process. It is assumed that the prey grows 

logistically in the absence of predator while the predator’s population decays exponentially in the 

absences of their prey. Moreover, the growth rate of prey is reduced due to fear of the predator. Hence 

it is reduced in the presence of predator so that the modified intrinsic growth rate of prey becomes 
 

    
- a monotonic decreasing function of both   and   [14]. Here  is the fear parameter of prey.      

Accordingly, the dynamics of such a prey-predator system can be described using the following set of 

differential equations: 
  

  
   (   ) (  

    
)   √ 

  

  
      √                     

                                                                                    (1) 

     with initial condition ( )    and  ( )   ; where  ( ) and  ( ) are the densities of prey and 

predator populations, respectively, at anytime  . Here the parameters       are the growth rate of the 

prey, death rate of the predatorin the absence of prey, and conversion rate of prey to predator, 

respectively. 

According to the form of right-hand side functions of system 1, it is clear that they are continuous and 

have continuous partial derivatives. Hence they are Lipschitzian. Therefore, system 1 has a unique 

solution. Moreover, all the solutions of system 1 are positive and uniformly bounded as shown in the 

following theorems, and hence system 1 is a dissipative system. 

Theorem 1: The domain of system 1,   
  is positively invariant. 

Proof: Let ( ( )  ( )) be any solution;of system 1. Since the solution  ( ( )  ( )) of it with initial 

conditions in    
  exists and unique on/[   )   where-         then from the equations of system 

1we have 
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This completes the proof.            

Theorem 2: All solutions of system 1that are initiated in   
  are uniformly bounded. 

Proof: From the first equation of system 1, it is observed that 
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     Then it is easy to verify that for all values of   we have  ( )  
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Using the bound of   gives that 
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Therefore, direct computation shows that as     we obtain that  ( )  
(   ) 

  
. 

The proof is completed.             

3. Existence of equilibrium points and their local stability analysis 

The equilibrium points of system 1 are given by the trivial equilibrium point    (   ) and the axial 

equilibrium point    (   ), which always exist. While the coexistence equilibrium point    
( ̅  ̅), where 

  
  

  ;  ̅  
  

  
 

 

  
√    

  

  
(     )                                             (2) 

exists provided that 

                                          (3) 

     The method of Jacobian matrix is used to study the local stability of the above equilibrium points. 

The equilibrium point is locally asymptotically stable, if all the eigenvalues of the Jacobian matrix at 

that point have negative real parts. Since the Jacobian matrix;of system1 about arbitrary point’(   ) is 

determined by  

  (   )  (

     

    
 

 

 √ 

    (   )

(    ) 
 √ 

  

 √ 
 √   

)                            (4) 

     then by substituting the trivial equilibrium point in Eq. 4 and then determining the eigenvalues, the 

following eigenvalues are obtained:        and          and hence    is an unstable 

saddle point. 

     The Jacobian matrix of system 1 at the axial equilibrium point    (   )can be written as  

  (   )  (
    
    

)        (5) 

     Hence the eigenvalues of  (   ) are given by          and        . Hence,    (   ) 
is locally asymptotically stable provided that  

                        (6) 

Now the Jacobian matrix of system 1 at the coexistence equilibrium point    ( ̅  ̅)can be 

determined as follows 

  ( ̅  ̅)  [   ]           (7) 

where 
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The characteristic equation of  ( ̅  ̅) can be written as 

                                   (8) 

where     
(    ̅ )

    ̅
 

 ̅

 √ ̅
 and    *

   ̅(   ̅)

(    ̅) 
 √ ̅+

  ̅

 √ ̅
  . According to the Routh-Hurwitz 

criterion, Eq. 8 has two eigenvalues with negative real parts provided that      and     . Hence 

the coexistence equilibrium point    ( ̅  ̅) is locally asymptotically stable provided that  

 
 ̅

 √ ̅
 

(    ̅ )

    ̅
                                    (9) 

It is well known that persistence ensures the long term survival of all populations, starting from any 

initial population. In the next theorem, the condition that guarantees the uniform persistence of system 

1is established. 

Theorem 3: System 1 is uniformly persistent provided that 

                                       (10) 

Proof. Assume that   is a point in the positive quadrant and  ( ) is the orbit through  and   is the 

omega limit set of the orbit through . Note that  ( ) is bounded due to the uniform boundedness of 

system 1. 

     The claim is that     ( ). Assume that     ( ), then by the Butler–McGehee lemma [6] 

there exists a point   in  ( )    (  ), where   (  ) denotes the stable manifold of   . Since 

 ( ) lies in  ( ) and   (  ) is the   axis, it is concluded that  ( ) is unbounded, which is a 

contradiction. 
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     Now, the claim is that    ( ), otherwise     ( ). Since    is an unstable saddle point under 

condition 10then by the Butler–McGehee lemma there exists a point    in  ( )    (  ). Since 

 (  ) lies in  ( ) and   (  ) is the   axis, it implies that an unbounded orbit lies in  ( ), a 

contradiction. Therefore system 1 is uniformly persistent.                    ■ 

4. Global Stability Analysis 

 In this section, the global stability of the locally asymptotically stable equilibrium points is 

investigated using suitable Lyapunov functions as shown in the following theorems. 

Theorem 4: Assume that the axial equilibrium point   (   ) is locally asymptotically stable, then 

it is a globally asymptotically stable provided that 

 √  
 

 
                                   (11) 

Proof: Let      [       ]      be a positive definite real valued function. Then we have 
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, we obtain that 
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     Clearly under the condition 11,the derivative 
   

  
 is a negative definite. Moreover, since    is a 

radially unbounded function, then the axial equilibrium point   (   ) is globally asymptotically 

stable.        ■ 

Theorem (5): Assume that the coexistence equilibrium point   ( ̅  ̅) is locally asymptotically 

stable, then it is globally asymptotically stable provided that 

   
 

 
  or  

 

 
                                           (12) 

Proof: Consider the Dulac function given by 
 

√   
. Then by using the Bendixson–Dulac theorem on 

system 1, if the expression 
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(  ), where   and   are the right-hand side functions of 

system 1, has the same sign and not equal to zero almost everywhere in a simply connected region of 

the plane, then the plane autonomous system1 has no non-constant periodic solutions lying entirely in 

the positive quadrant. 

Now since  
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then under condition 12, system 1 has no non-constant periodic solutions in the positive quadrant. 

Since the system is bounded and has a unique coexistence equilibrium point, then according to the 

Poincaré-Bendixson theorem, the coexistence equilibrium point   ( ̅  ̅) is globally asymptotically 

stable under condition 12 and hence the proof is complete.    

Bifurcation analysis 

     The effect of varying the parameter values on the dynamics of system 1 is studied in this section 

using the local bifurcation analysis with the help of Sotomayor theorem [18].  

Now for simplifying the notations, system 1 in the vector form is written as follows  
  

  
  ( ), with   (   )  and   (   )  

Then the second derivative of   with respect to   can be written as 

    (   )  [
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(    ) 
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     (   )

(    ) 
  

 

  

  
 
 

  
  

 

√ 
    

]                    (13) 

here   (     )
  be a general vector. 

Theorem (6): Assume that     (   ), then system 1 at the axial equilibrium point   undergoes a 

transcritical bifurcation but neither saddle node nor pitchfork bifurcation can occur. 

Proof. For     (   ) we have the following Jacobian matrix  

  (    
 )     (

    
  

) 
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So   has the following eigenvalues:    
       and     

   , hence the necessary but not 

sufficient condition for bifurcation is satisfied and     is a nonhyperbolic point. 

     Let    (     )
  be the eigenvector of   corresponding to the eigenvalue    

   . Then 

straightforward computation gives that   ( 
 

 
     )

 , where    represents any nonzero real 

number. 

     Also, let    (     )
  be the eigenvector of   

 that corresponding to the eigenvalue    
   . 

Then direct calculation shows that    (    )
 , where    is any nonzero real number. 

Because
  

  
    (  √  ) , hence we obtain that   (    

 )  (   ) , which yields  

   
 [  (    

 )]    

     Thus system 1 at     with     does not experience saddle-node bifurcation in view of 

Sotomayor theorem. Moreover, we have  

   
 [   (     

 )  ]         

     where     represents the derivative of    with respect to  . Also by using eq. 13 at (    
 ) with 

the eigenvector   we obtain that 

  
 [   (    

 )(     )]   
  

 
    

    

Accordingly by Sotomayor theorem, system 1 near the equilibrium point    with      undergoes a 

transcritical bifurcation but pitchfork cannot occur.     

Theorem 7: Assume that   
 ̅(    ̅)

 √ ̅(    ̅)
(   ), then system 1at the coexistence equilibrium point 

  undergoes a Hopf bifurcation provided that 

  ̅  
 

 
                                   (14) 

Proof. According to the Jacobian matrix and the characteristic equation given by Eq. 7 and Eq, 8, 

respectively, the eigenvalues can be written by 

         
   

 
 

 

 
√  

      

where          
 (    ̅)
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  √ ̅(   ̅)

(    ̅) 
  )   . 

Clearly, for      we obtain that     . Hence           √   which are pure imaginary. Thus 

the coexistence equilibrium point    is a non-hyperbolic point. Moreover, since  

 
   

  
|
    

  
(    ̅)

    ̅
   under condition 14. 

Hence the system undergoes a Hopf bifurcation.                      

5. Numerical simulation 

     In this section, the dynamics of the proposed system 1 is simulated numerically using the following 

hypothetical set of data. The objective is to verify our obtained analytical results and specify the set of 

parameters that control the global dynamics of the system.  

                                    (15) 

     It is observed that system 1 approaches asymptotically to the coexistence equilibrium point 

   (          ) starting from different initial points as shown in Fig.1 below: 
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Figure 1-Phase portrait of system 1 using data given by Eq. 15. (a) The trajectories of system 1 

approach asymptotically to the coexistence equilibrium point    (          )starting from 

different initial points. (b) Time series of trajectories of prey starting from different points. (c) Time 

series of trajectories of predator starting from different points. 

 

     Clearly, Figure-1 shows that the coexistence equilibrium point    of system 1 is globally 

asymptotically stable.  

     Now the effect of varying the intrinsic growth rate of the prey species is numerically investigated 

and the obtained results are drawn in Figure-2 below.  Obviously, as shown in Figure-2, varying the 

value of   leads to varying the position of the coexistence equilibrium point rather than extinction of 

prey or predator  

     Similarly, the effect of varying the carrying capacity of the prey species is numerically investigated 

and the obtained results are drawn in Figure-3 below.  Obviously, Figure-3 shows the approach of the 

solution of system 1 to different coexistence equilibrium points depending on the value of carrying 

capacity.  

 
Figure 2-The trajectories of system 1 for the data (15) with different values of  . (a) The trajectories 

of system 1 approach asymptotically to the different coexistence equilibrium points depending on the 

value of   using the same initial point. (b) Time series of trajectories of the prey. (c) Time series of 

trajectories of the predator.  
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Figure 3-The trajectories of system 1 for the data (15) with different values of  . (a) The trajectories 

of system 1 approach asymptotically to the different coexistence equilibrium points depending on the 

value of   using the same initial point. (b) Time series of trajectories of the prey. (c) Time series of 

trajectories of the predator.   

 

     Finally, varying the value of  , so that condition 6 holds, leads to extinction in predator species 

and the solution of system 1 approaches asymptotically to the axial equilibrium point    (   )as 

shown in Figure-4 for the typical value       , keeping the rest of values as given by Eq. 15. 

 
Figure 4- Time series of the trajectory of system 1 that approaches asymptotically to the axial 

equilibrium point    (   )for data (15) with       . 

6. Discussion and conclusions 

 In this paper, a mathematical model that describes the dynamics of a prey-predator system 

involving the effects of the prey’s fear is proposed and investigated. It is observed that the model has 

at most three nonnegative equilibrium points. The local stability, persistence, global stability and local 

bifurcation for the proposed model are investigated analytically as well as numerically. In order to 

understand the global dynamics more precisely and confirm our analytical findings, a hypothetical set 

of parameters was selected so that the system is biologically realistic. Our obtained numerical 

simulation results that depend on the hypothetical parameters set 15 are summarized as follows: 

1. The system has a globally asymptotically coexistence equilibrium point for the set of parameters 

15, which satisfies the global stability condition and persistence condition. 

2. Increasing the intrinsic growth rate of the prey leads to an increase in the predator population and 

the system still persists at the coexistence equilibrium point, the position of which changes depending 

on the value of intrinsic growth rate. 

3. Increasing the prey’s fear rate leads to a decrease in the predator population and the system still 

persists at the coexistence equilibrium point, the position of which changes depending on the value of 

prey’s fear rate. 

4. Once the death rate of predator exceeds the value of conversion rate of prey to predator, the 

system losses its persistence and undergoes a transcritical bifurcation by approaching to the axial 

equilibrium point rather than the coexistence equilibrium point. 
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5. Although the system undergoes a Hopf bifurcation as the intrinsic growth rate passes through a 

specific value analytically, we cannot show that with the set of parameters 15 due to the difficulty in 

the computing of the value of the intrinsic growth rate. However it is still possible to obtain the Hopf 

bifurcation using different sets of parameters.  
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