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Abstract

Structure of network, which is known as community detection in networks, has
received a great attention in diverse topics, including social sciences, biological
studies, politics, etc. There are a large number of studies and practical approaches
that were designed to solve the problem of finding the structure of the network. The
definition of complex network model based on clustering is a non-deterministic
polynomial-time hardness (NP-hard) problem. There are no ideal technigques to
define the clustering. Here, we present a statistical approach based on using the
likelihood function of a Stochastic Block Model (SBM). The objective is to define
the general model and select the best model with high quality. Therefore, integrating
the Tabu Search method with Fuzzy c-Mean (FCM) is implemented in different
settings. The experiments are designed to find the best structure for different types
of networks by maximizing the objective functions. SBM selections are computed
by applying two types of criteria, namely Akaike Information Criteria (AIC) and
Bayesian Information Criteria (BIC). The results show the ability of the proposed
method to find the best community of the given networks.

Keywords: Community detection, Stochastic Block Model, FCM, Likelihood
function, BIC, AIC.
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1- Introduction

A complex network has a lot of communities with significant topological features common in real-
world networks (biological and social networks). Community detection in networks is a key
investigative tool with applications in a set of parts, ranging from finding communities in social and
biological networks to identifying link farms in the World Wide Web [1], [2]. Modularity is a
frequently used term in information technology and computer science. Modularity refers to the
concept of making multiple modules first and then linking and combining them to form a complete
system. The proposed idea is getting the best partition based on the maximization of Modularity and
Likelihood functions of Stochastic Block Models (SBM). SBM is a generative tool that inclines to
produce networks containing communities, with subsets that are considered by being connected with
one another with particular edge densities [3]. SBM is important in statistics, machine learning, and
network science, where it serves as a useful benchmark for the task of recovering community structure
in graph data. In statistics, likelihood is a function of the parameters of a statistical model derived for a
given data. The likelihood is used after data are available to describe plausibility of a parameter value
[4]. The problems encountered are related to estimating the latent block memberships and model
parameters, including modularity and likelihood maximization. Abbe and Sandon (2015) presented
community detection in general SBM. They studied the partial and exact recovery of communities in
the general SBM in the constant and logarithmic degree regimes and generalized the results to tackle
overlapping communities [5]. Decelle et al. (2011) studied the asymptotic analysis of the SBM for
modular networks. They presented the belief propagation method to find the structure of a network
from its topology, where the results were applied on the generative model for social and biological
networks [6]. Come and Latouche (2015) studied the problem of model selection and clustering in
SBM in the case of the integrated-complete data log likelihood. They used a greedy inference method
in their computations [7]. Yan et al. (2014) studied a model selection for degree-corrected block
models. They applied a belief propagation method for log-likelihood of two types of the models [8].
Qin and Rohe (2013) presented the regularized spectral under the degree corrected SBM and worked
on the spectral clustering in a high dimensional SBM model [9].
2- Community Detection and the Stochastic Block Model

Let N be an even positive integer and G be a random graph. For each pair of nodes, (i, ) is an edge
of G with probability p if i and j are in the same set, and with probability g if they are in different sets.
Each edge is drawn independently (p > q). This is known as the SBM on two communities. The
goal will be to recover the original partition. The question is for which values of p and q is it possible
to recover the partition of the graph. Let n be a positive integer (the number of vertices), k be a
positive integer (the number of communities), p = (p4, ..., pr) be a probability vector on [c] :=
(1,...,¢4) (the prior on the k communities), and P be a k X k symmetric matrix with entries in [0, 1]
(the connectivity probabilities). The adjacency matrix A;; of the graph contains zeros or ones in the
diagonal (these correspond to the absence or presence, respectively, of self-loops for the graph nodes).
The pair (X, G) is drawn under SBM(n,p, P), if X is an n-dimensional random vector with i.i.d
components distributed underp, and G is an n-vertex simple graph where vertices i and j are connected
with probabilityPXin, independently of other pairs of vertices [10]. The community detection problem
can be formulated as finding a disjoint partition T, U T, U T, . A set of node labels s = {sy, ..., sy},
where s; is the label of node i and takes values in {1,2, ..., C}. For any set of label assignments s, let
J(s) be the € x C matrix defined by

Ja(s) = ZijAijI{si=c,s; =1} 1)
where I is the indicator function. Further, let
Je(8) =X Jale) , L= XA 2

where ¢ # 1, J.(s) is the total number of edges between c,l. J. is the sum of node degrees in
community ¢ and L is the sum of all degrees in the network. Then 3. is interpreted as twice the total
number of edges within the community ¢ and L as twice the number of edges in the whole network.
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Finally, let n.(s) =Y;I1{s; = c} be the number of nodes in the c** community, and f(e) =
%% . ..,%)T . The SBM network edges variables A;; with given true node labels
c={cy,...,cp } €{1,...,C}, are independent Bernoulli random variables with
E[Aijlc] = Pc,-c]- (3)
Where P isa C x C symmetric matrix. For the case of Degree Corrected SBM, Equation(2)
replaced by
E[/llle'] = 91' 0] PCiCj (4)
where 6; is a degree parameter associated with the node i, reflecting its individual propensity to form
ties. A profile likelihood can be derived by maximizing over 6 by giving the following criteria [11].

Yocam(s) = Zada log 5% (5)
The profile likelihood in SBM finds the optimization overall partitions by the criteria:
Je
You(s) = Xt Jer 10g 7 Ii,l (6)

The general modularity criteria is

Y(s) = Xij[Ai; — Pyl1 (si = s)) (7)
where P;; is the probability of edges falling between i and j under the null model. In the case of
C =1, SBM reduces to Erdos-Renyi random graph, where P;; is a constant estimated by L/N 2,

Vorm (8) = Ze(Jec — 35 L) ®)
The popular Newman-Girvan modularity (NGM) is
2
Yuom(s) = Ze(Jec — 25 L). 9)

3- Model selection

There are types of Penalized-likelihood information criteria, such as AIC and BIC. The Consistent
AIC and the Adjusted BIC are widely used for model selection. AIC is an estimate of a constant plus
the relative distance between the unknown true likelihood function of the data and the fitted likelihood
function of the model, so that a maximum AIC value means that the model is considered to be closer
to the truth [12]. Let k be the number of estimated parameters in the model. Let L be the maximum
value of the likelihood function for the model. Then the AIC value of the model is

AIC = 2k — 2 InL

Given a set of candidate models for the data, the preferred model is the one with the minimum AIC
value. BIC is an estimate of a function of the posterior probability of a model being true, under a
certain Bayesian setup [13]. The BIC is formally defined as

BIC = In(n) k —2 In(L)

where L is the maximized value of the likelihood function of the model M.
4- Integrating Tabu via FCM for SBM and Degree-Corrected Stochastic Block Model
(DCSBM) likelihood maximization

Tabu search is a global optimization algorithm, the basic concept of which was described by
Glover (1989), who presented it as a meta-heuristic superimposed on another heuristic. The overall
approach is to avoid entrainment in cycles by forbidding or penalizing moves which take the solution,
in the next iteration, to points in the solution space previously visited (hence “tabu”) [14]. The idea of
the tabu method is a simulation to the human behavior which appears to operate with a random
element that leads to inconsistent behavior, given similar circumstances [15]. Fuzzy clustering is a
hard clustering algorithm which requires that each data point of the data set belongs to one and only
one cluster. Fuzzy c-means (FCM) clustering was developed by Dunn in 1973 and improved by
Bezdek in 1981 [16]. The integrating of tabu search with FCM under SBM is explained in Algorithm
1. Another integration under DCSBM is explained in Algorithm 2.
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Algorithm 1. Tabu Search with Fuzzy c-mean For SBM Likelihood Function
Input: D dataset, max. iter maximum number of iterations
Output: Cost. bst: best maximum likelihood objective values
Step.1. Initialization: Tabu. List =[], .Q = 0, TC1:Tabu counter for Model, TC2: Tabu Counter
for adjacency, use Tabu counter to save best solution node or label.

Step 2. Generate random permutation for Lb1 and Lb2 to find Solution.

Step 3. For iter = 1 to max.iter do {Main TS loop}
Step 3.1. If .Cost >= Init.Cost then Init.Sol = new.sol. {Save the new values}
Step 3.2. sol = NewSol. Update Current Solution:
Step 3.3. For i=1to nActionl { Update Tabu. List for model}
If i == NewSol. Index, then add to Tabu. List TC1(i) = TL1; otherwise, reduce Tabu Counter
TC1(i) = max(TC1() — 1,0);
Step 3.4. Update Tabu. List for adjacency
For i=1 to nAction2

If i == NewSol.Index, then add to Tabu List TC2(i) = TL2;
otherwise, reduce Tabu Counter TC2(i) = max(TC2(i) — 1,0);
Step 3.5. Update Best Solution Ever Found
If soll.Cost = BestSoll.Cost and sol2.Cost = BestSol2: Cost then
BestSoll = soll; BestSol2 = sol2;

Step 3.6. Save Best Quality Ever Found
Step 3.7. Cost. Best(iter ,1) = BestSoll.Cost;
Cost. Best(iter ,2) = BestSol2.Cost.
End

Algorithm 2. Tabu Search with Fuzzy c-mean For DCSBM L.ikelihood Function

Input: D dataset, max. iter maximum number of iterations
Output: Cost. bst: best maximum likelihood objective values
Step.1 Initialization: Tabu. List = [], Init.Q = 0, TC1:Tabu counter for Model, TC2: Tabu
Counter for adjacency
Step 2. Define an anonymous function for computing Best cost from Algorithm (2) with the real
parameters and the dependent parameters before the function name.
Step 3. Generate random permutation for Lb1 and Lb2 to find Solution.
Step 4. For iter = 1to max.iter do Main Tabu search loop
Step 4.1. If . Cost >= Init. Cost then Init.Sol = new.sol. Save the new values.
Step 4.2. sol = NewSol. Update Current Solution:
Step 4.3. For i=1to nActionlUpdate Tabu. List for model
If i == NewSol.Index, then add to Tabu. List TC1(i) = TL1; otherwise, reduce Tabu
Counter TC1(i) = max(TC1(i) — 1,0);
Step 4.4. Update Tabu. List for adjacency
For i=1 to nAction2
If i == NewSol.Index, then add to Tabu List TC2(i) = TL2;
otherwise, reduce Tabu Counter TC2(i) = max(TC2(i) — 1,0);
Step 4.6. Update Best Solution Ever Found
If soll.Cost = BestSoll.Cost and sol2.Cost = BestSol2: Cost then
BestSoll = soll; BestSol2 = sol2;
Step 4.7. Save Best Quality Ever Found
Step 4.8. Cost. Best(iter ,1) = BestSoll.Cost; Cost. Best(iter ,2) = BestSol2.Cost

5- Experimental Results and Discussion
This section deals with the experimental part of this paper. The results show the ability of the
proposed algorithms to find the optimal solution, the best clusters, based on the values of SBM and

2698



Yaqoob and Al-Sarray Iragi Journal of Science, 2020, Vol. 61, No. 10, pp: 2695-2704

DCSBM obijective functions. The experiments are designed for the real networks with different topics
and complicity. The details of the networks are given by Table-1.

Table 1- Details of the networks used in this work [17]
Networks No. of Nodes No. of Edges
Zackary Karate 34 78
Dolphin 62 158
American Football Collage (AFC) 115 613
Facebook 3958 84241
Protein 2284 6644
Political blogs 1107 9537
Internet Level AS Network(ILAN) 6444 11284
Chesapeake 39 170
Delaunay 1024 3056
Twitter 2623 21000

The values of the metrics (AIC, BIC), based on optimal values of likelihood functions of the
models under study (SBM, DCSBM), are given in Tables -2 and 3, respectively. These values of the
metrics are obtained by applying TS-FCM to optimize the partitions of the networks based on
maximum likelihood functions. Here the number of clusters is defined on the range of 2 to n /2. The
results are given in Figures- 1-4 which are divided into three parts; the first part represents the
partitions of the network, the second part represents the integrating of TS with FCM objective
function, and the third part represent the model selection criteria using the integration of TS with FCM
for modeling the networks.

Table 2-Comparison of AIC and BIC values for SBM using TS-FCM

Network AIC BIC NBOéS‘zf AIC (FCM- | BIC (FCM- Né’e'sct’f
(TS-FCM) | (TS-FCM) Clusters TS) TS) Cluster
Karate 68 78 16 68 78 17
Dolphin 123 143 29 123 143 31
AFC 225 260 52 229 263 54
Facebook 6580 7540 1545 6590 7550 1758
Political 2200 2570 586 1989 2450 747
Protein 4520 5250 1189 4050 4700 1346
ILAN 8700 10000 3108 9000 10500 3476
Chesapeake 78 90 12 76 87.5 15
Delaunay 1990 2285 498 2090 2360 512
Twitter 5192 5978 952 5192 5979 1024
Table 3-Comparison of AIC and BIC values for DCSBM using TS-FCM
AR TsAllgM TSBII:gM N;ésc;f FCAI\I/ICTS FCBI\I/ICTS N;ésc:f
(TS- ) | s ) Cluster ( -T3) ( -T3) Cluster
Karate 2224 x 103 | 2224 x 103 16 2225 x 103 | 2225 x 103 16
Dolphin 1395 x 10* | 1395 x 10* 29 1394 x 10* | 1394 x 10* 30
AFC 5463 x 10* | 5463 x 10%6 52 5464 x 10* | 5464 x 10* 55
Facebook 2228 x 10° | 2235 x 10° 1545 2228 x 10° | 2235 x 10° 1545
Political 2734 x 10%% | 2735 x 1012 586 2066 x 105 | 2069 x 10° 747
Protein 2076 x 1012 | 2078 x 1012 | 1205 | 9070 x 10* | 9150 x 10* | 1346
Internet 1991 x 10%3 | 1993 x 1013 | 3108 2073 x 10° | 2084 x 10° 3476
Chesapeake | 1076 x 107 | 1077 x 107 12 2219 x 107 | 2231 x 107 15
Delaunay 1809 x 101 | 1809 x 10! | 498 2891 x 10* | 2915 x 10* 512
Twitter 6846 x 101* | 6857 x 101* | 897 | 6846 x 101* | 6857 x 1014 | 1015
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Figure 4-DCSBM AIC, BIC values using TS-FCM.

6. Conclusions

In this work, we present different types of algorithms to solve problems of community detection in
complex networks. The statistical models are presented here for modeling and finding the best
structure of complex networks. These models are Stochastic Block Model and Degree Corrected
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Stochastic Block Model. The objective functions adopted for estimating these block models are
likelihood function and modularity function, by applying Integrating TS-FCM. The proposed hybrid
algorithm was used for computing maximum likelihood function (SBM-DCSBM) models for different
types of the complex and real networks. The experiments of this study were conducted by using
different settings and metrics to select the best partitions. Here AIC and BIC were used to define the
best model based on optimal values of maximum likelihood function. The results show the ability of
the proposed method to find best community structure of the networks. The best values were achieved
by the BIC criteria for all networks.
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