R-annihilator-Coessential and R-annihilator-Coclosed Submodules

Omar K. Ibrahim*, Alaa A. Elewi
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 8/7/2019 Accepted: 21/9/2019

Abstract:
Let W be a unitary left R-module on associative ring R with identity. A submodule F of W is called R-annihilator small if $F + T = W$, where T is a submodule of W, implies that $\text{ann}(T) = 0$, where $\text{ann}(T)$ indicates annihilator of T in R. In this paper, we introduce the concepts of R-annihilator-coessential and R-annihilator-coclosed submodules. We give many properties related with these types of submodules.

Keywords: Essential submodules, coclosed submodule, coessential submodule, coclosed submodule, R-annihilator-coessential and R-annihilator-coclosed.

1. Introduction
Let W be a unitary left of R-module on associative ring R with identity. The concept of R-annihilator-small (R-ann-small) submodule was introduced in an earlier study [1]. A submodule W of an R-module W is called R-ann-small if $F + T = W$, T is a submodule of W, implies that $\text{ann}_R(T) = 0$, where $\text{ann}_R(T) = \{r \in R: r \cdot T = 0\}$ and denoted by $F \ll_W T$. A submodule F of W is said to be essential submodule in W (denoted by $F \subseteq W$) if for any $X \subseteq W$, $X \cap F = 0$, implies that $X = 0$ [2].

*Email: omarkhaelelibrahim@gmail.com

ISSN: 0067-2904
coessential), if \(K \leq \frac{W}{F} \) (denoted by \(F \leq ace K \)). Also, a submodule \(W \) of an \(R \)-module \(W \) is called \(R \)-annihilator coclosed (\(R \)-a-coclosed) submodule in \(W \) (denoted by \(F \leq ace K \)), if \(F \) has no proper coessential submodule in \(W \). In other words, if whenever \(K \subseteq F \) with \(\frac{K}{F} \leq \frac{W}{F} \), implies that \(F = K \).

We give the same properties of these kinds of submodules.

2. \(R \)-annihilator-coessential submodules

In this section, we introduce the concept of \(R \)-annihilator-coessential submodules which is a generalization of coessential submodules [4] [5]. We also give some basic properties of this class of submodules.

Definition 2.1: Let \(W \) be an \(R \)-module, for \(A \subseteq B \subseteq W \), \(A \) is said to be \(R \)-annihilator coessential submodule of \(B \) in \(W \), briefly \(R \)-a-coessential (denoted by \(A \leq ace B \) in \(W \)), if \(\frac{B}{A} \leq \frac{W}{A} \).

Examples and Remarks 2.2:

1- Consider that \(Z_6 \) as \(Z \)-module. It is clear that \(\{0\} \) is not \(Z \)-a-coessential submodule of \(\{0, 3\} \) in \(Z_6 \), since \(\frac{0,3}{0} = \{0, 3\} \) and \(\frac{3}{0} = Z_6 \). But \(\{0, 3\} \) is not \(Z \)-annihilator-small in \(Z_6 \).

2- Consider that \(Z \) as \(Z \)-module, then \(0 \) is \(Z \)-a-coessential of \(2Z \) in \(Z \), since \(\frac{2Z}{0} \approx 2Z \), \(\frac{Z}{0} \approx Z \) and \(2Z \leq \frac{a}{a} Z \), where \(2Z + 3Z = Z \) and \(n(ax, x) = \{n \in Z; n(3Z) = 0\} = 0 \).

3- Let \(W \) be an \(R \)-module and let \(F \) be a submodule of \(W \), then \(F \leq \frac{a}{a} W \) iff \(O \leq ace F \).

Proof: Suppose that \(F \leq \frac{a}{a} W \) then \(F(0) = W(0) = W \). Thus, \(\frac{F}{W} \leq \frac{a}{a} \). This means that \((0) \leq ace F \) in \(W \).

\(\Leftarrow \) Now, suppose that \((0) \leq ace F \) in \(W \). To prove that \(F \leq \frac{a}{a} W \), suppose that \(W = F + T \), where \(T \leq W \). Thus, \(\frac{W}{T} = \frac{F}{T} \), but \((0) \leq ace F \) in \(W \). Therefore, \(F \leq \frac{a}{a} W \).

4- The concepts of coessential and \(R \)-a-coessential are independent since, in \(Z \) as \(Z \)-module, \(4Z \subset 2Z \subset 3Z \approx \{0, 2\} \) in \(Z_4 \), and \(\frac{Z}{4Z} \approx \{0, 2\} \). But, \(\{0, 2\} \) is not \(Z \)-a-small in \(Z_4 \), since \(\{0, 2\} + Z_4 = Z_4 \) and \(\frac{Z}{4Z} = \{n \in Z; n(4Z) = 0\} = 4Z \neq 0 \). We know that \(\{0, 2\} \leq ace \), thus \(4Z \leq ace 2Z \) in \(Z_4 \), but \(4Z \leq ace 2Z \) in \(Z_2 \).

In this module, \(Z \) as \(Z \)-module \(\{0\} \) is \(R \)-a-coessential of \(2Z \) in \(Z \), as we shows in (2), but \(\{0\} \) is not coessential of \(2Z \) in \(Z \) since \(2Z \) is not small in \(Z \).

Proposition 2.3: Let \(W \) be an \(R \)-module. If \(A \leq ace C \), then \(A \leq ace B \), where \(A \subseteq B \subseteq C \) and \(A, B, C \) are submodules of \(W \).

Proof: Suppose that \(A \subseteq X \subseteq W \) with \(\frac{B}{A} + \frac{X}{A} = \frac{W}{A} \), thus \(B + X = W \). But \(B \subseteq C \), therefore \(W = C + X \) and then \(\frac{W}{C + X} = \frac{C}{A} + \frac{X}{A} \leq ace C \), thus \(\frac{B}{A} \leq ace B \), and \(\frac{X}{A} \leq ace \), thus \(ann \frac{X}{A} = 0 \) and hence \(\frac{B}{A} \leq ace \frac{W}{A} \), i.e. \(A \leq ace B \) in \(W \).

Proposition 2.4: Let \(W \) be an \(R \)-module and \(A, B, N \) are submodules of \(W \). If \(A \leq ace B \) and \(N \leq ace \), then \(A \leq ace B + N \) in \(W \).

Proof: Suppose that \(A \subseteq X \subseteq W \) with \(\frac{B + N}{A} + \frac{X}{A} = \frac{W}{A} \) then \(B + N + X = W \), but \(N \leq ace \), therefore \(B + X = W \) and hence \(\frac{B}{A} + \frac{X}{A} = \frac{W}{A} \). But \(\frac{B}{A} \leq ace \), thus \(ann \frac{X}{A} = 0 \). This means that \(A \leq ace B + N \) in \(W \).

Proposition 2.5: Let \(A \subseteq X \subseteq B \subseteq W \), \(X \leq ace B \) if and only if \(\frac{X}{A} \leq ace \frac{W}{A} \).

Proof: Suppose that \(X \leq ace B \) in \(M \) and \(\frac{B}{A} \leq ace \frac{W}{A} \) in \(M \), where \(A \subseteq T \), thus \(W = C + T \) and then \(\frac{W}{B} = \frac{C}{B} + \frac{T}{B} + \frac{B}{B} \). But \(\frac{B}{A} \leq ace \frac{C}{A} \), and this means that \(\frac{1}{B} \leq ace \frac{W}{B} \).
Therefore, \(\text{ann}(\frac{T+B}{B}) = 0 \). To prove that \(\text{ann}(\frac{T}{A}) = 0 \), let \(r \in \text{ann}(\frac{T}{A}) \), thus \(rT \subseteq A \) and hence \(rT \subseteq B \) since \(A \subseteq B \), therefore \(rT + B = B \). Thus, \(r \in \text{ann}(\frac{T+B}{B}) = 0 \) which means that \(\text{ann}(\frac{T}{A}) = 0 \). Therefore, \(A \subseteq ace \) C in W.

Proposition 2.7: If \(W \) is an \(R \)-module and \(A, B \) and \(C \) are submodules of \(W \), such that \(A + C \subseteq \text{ace} B + C \) in \(W \), then \(A \subseteq ace B \) in \(W \).

Proof: Let \(T \) be a submodule of \(W \), such that \(A \subseteq T \), and suppose that \(M = \frac{B \cap T}{A} \). So \(W = B + T \) and then \(\frac{W}{A + C} = \frac{B + C}{A + C} \), where \(A + C \subseteq \text{ann}(\frac{T}{A}) = 0 \). Let \(r \in \text{ann}(\frac{T}{A}) \), thus \(rT \subseteq A \subseteq A + C \) and hence \(r(T + A + C) = A + C \). Then, \(r \in \text{ann}(\frac{T+C}{A+C}) = 0 \), thus \(\text{ann}(\frac{T}{A}) = 0 \). So \(A \subseteq ace B \) in \(W \).

Proposition 2.8: Let \(A, B, C \) and \(X \) be submodules of an \(R \)-module \(W \). The following statements are the same:

1. If \(A \subseteq ace A + B \) in \(W \), then \(A \cap B \subseteq ace B \) in \(W \).
2. If \(A \subseteq ace B \) in \(W \) and \(Y \subseteq W \), then \(A \cap Y \subseteq ace B \cap Y \) in \(W \).
3. If \(A \subseteq ace B \) in \(W \), then \(A \cap X \subseteq ace B \cap C \in W \).

Proof: (1) \(\Rightarrow \) (2) Let \(A \subseteq_{ace} B \) in \(W \) and \(Y \subseteq W \). Since \(A + (B \cap Y) \subseteq B \) and \(A \subseteq ace B + (B \cap Y) \) (by proposition (1.3)). By (1), \(A \subseteq ace B \cap Y \), this implies that \(A \cap Y \subseteq ace B \cap Y \) in \(W \).

(2) \(\Rightarrow \) (3) Let \(A \subseteq ace B \) in \(W \) and \(X \subseteq ace C \) in \(W \). By (2) \(A \cap X \subseteq ace B \cap X \) in \(W \). Also, \(X \subseteq ace C \) and \(B \subseteq W \), \(B \cap X \subseteq ace B \cap C \) in \(W \). Thus, \(A \cap X \subseteq ace B \cap C \) in \(W \).

(3) \(\Rightarrow \) (1) Suppose that \(A \subseteq ace A + B \) in \(W \). Since \(B \subseteq ace B \) in \(W \), then by (3), \(A \cap B \subseteq ace (A + B) \) \(\cap B \). Thus, \(A \cap B \subseteq ace B \) in \(W \).

3. R-annihilator-closed submodules

In this section, we introduce the concept of \((R \)-annihilator) \(R \)-a-closed as a generalization of coclosed submodules, where a submodule \(N \) of an \(R \)-module \(W \) is called coclosed submodule in \(W \) (denoted by \(F \subseteq ace W \)) if whenever \(K \subseteq F \) with \(\frac{F}{K} \ll \frac{W}{K} \) implies \(F = K \).

Definitions 3.1:

Let \(W \) be an \(R \)-module, then a submodule \(F \) of \(M \) is called R-annihilator-closed in \(W \) (briefly \(R \)-a-closed) if whenever \(K \subseteq F \) with \(\frac{F}{K} \ll \frac{W}{K} \) implies \(F = K \). (denoted by \(F \subseteq ace W \)).

Examples and Remarks 3.2

1. The submodule \(\{0, 2\} \) of a \(Z \)-module \(Z_4 \) is \(Z \)-a-closed in \(Z_4 \) since \(\{0, 2\} \subseteq \{0, 2\} \) and \(\{0, 2\} \approx \{0, 2\} \), also \(\{0, 2\} \approx Z_4 \). But \(\{0, 2\} \) is not \(Z \)-a-small in \(Z_4 \) because \(\{0, 2\} + Z_4 = Z_4 \) and \(\text{ann}_Z Z_4 = 4Z \neq 0 \).
2. The submodule \(2Z \) of a \(Z \)-module \(Z \) is not \(Z \)-a-closed of \(Z \). To recognize that, let \(\{0\} \subseteq 2Z \) and notice that \(\frac{2Z}{\{0\}} = 2Z \), \(\frac{Z}{\{0\}} \approx Z \). We also know that \(2Z \ll_a Z \) [1, Rem. & Ex (1.2.13)].
3. The concepts of coclosed and \(R \)-a-closed submodules are independent, since \(\{0, 2\} \) is \(Z \)-a-closed in the \(Z \)-module \(Z_4 \) but it is not coclosed in \(Z_4 \) as \(Z \)-module [7, Rem. & Ex. (1.2.3), p15].
4. Consider the \(Z_8 \)-module \(Z_8 \), the submodule \(\{0, 2, 4, 6\} \) is \(Z_8 \)-a-closed but not coclosed since \(\{0\} \subseteq \{0, 2, 4, 6\} \subseteq Z_8 \) \(\frac{\{0, 2, 4, 6\}}{\{0\}} \approx \{0, 2, 4, 6\} \). Also \(\frac{Z_8}{\{0\}} \approx Z_8 \), but \(\{0, 2, 4, 6\} \) is not \(Z_8 \)-a-closed since \(\{0, 2, 4, 6\} \) is not \(Z_8 \)-a-small. But \(\{0, 2, 4, 6\} \) \(\ll a Z_8 \)-module, thus it is coclosed in \(Z_8 \).

An \(R \)-module \(W \) is called \(R \)-a-hollow if every proper submodule of \(W \) is \(R \)-a-small [8], where a submodule \(F \) of \(W \) is \(R \)-a-small if whenever \(W = F + T \), where \(T \subseteq W \), then \(\text{ann}(T) = 0 \). [1]

Proposition 3.3

Let \(W \) be an \(R \)-module and \(L \) be a nonzero submodule of \(W \) which is \(R \)-a-hollow, then either \(L \) is \(R \)-a-small submodule of \(W \) or \(L \) is \(R \)-a-closed submodule of \(W \), but not both.

Proof: Let \(0 \neq L \subseteq W \) and suppose that \(L \) is not \(R \)-a-closed of \(W \). So, there exists \(K < L \) such that \(\frac{L}{K} \ll_a \frac{W}{K} \), but [by 1, cor.(2.1.6), p34] \(L \ll_a W \).

Now, if \(L \) is \(R \)-a-closed submodule of \(W \), and suppose that \(L \ll_a W \), then \(\frac{L}{0} \ll_a \frac{W}{0} \approx W \) and hence \(L = 0 \) which is contradiction.

822
Proposition 3.4: Let W be an R-module and $K \leq L$ be submodules of W. If $L \leq_{acc} W$, then $\frac{L}{K} \leq_{acc} \frac{W}{K}$.

Proof: Let $\frac{N}{K} \leq_{acc} \frac{L}{K}$ in $\frac{W}{K}$. We must prove that $\frac{N}{K} = \frac{L}{K}$. We have $\frac{L}{K} \ll_{a} \frac{W/K}{N/K}$. This means that $\frac{L}{N} \ll_{a} \frac{W}{N}$, but $L \leq_{acc} W$. Therefore, $L = N$ and hence $\frac{N}{K} = \frac{L}{K}$. Thus $\frac{L}{K} \leq_{acc} \frac{W}{K}$.

Lemma 3.5:

Let W be an R-module and let X, K and L be submodules of W such that $X \subseteq K \subseteq L \subseteq W$. If $\frac{K}{X} \ll_{a} \frac{L}{X}$ and $\frac{L}{X} \ll_{a} \frac{W}{X}$, then $\frac{K}{X} \ll_{a} \frac{W}{X}$.

Proof: Suppose that $\frac{W}{X} = \frac{L}{X} + \frac{T}{X}$, where T is a submodule of W such that $X \subseteq T$. Thus, $W = K + T$. But $K \subseteq L$, therefore $W = L + T$. So, $\frac{W}{X} = \frac{L}{X} + \frac{T}{X}$. But $\frac{L}{X} \ll_{a} \frac{W}{X}$, thus $ann\left(\frac{T}{X}\right) = 0$, which means that $\frac{K}{X} \ll_{a} \frac{W}{X}$.

Proposition 3.6

Let W be an R-module and $K \leq L$ be submodules of W. If $K \leq_{acc} W$ and $\frac{L}{K} \ll_{a} \frac{W}{K}$, then $K \leq_{acc} L$.

Proof: Let $X \leq K$ such that $\frac{K}{X} \ll_{a} \frac{L}{X}$. Since $\frac{L}{K} \ll_{a} \frac{W}{X}$ then $\frac{K}{X} \ll_{a} \frac{W}{X}$ by lemma 3.5. But $K \leq_{acc} W$. Therefore, $K = X$ and hence $K \leq_{acc} L$.

Proposition 3.7: Let W be an R-module and L, N are submodule. If $L \leq_{acc} W$ then $\frac{L+N}{N} \leq_{acc} \frac{W}{N}$.

Proof Suppose that $\frac{X}{N} \leq_{acc} \frac{L+N}{N}$ in $\frac{W}{N}$ where $N \subseteq X$, then $X = N + (L \cap X) \leq_{acc} N + L$ in W [by prop. (2.5)]. But $N \leq W$, which implies that $(L \cap X) \leq_{acc} L$ in W, by [prop. 2.7] As $L \leq_{acc} W$, we get $X = L + N$. Then $\frac{L+N}{N} \leq_{acc} \frac{W}{N}$.

References