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Abstract

Text-to-image (T2I) in recent advances has proven an important headway, but
high-quality and efficient image generation is still a challenge. We proposed
GANVIT, a new model for generative adversarial vision transformer. It is designed
for fast and efficient high-quality T2I synthesis. GANVIT addresses limitations in
existing models, such as extensive data requirements for training, multi-phase
processes that slow down synthesis speed, and many parameters needed to achieve
adequate performance. GANVIT consists mainly of a generator and a discriminator,
but these parts are separately based on a vision transformer (ViT). The generator
ViT utilizes a feature bridge for fine-tuning, thus enhancing image generation
capabilities. Conversely, the discriminator ViT interprets complex scenes through a
feature extraction module and assessment phase. GANViIT demonstrates substantial
improvements in synthesizing images. It achieves a 5.01 Frechet Inception Distance
score on the Common Objects in Context dataset and over 10 on the Caltech-UCSD
Birds dataset, with 33 times data reduction, 4.5 times fewer parameters, and 23
times faster processing.

Keywords: Text-to-Image Synthesis, Generative Adversarial Networks (GANs),
Vision Transformers, Generative Models, GAN-based Image Generation,
Transformer Models in Image Synthesis.
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1. Introduction

Conventional image synthesis methods, which rely on image labels or attributes, offer
limited adaptability compared with text-based image generation. Text-based synthesis has
expanded applications, such as auxiliary structure design, photo-editing, and scene restoration
[1], [2]. The use of generative adversarial networks (GANs) [3] has produced promising
outcomes in text-to-image (T2I) synthesis. However, generating realistic images based on
textual descriptions remains challenging, as demonstrated in previous studies [4].
Numerous pretraining methods have been recently developed, using diverse frameworks such
as latent diffusion model (LDM) [5], DALL-E [5], and GLIDE [6] and employing techniques
from diffusion and autoregressive modeling. These models have demonstrated remarkable
efficacy in transforming textual descriptions into visual content, outperforming earlier GANS.
Three limitations suggest the need for alternative approaches to the previous models.

First, they require substantial data and many parameters, thus increasing risks and costs.
Second, the aforementioned models rely on several sequential phases and smooth latent
space, unlike GANs, which partition the generation process into a structured latent space.
Third, their training and sampling processes can be inefficient because of the extensive steps
required.

To overcome these limitations, we proposed using GANs with a smooth latent space for
rapid image generation. Utilizing vision transformer (ViT) technology [7], such as OpenATI’s
large-scale pretraining models, which supports robust textual content transformation into
visual representations.

The primary reason for using ViT is to extract information from images through an image

encoder. This process aligns the captured image with the textual representation.
Understanding complex images is further supported by utilizing these pretraining datasets.
This pretraining model is constructed from a broad range of publicly available resources,
encompassing various visual forms such as images, drawings, and similar materials across
diverse domains. Including this feature contributes to the overall generalization of the model
and serves as a secondary rationale for employing ViT.
Our model incorporates unique features by integrating the ViT model within the generator
and discriminator components, hence enhancing text-to-image synthesis through advanced
scene comprehension and domain generalization capabilities. Components such as the
Discriminator ViT, Generator ViT with Feature Bridger, and Prompt Tuning collaborate to
enhance image synthesis by extracting salient visual features and augmenting generating
capacity.
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Our model has superior capability in generating high-quality, intricate images
characterized by meticulous details, precise object contours, and remarkable realism in
human facial synthesis. It enhances efficiency and speed, attaining remarkable outcomes with
reduced computational resources while preserving high quality.

This research is structured into several sections. The second section reviews relevant
related works on contemporary models and methodologies for generating images from text.
The following section presents our model’s structural framework. The final section provides
the outcomes of the models across various datasets.

2. Literature review

Generative adversarial network with interpolated conditioning and character-level
sentence [8] is a method that uses character-level convolutional neural networks and recurrent
neural networks to transform textual descriptions into visual features. It is considered the first
conditional GAN, along with attentional GAN [9], another classical model. Using attention
and alignment mechanisms, various T2 models have been developed, including channel-wise
feature attention hierarchical attention GAN [10], deeply convolutional GAN [11], dual
attention GAN [12], object-aware spatial attention GAN [13], and multi-discriminator GAN
[14].

In addition, several models employ multi-stage networks, including multi-resolution

progressive GAN [15], multi-task conditional GAN [16], knowledge-aware hierarchical GAN
[17], divergence GAN [18], dual-generator GAN [19], balanced attention GAN [20], deep
semantic generation GAN [21], semi-supervised T2l GAN [22], and differential evolution
GAN [23], or cGAN as used in [24]
Conversely, the vector quantized variational autoencoder [25] approach produces high-
quality images across various datasets by adjusting specific hyperparameters. DALL-E [5]
utilizes a transformer architecture trained on an extensive dataset to generate superior images
without labelled data. GLIDE [6] introduces a text-guided diffusion method for creating and
editing photorealistic images. Human assessors prefer this model over DALL-E [5] for its
ability to capture photorealism and retain caption alignment with contrastive language—image
pretraining (CLIP) guidance.

The LDM [26] achieves effective image synthesis while notably reducing computational
costs compared with pixel-based models. Figure 1 (a) shows the data size of each model.
Moreover, LDM offers a versatile conditioning mechanism suitable for multi-modal training.
Imagen integrates transformer language models with diffusion techniques to generate
photorealistic images and enhance language comprehension. This integrated approach
leverages models like bidirectional encoder representations from transformers, text-to-text
transfer transformer, and CLIP, each tailored to specific tasks.

CogView2 [27] improves the efficiency and accuracy of image generation through
hierarchical transformers and local parallel autoregressive generation, enabling interactive
text-guided editing. Figure 1 (b) shows the number of parameters for each model.
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Figure 1: This figure shows an overview of the data size (a) and parameters used (b) for
diverse text-to-image generation models, including DALL-E [5], GLIDE [6], LDM [26]
CogView2 [27] and our proposed model GANVIT.

3. Proposed methods

This research proposes a model that combines the GAN framework with ViT [28],
referred to as GANVIT. GANVIT incorporates the pre trained CLIP [28] model within both
the generator and discriminator. GANVIT consists of two main parts, a discriminator and a
generator, which are integrated with ViT, as shown in Figure 2. First, the model’s
discriminator, known as discriminator ViT, comprises an image encoder with frozen weights
and a learnable discriminator to derive significant visual features from images. The ViT

gathers information from complex scenes and extracts features from several layers through
weight freezing.
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Figure 2: Overview of the proposed model GANVIT
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Moreover, the discriminator’s evaluation can be precisely adjusted to enhance the quality of
generated images. The second component, known as generator ViT, enables model
generalization without relying on sketching techniques [29] used by other models. Like the
discriminator, it includes a ViT with frozen weights and a learnable generator. The CLIP [28]
model functions as the text encoder within the GANVIT architecture, producing a global
sentence vector from textual descriptions, which is used in the generator and discriminator for
T2I synthesis. The discriminator ViT aggregates CLIP features from specific layers and
applies prompts for task adaptability in image generation. The text encoder is crucial for
converting text descriptions into global sentence vectors, supporting efficient, high-quality
T2I synthesis in GANViT.

In text encoding, we begin by tokenizing the caption as input for our encoder using CLIP.
The resulting tokens are fed into a transformer-based encoder, producing two types of
embeddings: word embeddings and sentence embeddings for the whole caption. Our text
encoder converts these tokens into dense vectors, incorporating positional embeddings to
maintain word order. The transformer layers apply self-attention to identify contextual
relationships among tokens. Finally, the model extracts the complete phrase embedding and
projects it into latent space. These embeddings are then passed to the GAN generator,
conditioning the generation process to ensure alignment between the text and the generated
image, as shown in Algorithm 1.

Algorithm 1: Text Encoding for T2I Synthesis

Step 1: Tokenization
Utilize CLIP's tokenizer to tokenize the input text T.
Output: Sequence of tokens tokens = tokenize(T).

Step 2: Token Embedding
Transform tokens into their vectors (dense) representation.
Output: token embeddings, denoted as te = e (tokens).

Step 3: Positional Embedding
Incorporate positional embeddings into the token embeddings to represent the
sequence of tokens.
Output: Positional token embeddings are derived by adding position to token
embeddings, as pe = add_p(te).

Step 4: Transformer Processing
Process positional embeddings via Transformer network.
Output: embeddings context derived from the transformer to positional embeddings

Step 5: Extract Sentence and Word Embeddings
Obtain the s embedding from output of the Transformer.
Obtain word embeddings for each token.
Output: se=extract_s(context), word _e=extr w (context).

Step 6: Projection to Latent Space
Map sentence e onto latent space with a projection layer
Output: latent sentence_e = project(sentence_e).

Step 7: Return the Sentence, Word Embeddings
Return the latent sentence e and word_e to influence the image generation process in
the GAN.

end

The text is initially divided into separate tokens via CLIP's tokenizer, resulting in a
sequence of tokens. Subsequently, these tokens are transformed into dense vector
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representations known as token embeddings. Positional embeddings are incorporated into the
token embeddings to represent the sequence order of the tokens. The Transformer network
processes this combined representation, yielding a contextual embedding. Both sentence-
level and word-level embeddings are derived from this. The sentence embedding is
subsequently mapped into a latent space via a projection layer, resulting in a final latent
sentence embedding. The sentence and word embeddings are utilized to impact the image
production process, guaranteeing coherence between the input text and the produced image.

3.1. Generator ViT

Figure 3 shows a frozen ViT linked with another component called a generator, which is
learnable. This module takes two inputs: the encoded text, processed through a text encoder,
and a noise vector modeled using the Gaussian distribution to increase generation diversity.
The learnable generator comprises a feature bridge, prompt tuning functionality, and an
image generator.

These inputs undergo three processing phases. First, the feature bridge, as demonstrated in
Figure 3, adjusts each sampled text and noise input before passing it to the ViT. Next, the
prompt tuning uses multiple transformer blocks to improve adaptability. Finally, the image
generator produces the output based on the sampled phrases, Gaussian noise, and specific
features from the bridge. The feature bridge contains fully connected layers and several
fusion blocks to refine the visual representation from ViT. This module receives vectors
representing both sentence and noise. The noise is reshaped to dimensions (7, 7, 64) for
height, width, and depth. Sequential fusion blocks [30] then reduce noise from the previous
layer. Each fusion module includes convolution (Conv) layers, and two additional fusion
blocks merge text features with bridged features.

The prompt tuning module [31], next in generator ViT, bridges the data gap between text
and image, using input vectors of text and noise and following the predictions made by pre-
trained ViT [28]. As the last layers are specific to visual representation, prompts are generally
not used here. In practice, the generator ViT effectively maps CLIP features to the visual
space of the pre-trained CLIP model, aligning image features with CLIP’s representations to
produce high-quality, meaningful images. We then apply several GBlocks modules that
further refine and enhance input features, adding visual attributes through combined
convolution operations, specific feature conditioning, and residual connections. The final
enhanced features are transformed into RGB images.

3.2. Discriminator ViT

The second module consists of two key components: the frozen ViT [28] and a learnable
discriminator, as shown in Figure 3. The frozen ViT component uses convolution layers and a
set number of transformer blocks to transform the input image and extract its features.
Additionally, the learnable discriminator includes an extraction features module, which
gathers image features from several ViT layers. These visual data are then compiled to assess
the accuracy of the generated images. The adversarial loss, indicating quality, is calculated
based on extracted features and sampled sentences. The extraction features module enables
ViT to interpret complex scenes by taking features from sequential image layers. This module
includes multiple Conv layers and two activation functions using the Rectified Linear Unit
(ReLU) [32], as Eq. (1).

f(x) = max(0,x) (1

High-quality feature extraction in this module enables the identification of fake images. For
stabilizing the training process, a loss called hinge [33] has been used. Besides, a one-way
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discriminator is utilized for the same purpose. The model’s formulation is shown in Eq. (2) to
Eq. 9).

a =E,.p [min(0,—1+ D(C(x),e))] (2)

B = (1/2)Eg(zer-p, [min (0,-1+ D(C(G(z e)).¢) | 3)
vy = (1/2)Eq-p,, [min(0,—1 + D(C(x), e))] )

§ = kB, p, [(|[VeD(C ), )| + 11V.D(C(x), &) )] (5)
Lp=—a —B—y+6 (6)

A = Ege)-p,|D(C(G(z ) €)] (7)

B = AEg(ze)-p,[S(C(G(z €)) €)] ®)

Lg= —A — )

Here, the discriminator lossLp, integrates multiple components to assist the model in
differentiating between authentic and counterfeit image-text combinations, as well as
between congruent and incongruent pairs. The Gaussian distribution is used as a vector,
abbreviated with z, to input to the model as input, whereas the sentence vector is marked by
e. The generator ViT and discriminator ViT are denoted as G and D, respectively, with C
indicating the frozen ViT in the Discriminator. a ensures that the discriminator accurately
classifies real data by minimizing hinge loss, which is crucial for distinguishing real images.
f improves training by lowering the hinge loss for generated data samples, helping the
generator produce more realistic images, and ensuring the discriminator accurately classifies
them as fake. Additionally, y is applied in hinge loss to enhance the discriminator’s ability to
differentiate mismatched data samples, thus distinguishing between real and synthetic
images.

The cosine similarity, denoted as S, measures the similarity between encoded visual and

textual representations. Two parameters, k, and p, are used for the gradient penalty.
Furthermore, the text-image similarity is evaluated using the coefficients of A. The
distributions for generated data, real data, and mismatched data are represented by Py, Py,
and P,,;s, respectively.
GANVIT, as shown in Figure 3, is trained and assessed on Caltech-UCSD Birds (CUB),
which is publicly available, containing 11,788 images across 200 bird species, each with 10
detailed annotations. Common Objects in Context (COCO), a large-scale, publicly available
dataset containing over 330,000 images featuring a wide variety of common, iconic objects,
with detailed 5 annotations. The CC3M and CCI12M datasets are large-scale, publicly
available image-text datasets with 3 million and 12 million pairs, respectively, providing
diverse, high-quality captions from web-sourced images.
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Figure 3: Details Structure of GANVIT

It utilizes a CLIP-based architecture with defined hyperparameters and evaluates image
fidelity using Frechet inception distance (FID) metrics. The model maintains a smooth latent
space, allowing for gradual modifications in generated images based on textual inputs, and
outperforms alternative models in complex image generation tasks. The key components,
such as the discriminator ViT, generator ViT with feature bridge projection, and prompt
tuning, as well as the choice of CLIP-ViT layers, affect the quality and complexity of the
generated images.

4. Datasets

There are several datasets available for image generation. The MS-COCO 2014 dataset
[34] contains over 83,000 image—text pairs for training, 41,000 pairs for testing, and an
additional 41,000 for validation, providing detailed information about objects, locations, and
attributes at various resolutions.

The CUB-200-2011 dataset is divided into 200 bird subcategories, each image annotated
with detailed information, including subcategory labels, 15-part locations (e.g., beak, wing,
and tail), 312 binary attributes (e.g., migratory or ground-nesting), and bounding boxes.

The CCI2M [35] dataset is designed for vision-and-language pretraining, with 12.4
million image-text pairs that feature diverse visual concepts and longer captions than CC3M.
Created by relaxing filters to enhance recall, CC12M offers an expanded collection of image—
text pairs, balancing precision with recall relative to CC3M. Images were sourced from the
internet, with accompanying alt-text captions that are generally concise descriptions of visual
content. Samples of the CC12M dataset are shown in Error! Reference source not found..
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Table 1: CC12M dataset examples

Sentence Images

Hand holding a fresh mangosteen

#jellyfish #blue #ocean #pretty Sea Turtle Wallpaper, Aquarius
Aesthetic, Blue Aesthetic Pastel, The Adventure Zone, Capricorn
and <PERSON>, Life Aquatic, Ocean Life, Jellyfish, Marine Life.

<PERSON> was the first US president to attend a tournament in
sumo's hallowed Ryogoku Kokugikan arena. (AFP photo).

This dataset encompasses a diverse range of visual concepts with minimal biases related to
gender, age, color, or ethnicity. It addresses limitations found in other datasets, such as
COCO, by offering a larger volume of diverse images and text, thus enhancing training. The
dataset is publicly available for non-commercial use, with paired image—text data
downloadable via specified URLs.

5. Experiment and results

The proposed model, GANVIT, was evaluated and trained on several datasets such as
CC12M and MS-COCO.
GANVIT models are trained in a cloud-based environment [36] using eight GPUs, each with
24 GB memory and 282 TFLOPs, which stands for Tera Floating Point Operations Per
Second, of computational capacity. The system’s CPU is an AMD EPYC 7302 16-core
Processor.

The model employs ViT-B/32 in the generator and discriminator components, as shown in

Figure 3. The extraction feature module comprises a single set of stacked extraction blocks,
whereas the feature bridge produces 224 x 224 images using four fusion blocks and generates
six additional blocks. Prompt tuning is implemented with TransBlocks in the range of two to
fewer than 10. The model optimizer, Adam [37], is configured with §; set to 0.0 and £, to
0.9. Furthermore, the discriminator uses hyperparameters k and p set to values of 2 and 6,
respectively.
Conversely, A is set to 4 for the datasets used. Figure 4 displays the required time for
inference in seconds. Error! Reference source not found. compares the performance of G
ANVIT with other models based on FID, where our proposed model is benchmarked against
several recent models [38], [39], [40], [41], [42].
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Figure 4: Required time of inferencing in seconds

Table 2: Inferencing via GANVIT dataset, and LDM
Sentence GANVIT Images

A smiling statue to be found in the
Pavilion

Watercolor of Blue Lighthouse.
Lovely blue sky and dark blue
lighthouse on a hillside.

Cute cartoon little owl with big
shining eyes sitting on a tree branch at
starry night

newly - weds after the wedding
ceremony

In Eq. (10), real and generated image features are represented by v and v, respectively, with
their mean and covariance denoted as p and . The trace of the matrix is denoted as T;.

FID(@,7) = Ity — tsll* + T (By + X5 — 2T Xo))? (10)

A lower FID score indicates greater similarity between the distributions of real and generated
images in the feature space, reflecting higher image quality.

The results evaluated on the CUB-200-2011 [45] and Microsoft Common Objects in Context
2014 [36] datasets indicate a new level of improvement. Applying contrastive loss to the
CUB dataset, as demonstrated in [41], the proposed model, GANVIiT, improved the FID from
14.58 to 10.09. Similarly, GANVIT reduced the FID on the COCO dataset from 8.21 to 5.01
and from 13.86 to 10.08 on CUB, as shown in Table 3.
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Table 3: FID results on COCO and CUB datasets

Model MSCOCO02014 CUB-200-2011
[38] 32.64 16.09
[39] 28.12 15.19
[40] 19.32 14.81
[42] 8.21 14.58
[41] 10.32 13.86
Our 5.01 10.08

In contrast, [41] applies a diffusion model to both datasets with larger data, showing
potential for performance gains. GANVIT has limitations when synthesizing complex
imaginary scenes, as shown in Error! Reference source not found.. Increasing dataset size a
nd model capacity could address these limitations.

Table 4: Instances of failure in text-to-image
Sentence

A lion educator dressed in a suit stands before a blackboard.

A cute cat lives in a house made out of food.

A robot is riding a horse under the cloudy sky.

Conversely, short phrases or single words can introduce ambiguity. For example, using a
single word, like “beach,” may result in an ambiguous daytime scene, whereas specifying
“sunset at the beach” clarifies the desired outcome

Firstly, the contextual elements could be presented with sentences that enable the model to
comprehend descriptions and relationships between items. Consequently, this contributes to
improving the precision of image generation.

Error! Reference source not found. demonstrates the performance of GANVIT with v
arious text inputs, showing clear advantages over other methods. Sentences provide
contextual detail, allowing the model to understand descriptions and relationships between
objects, thus enhancing image precision.
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Table S: Text-to-Image Generation Analysis Table

Sentence GANVIT

Single Word Beach
Phrase Sunset at the beach
Sentence A group of guys relaxing by the ocean on a sunset beach surrounded by

golden sand and blue sky

6. Conclusions

This work introduces GANVIT, a new model designed for accurately generating aligned,
high-quality images. Integrating ViT components in the generator and discriminator improves
understanding of complex scenes, enhancing model generalization. Our model also addresses
specific dataset challenges, demonstrating significant improvement in T2I synthesis.
GANVIT attained FID scores of 5.01 and 10.08 on the COCO and CUB-200-2011 datasets,
respectively, and decreasing parameters by a factor of 4.5 and processing time by a factor of
23. As Future work, incorporating a language model in the text encoder could improve T2I
generation. Additionally, training on larger datasets would increase output diversity, and
supporting longer, richer descriptions could allow for more precise scene depiction.
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