Ibrahim and Elewi

Iraqi Journal of Science, 2020, Vol. 61, No. 4, pp: 820-823 DOI: 10.24996/ijs.2020.61.4.14

ISSN: 0067-2904

R-annihilator-Coessential and R-annihilator-Coclosed Submodules

Omar K. Ibrahim*, Alaa A. Elewi

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 8/7/ 2019

Accepted: 21/9/2019

Abstract:

Let *W* be a unitary left R-module on associative ring *R* with identity. A submodule *F* of *W* is called *R*-annihilator small if F + T = W, where *T* is a submodule of *W*, implies that ann(*T*)=0, where ann(*T*) indicates annihilator of *T* in *R*. In this paper, we introduce the concepts of *R*-annihilator-coessential and *R*-annihilator - coclosed submodules. We give many properties related with these types of submodules.

Keywords: Essential submodules, coclosed submodule, coessential submodule, coclosed submodule, *R*-annihilator - coessential and *R*- annihilator -coclosed.

المقاسات الجزئيه ضد الجوهريه من النمط-R والمقاسات الجزئيه الضد المغلقه من النمط-R

عمر خلبل ابراهيم ، الاء عباس عليوي

قسم الرياضيات ، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصه

ليكن Wمقاس احادي ايسر معرف على حلقة تجميعيه R ذات عنصر محايد. المقاس الجزئي F من المقاس W يدعى تالف صغير من النمط-R اذا كان F+T=Wحيث Tمقاس جزئي من Wيقود الى(T)ann(T)حيث (T)مهو تالف ل Tفي R. في هذا البحث عرفنا مفهومين الاول هو المقاسات الجزئيه ضد الجوهرية من النمطR والثاني هو والمقاسات الجزئيه الضد مغلقه التالفة من النمط-R. اعطينا العديد من الخصائص ذات العلاقة لهذه الانواع

من المقاسات الجزئيه.

1. Introduction

Let *W* be a unitary left of *R*-module on associative ring *R* with identity. The concept of *R*-annihilator-small (*R*-ann-small) submodule was introduced in an earlier study [1]. A submodule *W* of an *R*-module *W* is called *R*-ann-small if F + T = W, *T* is a submodule of *W*, implies that $ann_R(T) = 0$, where $ann_R(T) = \{r \in R: r. T = 0\}$ and denoted by $F \ll_a W$. A submodule *F* of *W* is said to be essential submodule in *W* (denoted by $F \ll_e W$) if for any $X \subseteq W, X \cap F = 0$, implies that X = 0 [2]. For $F \subseteq K \subseteq W$, if $F \leq K$, then *K* is called an essential extension of *F* in *W*.

A submodule *F* is said to be closed in *W*, if *F* has no proper essential extension in *W* [3]. Dually, for $F \subseteq K \subseteq W$, *F* is said to be a coessential submosule of *K* in *W* (denoted by $F \subseteq_{ce} K$ in *W*) if $\frac{K}{F} \ll \frac{W}{F}$ [4] [5].

F is said to be coclosed in *W* (denoted by $F \subseteq_{cc} W$), if *F* has no proper coessential submodule in *W* [6]. In this paper, we give the concept of *R*-annihilator-coessential and *R*-annihilator coclosed submodules. For $F \subseteq K \subseteq W$, *F* is said to be a *R*-annihilator -coessential submodule of *K* in *W* (*R*-a-

coessentiale), if $\frac{K}{F} \ll_a \frac{W}{F}$ (denoted by $F \leq_{ace} K$). Also, a submodule W of an R-module W is called *R*-annihilator coclosed (*R*-a-coclosed) submodule in *W* (denoted by $F \leq_{acc} K$), if *F* has no proper coessential submodule in *W*. In other words, if whenever $K \subseteq F$ with $\frac{K}{F} \ll_a \frac{W}{F}$, implies that F = K. We give the same properties of these kinds of submodules.

2. R-annihilator-coessential submodules

In this section, we introduce the concept of R-annihilator-coessential submodules which is a generalization of coessential submodules [4] [5]. We also give some basic properties of this class of submodules.

Definition 2.1: Let W be an R-module, for $A \subseteq B \subseteq W$, A is said to be R-annihilator coessential submodule of B in W, briefly R-a-coessential (denoted by $A \subseteq_{ace} B$ in W), if $\frac{B}{A} \ll_a \frac{W}{A}$.

Examples and Remarks 2.2:

1- Consider that Z_6 as Z-module. It is clear that $\{\overline{0}\}$ is not Z-a-coessential submodule of $\{\overline{0}, \overline{3}\}$ in Z_6 , since $\frac{\{\overline{0},\overline{3}\}}{\{\overline{0}\}} \simeq \{\overline{0},\overline{3}\}$ and $\frac{Z_6}{\{\overline{0}\}} \simeq Z_6$. But $\{\overline{0},\overline{3}\}$ is not Z-annihilator-small in Z_6 .

2- Consider that Z as Z-module, then (0) is Z-a-coessential of 2Z in Z, since $\frac{2Z}{(0)} \simeq 2Z$, $\frac{Z}{(0)} \simeq Z$ and $2Z \ll^{a} Z$, where 2Z + 3Z = Z and $ann_{Z}(3Z) = \{n \in \mathbb{Z} : n(3Z) = 0\} = 0$.

3- Let W be an R-module and let F be a submodule of W, then $F \ll^a W$ iff $O \subseteq_{ace} F$ **Proof** : \Rightarrow) Suppose that $F \ll_a W$ then $\frac{F}{(0)} = F$, $\frac{W}{(0)} = W$. Thus, $\frac{F}{(0)} \ll^a \frac{W}{(0)}$. This means that (0) $\subseteq_{ace} F$ in W.

(a) Now, suppose that $(0) \leq_{ace} F$ in W. To prove that $F \ll_a W$, suppose that W = F + T, where $T \leq W$. Thus, $\frac{W}{(0)} = \frac{F}{(0)} + \frac{T}{(0)}$, but $(0) \leq_{ace} F$ in W. Then, ann(T) = 0. Therefore, $F \ll_a W$.

4-The concepts of coessential and R-a-coessential are independent since, in Z as Z-module, $4Z \subset 2Z \subset Z, \frac{2Z}{4Z} \simeq \{\overline{0}, \overline{2}\}$ in Z_4 and $\frac{Z}{4Z} \simeq Z_4$. But, $\{\overline{0}, \overline{2}\}$ is not Z-a-small in Z_4 , since $\{\overline{0}, \overline{2}\} + Z_4 = Z_4$ and $ann_Z Z_4 = \{n \in \mathbb{Z} : nZ_4 = 0\} = 4Z \neq 0$. We know that $\{\overline{0}, \overline{2}\} \ll Z_4$, thus $4Z \subseteq_{ce} 2Z$ in Z, but $4Z \not\subseteq_{ace} 2Z$ in Z.

In this module, Z as Z-module $\{0\}$ is R-a-coessential of 2Z in Z, as we shows in (2), but $\{0\}$ is not coessential of 2Z in Z since 2Z is not small in Z.

Proposition 2.3: Let W be an R-module. If $A \subseteq_{ace} C$, then $A \subseteq_{ace} B$, where $A \subseteq B \subseteq C$ and A, B, C are submodules of W.

Proof: Let $A \subset X \subset W$ with $\frac{B}{A} + \frac{X}{A} = \frac{W}{A}$, thus B + X = W. But $B \subseteq C$, therefore W = C + X and then $\frac{W}{A} = \frac{C}{A} + \frac{X}{A}$. $A \leq_{ace} C$, then $\frac{C}{A} \ll_a \frac{W}{A}$, thus $ann\left(\frac{X}{A}\right) = 0$ and hence $\frac{B}{A} \ll^a \frac{W}{A}$, i.e. $A \subseteq_{ace} B$ in W.

Proposition 2.4: Let W be an R-module and A, B, N are submodules of W. If $A \subseteq_{ace} B$ and $N \ll W$, then $A \subseteq_{ace} B + N$ in W.

Proof: Suppose that $A \subset X \subset W$ with $\frac{B+N}{A} + \frac{X}{A} = \frac{W}{A}$ then B + N + X = W, but $N \ll W$, therefore B + X = W and hence $\frac{B}{A} + \frac{X}{A} = \frac{W}{A}$. But $\frac{B}{A} \ll_a \frac{W}{A}$, Thus $ann\left(\frac{X}{A}\right) = 0$. This means that $A \subseteq_{ace} B + N$ in W.

Proposition 2.5: Let $A \subseteq X \subseteq B \subseteq W$, $X \subseteq_{ace} B$ if and only if $\frac{X}{A} \subseteq_{ace} \frac{B}{A} \text{ in } \frac{W}{A}$. **Proof** \Rightarrow) Assume that $X \subseteq_{ace} B$ in M. Since $\frac{B}{X} \simeq \frac{B/A}{X/A}$ and $\frac{W}{X} \simeq \frac{W/A}{x/A}$ (by the 3rd isomorphism)

theorem). Thus, $\frac{B/A}{X/A} \ll_a \frac{W/A}{X/A}$ and hence $\frac{X}{A} \subseteq_{ace} \frac{B}{A}$ in $\frac{W}{A}$. \Leftarrow) Now, suppose that $\frac{X}{A} \subseteq_{ace} \frac{B}{A}$ in $\frac{W}{A}$. Since $\frac{B/A}{X/A} \simeq \frac{B}{X}$ and $\frac{W/A}{X/A} \simeq \frac{W}{X}$ (by the 3rd isomorphism) theorem). Then $\frac{B}{X} \ll_a \frac{W}{X}$ and this means that $X \subseteq_{ace} B$ in W.

Lemma 2.6: Let *W* be an *R*-module and $A \subseteq B \subseteq C \subseteq W$. If $B \subseteq_{ace} C$ in *W*, then $A \subseteq_{ace} C$ in *W*. **Proof:** Suppose that $B \subseteq_{ace} C$ in M. To prove that $A \subseteq_{ace} C$ in W, suppose that $\frac{W}{A} = \frac{C}{A} + \frac{T}{A}$, where $A \subseteq T$, thus W = C + T and then $\frac{W}{B} = \frac{C}{B} + \frac{T+B}{B}$. But $B \subseteq_{ace} C$, and this means that $\frac{C}{B} \ll_a \frac{W}{B}$

Therefore, $ann\left(\frac{T+B}{B}\right) = 0$. To prove that $ann\left(\frac{T}{A}\right) = 0$, let $r \in ann\left(\frac{T}{A}\right)$, thus $rT \subseteq A$ and hence $rT \subseteq B$ since $A \subseteq B$, therefore rT + B = B. Thus, $r \in ann\left(\frac{T+B}{B}\right) = 0$ which means that $ann\left(\frac{T}{A}\right) = 0$. Therefore, $A \subseteq_{ace} C$ in W.

Proposition 2.7: If W is an R-module and A, B and C are submodules of W, such that $A + C \subseteq_{ace} B + C$ in W, then $A \subseteq_{ace} B$ in W.

Proof: Let *T* be a submodule of *W*, such that $A \subseteq T$, and suppose that $\frac{M}{A} = \frac{B}{A} + \frac{T}{A}$. So W = B + T and then $\frac{W}{A+C} = \frac{B+C}{A+C} + \frac{T+C}{A+C}$, where A + C and $\binom{T}{A} = 0$. Let $r \in ann(\frac{T}{A})$, thus $rT \subseteq A \subseteq A + C$ and hence r(T + A + C) = A + C. Then, $r \in ann(\frac{T+C}{A+C}) = 0$, thus $ann(\frac{T}{A}) = 0$. So $A \subseteq_{ace} B$ in *W*.

Proposition 2.8: Let *A*, *B*, *C* and *X* be submodules of an *R*-module *W*. The following statements are the same:

1) If $A \subseteq_{ace} A + B$ in W, then $A \cap B \subseteq_{ace} B$ in W.

2) If $A \subseteq_{ace} B$ in W and $Y \leq W$, then $A \cap Y \subseteq_{ace} B \cap Y$ in W.

3) If $A \subseteq_{ace} B$ in W and $X \subseteq_{ace} C$ in W, then $A \cap X \subseteq_{ace} B \cap C$ in W.

Proof: (1) \Rightarrow (2) Let $A \subseteq_{ace} B$ in W and $Y \subseteq W$. Since $A + (B \cap Y) \subseteq B$, then $A \subseteq_{ace} A + (B \cap Y)$ (by proposition (1.3)). By (1), $A \cap (B \cap Y) \subseteq_{ace} B \cap Y$, this implies that $A \cap Y \subseteq_{ace} B \cap Y$ in W.

(2) \Rightarrow (3) Let $A \subseteq_{ace} B$ in *W* and $X \subseteq_{ace} C$ in *W*. By (2) $A \cap X \subseteq_{ace} B \cap X$ in *W*. Also, $X \subseteq_{ace} C$ and $B \subseteq W, B \cap X \subseteq B \cap C$ in *W*. Thus, $A \cap X \cap C$ in *W* by proposition (1.3).

(3)⇒(1) Suppose that $A \subseteq_{ace} A + B$ in *W*. Since $B \subseteq_{ace} B$ in *W*, then by (3), $A \cap B \subseteq_{ace} (A + B) \cap B$. Thus, $A \cap B \subseteq_{ace} B$ in *W*.

3. R-annihilator-coclosed submodules

In this section, we introduce the concept of (*R*-annihilator) *R*-a-coclosed as a generalization of coclosed submodules, where a submodule *N* of an *R*-module *W* is called coclosed submodule in *W* (denoted by $F \leq_{cc} W$) if whenever $K \leq F$ with $\frac{F}{K} \ll \frac{W}{K}$ implies F = K.

Definitions 3.1:

Let *W* be an *R*-module, then a submodule *F* of *M* is called *R*-annihilator coclosed in *W* (briefly *R*-a-coclosed) if whenever $K \le F$ with $\frac{F}{K} \ll^a \frac{W}{K}$ implies that F = K. (denoted by $F \le_{acc} W$). Examples and Remarks 3.2

1- The submodule $\{\overline{0}, \overline{2}\}$ of a Z-module Z_4 is Z-a-coclosed in Z_4 since $\{0\} \lneq \{\overline{0}, \overline{2}\}$ and $\frac{\{\overline{0}, \overline{2}\}}{\{\overline{0}\}} \simeq \{\overline{0}, \overline{2}\}$,

also $\frac{Z_4}{\{\overline{0}\}} \simeq Z_4$. But $\{\overline{0}, \overline{2}\}$ is not Z-a-small in Z_4 because $\{\overline{0}, \overline{2}\} + Z_4 = Z_4$ and $ann_Z Z_4 = 4Z \neq 0$.

2- The submodule 2Z of a Z-module Z is not Z-a-coclosed of Z. To recognize that, let $\{0\} \subseteq 2Z$ and notice that $\frac{2Z}{\{0\}} \simeq 2Z, \frac{Z}{\{0\}} \simeq Z$. We also know that $2Z \ll_a Z$ [1, Rem. & Ex (1.2.p13)].

3- The concepts of coclosed and *R*-a-coclosed submodules are independent, since $\{\overline{0}, \overline{2}\}$ is *Z*-a-coclosed in the *Z*-module *Z*₄ but it is not coclosed in *Z*₄ as *Z*-module [7, Rem. & Ex. (1.2.3), p15].

4- Consider the Z_8 -module Z_8 , the submodule $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ is Z_8 -a-coclosed but not coclosed since $\{0\} \subsetneq \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\} \subseteq Z_8 \frac{\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}}{\{\overline{0}\}} \simeq \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$. Also $\frac{Z_8}{\{0\}} \simeq Z_8$, but $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ is not Z_8 -a-coclosed since $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ is not Z_8 -a-coclosed since $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ is not Z_8 -a-small. But $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\} \ll Z_8$ is Z_8 -module, thus it is coclosed in Z_8 .

An *R*-module *W* is called *R*-a-hllow if every proper submodule of *W* is *R*-a-small [8], where a submodule *F* of *W* is *R*-a-small if whenever W = F + T, where $T \le W$, then ann(T) = 0. [1] **Proposition 3.3**

Let W be an R-module and L be a nonzero submodule of W which is R-a-hollow, then either L is R-a-small submodule of W or L is R-a-coclosed submodule of W, but not both.

Proof: Let (0) $\neq L \leq W$ and suppose that *L* is not *R*-a- coclosed of *W*. So, there exists K < L such that $\frac{L}{\kappa} \ll_a \frac{W}{\kappa}$, but [by 1,cor.(2.1.6), p34] $L \ll_a W$.

Now, if L is R-a-coclosed submodule of W, and suppose that $L \ll_a W$, then $\frac{L}{(0)} \ll_a \frac{W}{(0)} \simeq W$ and hence L = (0) which is contradiction.

Proposition 3.4: Let W be an R-module and $K \le L$ be submodules of W. If $L \le_{acc} W$, then $\frac{L}{K} \le_{acc} \frac{W}{K}$.

Proof: Let $\frac{N}{K} \leq_{ace} \frac{L}{K}$ in $\frac{W}{K}$. We must prove that $\frac{N}{K} = \frac{L}{K}$. We have $\frac{L/K}{N/K} \ll^{a} \frac{W/K}{N/K}$. This means that $\frac{L}{N} \ll^{a} \frac{W}{N}$, but $L \leq_{acc} W$. Therefore, L = N and hence $\frac{N}{K} = \frac{L}{K}$. Thus $\frac{L}{K} \leq_{acc} \frac{W}{K}$.

Let be an *R*-module and let *X*, *K* and *L* be submodules of *W* such that $X \subseteq K \subseteq L \subseteq W$. If $\frac{K}{X} \ll_a \frac{L}{X}$ and $\frac{L}{X} \ll_a \frac{W}{X}$, then $\frac{K}{X} \ll_a \frac{W}{X}$. **Proof:** Suppose that $\frac{W}{X} = \frac{K}{X} + \frac{T}{X}$, where *T* is a submodule of *W* such that $X \subseteq T$. Thus, W = K + T.

Proof: Suppose that $\frac{W}{X} = \frac{K}{X} + \frac{T}{X}$, where *T* is a submodule of *W* such that $X \subseteq T$. Thus, W = K + T. But $K \subseteq L$, therefore W = L + T. So, $\frac{W}{X} = \frac{L}{X} + \frac{T}{X}$. But $\frac{L}{X} \ll_a \frac{W}{X}$, thus $ann\left(\frac{T}{X}\right) = 0$, which means that $\frac{K}{X} \ll_a \frac{W}{X}$.

Proposition 3.6

Let *W* be an *R*-module and $K \subseteq L$ be submodules of *W*. If $K \leq_{acc} W$ and $\frac{L}{K} \ll_a \frac{W}{K}$, then $K \leq_{acc} L$. **Proof:** Let $X \leq K$ such that $\frac{K}{X} \ll_a \frac{L}{X}$. Since $\frac{L}{K} \ll_a \frac{W}{X}$ then $\frac{K}{X} \ll_a \frac{W}{X}$ by lemma 3.5. But $K \leq_{acc} W$. Therefore, K = X and hence $K \leq_{acc} L$.

Proposition 3.7: Let *W* be an *R*-module and *L*, *N* are submodule. If $L \leq_{acc} W$ then $\frac{L+N}{N} \leq_{acc} \frac{W}{N}$. **Proof** Suppose that $\frac{X}{N} \leq_{ace} \frac{L+N}{N}$ in $\frac{W}{N}$ where $N \subseteq X$, then $X = N + (L \cap X) \leq_{ace} N + L$ in *W* [by prop. (2.5)]. But $N \leq W$ which implies that $(L \cap X) \leq_{ace} L$ in *W* by [prop. 2.7] As $L \leq_{ace} W$ we get X = L + L

But $N \le W$, which implies that $(L \cap X) \le_{ace} L$ in W, by [prop. 2.7] As $L \le_{acc} W$, we get X = L + N. Then $\frac{L+N}{N} \le_{acc} \frac{W}{N}$.

References

- 1. Al-Hurmuzy H. and AL-Bahrany B. 2016, R-Annihilator-small submodules, Msc thesis, College of Science, Baghdad University, Baghdad, Iraq.
- 2. Goodearl, K. R.1976. Ring theory, Non-singular rings and modules. Mercel Dekker, New York.
- 3. Lomp, C.1996. On Dual Goldie Dimension, Diploma thesis, University of Glasgow.
- 4. Courter, R.C.1986. The Maximal Co-rational Extension by a module. Can. J. Math. 18: 953-962.
- 5. Takeuchi, T. 1976. On Cofinite-Dimentioal Modules. *Hokkaido Math. J.*, 5: 1-43.
- 6. Golar, J. 1971. Quasi perfect Modules. Q. J. Math. Oxf. II. Ser., 22: 173-182.
- 7. Hassan A. A. and Al-Bahrany B. 2010. Finitely hollow-lifting modules , M. Sc thesis, College of Science, Baghdad University.Baghdad, Iraq.
- 8. Yaseen S.M. 2018. R-annihilator-hollow and R-annihilator lifiting modules, *Sci. Int* (Lahore), 30(2): 204-207.