AL-Juboory and AL-Shara'a

Iraqi Journal of Science, 2020, Vol. 61, No. 7, pp: 1715-1723 DOI: 10.24996/ijs.2020.61.7.20

Some Chaotic Properties of G – Average Shadowing Property

Raad Safah Abood AL – Juboory^{*}, Iftichar M. T. AL - Shara'a

Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq

Received: 6/7/2019

Accepted: 19/11/2019

Abstract

Let (\mathcal{M}, d) be a metric \mathbb{G} -space and $\mathbf{\Phi} : \mathcal{M} \to \mathcal{M}$ be a continuous map. The notion of the \mathbb{G} -average shadowing property (\mathbb{G} ASP) for a continuous map on \mathbb{G} - space is introduced and the relation between the \mathbb{G} ASP and average shadowing property(ASP) is investigated. We show that if $\mathbf{\Phi}$ has \mathbb{G} ASP, then $\mathbf{\Phi}^m$ has \mathbb{G} ASP for every $m \in \mathbb{N}$. We prove that if a map $\mathbf{\Phi}$ be pseudo-equivariant with dense set of \mathbb{G}_{ϕ} -periodic points and has the \mathbb{G} ASP, then $\mathbf{\Phi}$ is weakly \mathbb{G} -mixing. We also show that if ϕ is a \mathbb{G} -expansive pseudo-equivariant homeomorphism that has the \mathbb{G} ASP and ϕ is topologically \mathbb{G} -mixing, then ϕ has a \mathbb{G} -specification. We obtained that the identity map ϕ on \mathcal{M} has the \mathbb{G} ASP if and only if the orbit space \mathcal{M}/\mathbb{G} of \mathcal{M} is totally disconnected. Finally, we show that if ϕ is a pseudo-equivariant map, and the trajectory map $\Psi : \mathcal{M} \to \mathcal{M}/\mathbb{G}$ is a covering map, then ϕ has the \mathbb{G} ASP if and only if the induced map $\check{\phi} : \mathcal{M}/\mathbb{G} \to \mathcal{M}/\mathbb{G}$ has \mathbb{G} ASP.

Keywords: Shadowing ; Average shadowing; G-average shadowing; Topologically G-mixing; Weakly G-mixing ; G-specification.

بعض الخصائص الفوضوبة لخاصية معدل التظليل في فضاء - ٢

رعد سفاح عبود الجبوري ، افتخار مضر طالب الشرع

قسم الرياضيات ، جامعة بابل ، كلية التربية للعلوم الصرفة ، بابل ، العراق

الخلاصة

Introduction

The concept of shadowing property is one of the influential notions in the theory of dynamical systems. In 1967 The shadowing property (SP) was introduced by Anosov [1] and the concept of average shadowing property (ASP) was introduced by Blank for investigating chaotic dynamical systems [2]. In 1960, the notion of \mathbb{G} –space was introduced by R. S. Palais [3]. The \mathbb{G} –pseudo-

^{*}Email[:] raadalhulali@gmail.com

trajectory tracing property on a metric \mathbb{G} -space (GPTTP) was introduced by Shah and Das. They studied various properties of such maps and obtained features for the identity map to have GPTTP. Also, they showed that a pseudo-equivariant map $\phi : \mathcal{M} \to \mathcal{M}$ has GPTTP if and only if the induced map $\hat{\phi} : \mathcal{M}/\mathbb{G} \to \mathcal{M}/\mathbb{G}$ has PTTP such that \mathcal{M} be metric \mathbb{G} -space and ϕ is continuous map [4]. The \mathbb{G} -shadowing property (\mathbb{G} SP) for the map ϕ was introduced by Shah who observed through the examples that \mathbb{G} -shadowing relies on the action of a group \mathbb{G} acting on \mathcal{M} . Also, she studied \mathbb{G} -shadowing for the shift map on the contrary limit space produced by the map ϕ [5].

In section 1 of this paper., we study the ASP for continuous maps on \mathbb{G} –spaces (\mathbb{G} ASP). In section 2, we prove some similar results on the ASP in the metric space with some chaotic properties and we put sufficient conditions to prove these results on \mathbb{G} –spaces.

Preliminaries

Let \mathbb{Z} denote the set of integers numbers, \mathbb{N} denotes the set of natural numbers and $\mathcal{N}_0 = \{0\} \cup \mathbb{N}$. A topological group is a triple $(\mathbb{G}, \mathcal{T}, *)$, where $(\mathbb{G}, *)$ is a group and \mathcal{T} is a Hausdorff topology on \mathbb{G} such that the map $\phi: \mathbb{G} \times \mathbb{G} \to \mathbb{G}$ defined by $\phi(m, y) = my^{-1}$ is continuous. By a \mathbb{G} -space, we mean a triple $(\mathcal{M}, \mathbb{G}, \theta)$, where \mathcal{M} is a Hausdorff space, \mathbb{G} is a topological group, and $\theta: \mathbb{G} \times \mathcal{M} \to \mathcal{M}$ is a continuous action of \mathbb{G} on \mathcal{M} satisfying $\theta(e, m) = m$ and $\theta(g_1, \theta(g_2, m)) = \theta(g_1g_2, m)$, where e is the identity of \mathbb{G} , $m \in \mathcal{M}$, and $g_1, g_2 \in \mathbb{G}$. An action θ of \mathbb{G} on \mathcal{M} is called trivial if $\theta(g, m) = m$, $\forall g \in \mathbb{G}$ and $m \in \mathcal{M}$.

For $m \in \mathcal{M}$, the set $\mathbb{G}(m) = \{\theta(g, m) : g \in \mathbb{G}\}$ is called the \mathbb{G} - trajectory of $m \in \mathcal{M}$. We will denote $\theta(g,m)$ by gm. For $S \subseteq \mathcal{M}$, let $gS = \{gs : s \in S\}$ be a subset S of a \mathbb{G} -space and \mathcal{M} is called \mathbb{G} -invariant if $\theta(\mathbb{G} \times S) \subseteq S$. For $m \in \mathcal{M}$, the related \mathbb{G}_{ϕ} - trajectory of m is presented by the set $\mathbb{G}_{\phi}(m) = \mathbb{G}\left(O_{\phi}(m)\right) = \{g\phi^{i}(m): g \in \mathbb{G}, i \in \mathcal{N}_{0}\}$. If \mathcal{M}, Y are \mathbb{G} -spaces, then a continuous map $h: \mathcal{M} \to Y$ is called equivariant map if h(gm) = gh(m) for each g in G and each m in \mathcal{M} . In case an equivariant map is a homeomorphism, then h^{-1} is also equivariant. The quotient space $\frac{\mathcal{M}}{\mathbb{G}} = \{\mathbb{G}(m): m \in \mathcal{M}\}, \text{ having } \mathbb{G} \text{ -orbits as its members, is called the orbit space of } \mathcal{M}, \text{ and the } \mathcal{M} \}$ quotient map $\psi: \mathcal{M} \to \mathcal{M}/\mathbb{G}$, taking m to $\mathbb{G}(m)$, is called the trajectory map. The map h is said to be pseudo-equivariant if $h(\mathbb{G}(m)) = \mathbb{G}(h(m))$, $\forall m \in \mathcal{M}$. Clearly, every equivariant map is a pseudo-equivariant map but the converse needs not to be true [6]. We introduce the definitions that we will need in this paper and recall some fundamental definitions. In this paper, we denote the metric \mathbb{G} – space, on which there is a topological group \mathbb{G} with metric d, by (\mathcal{M}, d) . Also, by the $\phi : \mathcal{M} \to \mathcal{M}$, we mean $\phi: (\mathcal{M}, d) \to (\mathcal{M}, d)$. By (\mathcal{M}, d) being a compact map metric \mathbb{G} – space, we mean a compact metric \mathbb{G} – space on which there is a compact topological group G with metric d. If A and B are two non-empty subsets of \mathcal{M} , then $N_q(A \cap B) = \{i \in \mathbb{N} :$ $g \phi^i(A) \cap B \neq \emptyset \} \neq \emptyset, g \in \mathbb{G}.$

Definition 2.1.[7]

Let (\mathcal{M}, d) be a compact metric space and let $\phi : \mathcal{M} \to \mathcal{M}$ be a continuous map. A sequence $\{m_i, i \in \mathbb{Z}\}$ is called trajectory of ϕ , if $\forall i \in \mathbb{Z}$, we have $m_{i+1} = \phi(m_i)$ and we called it a δ -pseudo - trajectory of ϕ , $\forall i \in \mathbb{Z}$. We have $d(\phi(m_i), m_{i+1}) \leq \delta$, and the map ϕ has the shadowing property if $\forall \varepsilon > 0, \exists \delta > 0$, such that every δ -pseudo-trajectory $\{m_i, i \in \mathbb{Z}\}$ is ε - shadowed by the trajectory $\{\phi^i(m), i \in \mathbb{Z}\}$ for some $z \in \mathcal{M}$, that is, $\forall i \in \mathbb{Z}$, thus we have $d(\phi^i(z), m_i) \leq \varepsilon$.

A sequence $\{m_i, i \in \mathbb{Z}\}$ in \mathcal{M} is called a δ - average pseudo- trajectory of \mathcal{M} if $\exists N \in \mathbb{N}$ and $N = N(\delta)$, such that $\forall n \ge N$, and $k \in \mathbb{N}$, then

$$\frac{1}{n} \sum_{i=0}^{n-1} d'(\phi(m_{i+k}), m_{i+k+1}) < \delta,$$

The map ϕ has the ASP if $\forall \varepsilon > 0$, $\exists \delta > 0$, such that every δ - average-pseudo - trajectory $\{m_i, i \in \mathbb{Z}\}$ is ε - shadowed in average by the trajectory of some point $z \in \mathcal{M}$, that is

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}d(\phi^i(\mathbf{z}),m_i)<\varepsilon.$$

Definition 2.2. [5]

Let (\mathcal{M}, d) be metric \mathbb{G} -space and let $\phi : \mathcal{M} \to \mathcal{M}$ be continuous map. For a positive real number δ , a sequence of points $\{m_i : a < i < b\}$ in \mathcal{M} is called (δ, \mathbb{G}) -pseudo- trajectory for ϕ , if $\forall i, a < i < b-1, \exists g_i \in \mathbb{G}$ such that $d(g_i \phi(m_i), m_{i+1}) < \delta$.

For a given $\varepsilon > 0$, a (δ, \mathbb{G}) -pseudo-trajectory $\{m_i : a < i < b\}$ for ϕ is called ε -shadowed by a pointe *m* of \mathcal{M} , if $\forall i, a < i < b, \exists p_i \in \mathbb{G}$ such that $d(\phi^i(m), p_im_i) < \varepsilon$. The map ϕ has the \mathbb{G} -shadowing property if $\forall \varepsilon > 0, \exists \delta > 0$ such that for each (δ, \mathbb{G}) -pseudo-trajectory for ϕ is ε -shadowed by a pointe of \mathcal{M} . Note that if ϕ is bijective then we take $-\infty < a < b < \infty$. Also, when ϕ is not bijective then we take $0 \le a < b < \infty$.

Definition 2.3.

Let (\mathcal{M}, d) be metric \mathbb{G} -space and let $\phi : \mathcal{M} \to \mathcal{M}$ be continuous map. For a positive real number δ , a sequence of points $\{m_i : a < i < b\}$ in \mathcal{M} is called (δ, \mathbb{G}) -average pseudo- trajectory for ϕ if $\forall i, a < i < b - 1, \exists g_i \in \mathbb{G}$ and there exists a positive integer $N = N(\delta)$ such that $\forall n \ge N$, and $k \in \mathbb{N}$, then

$$\frac{1}{n} \sum_{i=0}^{n-1} d(g_i \phi(m_{i+k}), m_{i+k+1}) < \delta.$$

The map ϕ has the G ASP if $\forall \varepsilon > 0$ and there is $\delta > 0$ such that every (δ, \mathbb{G}) – average pseudotrajectory $\{m_i : a < i < b\}$ is ε –shadowed in G –average by a point *m* of \mathcal{M} , if $\forall i$, $\exists g_i \in \mathbb{G}$ such that

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1} d'(\phi^i(m), g_im_i) < \varepsilon.$$

Note that if ϕ is bijective then we take $-\infty < a < b < \infty$. Also, when ϕ is not bijective then we take $0 \le a < b < \infty$.

Definition 2.4. [8]

Let (\mathcal{M}, d) be metric \mathbb{G} -space and let $\phi : \mathcal{M} \to \mathcal{M}$ be continuous map, then ϕ is called \mathbb{G} -transitive if $\forall A, B \neq \emptyset$, and A, B are open subsets of $\mathcal{M}, \exists i \in \mathbb{N}$, and $g \in \mathbb{G}$, such that the set $N_g(A \cap B) = \{i \in \mathbb{N} : g \phi^i(A) \cap B \neq \emptyset\} \neq \emptyset$. We say that a homeomorphism ϕ is totally \mathbb{G} -transitive if ϕ^i is \mathbb{G} -transitive, $\forall i \ge 1$.

Definition 2.5. [9]

Let (\mathcal{M}, d) be metric \mathbb{G} -space and $\phi : \mathcal{M} \to \mathcal{M}$ be a homeomorphism map, then ϕ is called topologically \mathbb{G} -mixing if $\forall A, B \neq \emptyset$, and A, B are open subsets of $\mathcal{M}, \exists k \in \mathbb{Z}$ such that $\forall n \geq k$, $\exists g_k \in \mathbb{G}$ satisfying $g_k \phi^k(A) \cap B \neq \emptyset$.

Definition 2.6.[9]

Let (\mathcal{M}, d) be metric \mathbb{G} -space and $\phi : \mathcal{M} \to \mathcal{M}$ be a continuous map, then ϕ is called weakly \mathbb{G} -mixing if $\phi \times \phi$ is $\mathbb{G} \times \mathbb{G}$ -transitive, that means, $\forall A \times B, E \times D \neq \phi$ of are open subsets of $\mathcal{M} \times \mathcal{M}, \exists (g, p) \in \mathbb{G} \times \mathbb{G}$ and $k \in \mathbb{N}$, such that,

$$((g,p)(\phi \times \phi)^k (A \times B)) \cap (E \times D) \neq \emptyset.$$

If $\exists N > 0$, such that $\forall m, y \in \mathcal{M}$, and $\forall n \ge N$, there exists (δ, \mathbb{G}) -pseudo-trajectory from *m* to *y* of length exactly *n*, then the map ϕ is (δ, \mathbb{G}) -chain mixing. The map ϕ is chain mixing if it is δ -chain mixing for every $\delta > 0$.

Main Results

Proposition 3.1

Let (\mathcal{M}, d) be metric \mathbb{G} –space, and $\phi : \mathcal{M} \to \mathcal{M}$ be a continuous map. If ϕ has \mathbb{G} ASP, then ϕ^m has \mathbb{G} ASP for every $m \in \mathbb{N}$.

Proof:

Let $m \in \mathbb{N}$, since ϕ has \mathbb{G} ASP, for any $\frac{\varepsilon}{m} > 0$, $\exists \delta > 0$, such that every (δ, \mathbb{G}) -average pseudo- trajectory is $\frac{\varepsilon}{m}$ - shadowed in average by some point in \mathcal{M} . Assume that $\{z_i, i \in \mathcal{N}_0\}$ is (δ, \mathbb{G}) - average pseudo - trajectory of ϕ^m , that is, $\exists \mu = \mu(\delta) > 0$, such that $\frac{1}{2} \sum_{i=1}^{n-1} d(a_i \phi^m(z_{i+k}), z_{i+k+1}) < \delta$, for all $n > \mu$, $k \in \mathcal{N}_0$ and $a_i \in \mathbb{G}$.

$$\frac{1}{n}\sum_{i=0}^{n}d(g_i\phi^m(z_{i+k}), z_{i+k+1}) < \delta, \text{ for all } n \ge \mu, \qquad k \in \mathcal{N}_0 \text{ and } g_i \in \mathbb{N}$$

 $x_{im} = z_i$,

We write $x_{nm+j} = \phi^j(z_n)$ for $0 \le j < m$, $n \in \mathcal{N}_0$, that is, $\{x_i, i \in \mathcal{N}_0\} = \{z_0, \phi(z_0), \dots, \phi^{m-1}(z_0), z_1, \phi(z_1), \dots, \phi^{m-1}(z_1), \dots\}.$ We have $\frac{1}{n}\sum_{i=0}^{n-1} d(g_i \phi^m(x_{i+k}), x_{i+k+1}) < \delta$, for all $n \ge \mu$ and $k \in \mathbb{Z}_+$. Then $\{x_i, i \in \mathcal{N}_0\}$ is (δ, \mathbb{G}) –average pseudo-trajectory ϕ . So, $\exists \omega \in \mathcal{M}$, such that $\limsup_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}d(\phi^i(\omega),g_ix_i)<\frac{\varepsilon}{m}.$ (3 - 1)

Claim: there are infinite $t \in \mathbb{N}$, such that

$$\frac{1}{\epsilon} \sum_{i=0}^{t-1} d(\phi^{im}(\omega), g_i x_i) < \epsilon.$$

Proof of Claim : Assume there is $\mu_0 \in \mathbb{N}$, such that

$$\frac{1}{t} \sum_{\substack{i=0\\n-1}}^{t-1} d(\phi^{im}(\omega), g_i x_i) \ge \varepsilon, \quad \text{for all } t \ge \mu_0.$$
$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} d(\phi^i(\omega), g_i x_i) \ge \frac{\varepsilon}{m}.$$

Then

This contracts with (3 - 1), then we have:

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}d(\phi^{im}(\omega),g_ix_{im})<\varepsilon,$$

since

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} d((\phi^m)^i(\omega), g_i z_i) < \varepsilon$$

Thus, have the ϕ^m G ASP.

 $n \rightarrow 0$

Proposition 3.2. [9]

Let (\mathcal{M}, d) be a metric \mathbb{G} -space, $\phi : \mathcal{M} \to \mathcal{M}$ be pseudo-equivariant and totally \mathbb{G} -transitive with a dense set of \mathbb{G}_{ϕ} -periodic points, then ϕ is weakly \mathbb{G} -mixing.

Theorem 3.3

Let (\mathcal{M}, d) be a compact metric \mathbb{G} – space and $\phi : \mathcal{M} \to \mathcal{M}$ be pseudo-equivariant with dense set of \mathbb{G}_{ϕ} -periodic points. If ϕ has the \mathbb{G} ASP, then ϕ is weakly \mathbb{G} -mixing. Proof:

By Proposition 3.1, if ϕ has the G ASP then so does ϕ^m for every $m \in \mathbb{N}$. By Proposition 3.2, if Φ^m is totally \mathbb{G} - transitive for every m > 0, then it is weakly \mathbb{G} -mixing. Therefore, it is enough to prove that ϕ is totally \mathbb{G} – transitive.

We must prove that ϕ^m is \mathbb{G} – transitive for some m > 1. Assume that ϕ^m is not \mathbb{G} –transitive for some m > 1, then $\exists \mathcal{D} \subseteq \mathcal{M}$, such that $\mathcal{D} \neq \emptyset$ proper, closed and \mathbb{G} -invariant. Also $\phi^m(\mathcal{D}) \subseteq \mathcal{D}$ and hence $\phi^{ms}(\mathcal{D}) \subseteq \mathcal{D}$ for any $s \ge 1$ such that $int(\mathcal{D}) \neq \emptyset$, implies that ϕ^{ms} is not \mathbb{G} -transitive for any $s \ge 1$. So, $\forall s \ge 1$, $\exists A_s, B_s$ are non-empty open subsets of \mathcal{M} , such that $\forall p \in \mathbb{G}$ and $\forall i \geq 1$. We have $(p(\phi^{ms})^i(A_s)) \cap B_s = \emptyset$. Note that A_1, B_1 works $\forall s$. Assume that A, B are nonempty open subsets of \mathcal{M} such that $(p \varphi^{mk}(A)) \cap B = \emptyset, \forall p \in \mathbb{G}$ and $\forall k \ge 1$. Since φ is pseudo-equivariant, then $A \cap (p \Phi^{-mk}(B)) = \emptyset$, $\forall p \in \mathbb{G}$ and $\forall k \ge 1$. Suppose that $\Phi \times \Phi \times \cdots \times \Phi$

is not $\underbrace{\mathbb{G} \times \mathbb{G} \times \cdots \times \mathbb{G}}_{m-times}$ -transitive. We take into account that $B' = B \times \phi^{-1}(B) \times \cdots \times \phi^{-(m-1)}(B)$ and $A' = A \times A \times ... \times A$. Then, $A' \cap ((p_1, p_2, ..., p_m) (\phi \times \phi \times ... \times \phi)^{-r} (B')) = \emptyset$,

 $\forall (p_1, p_2, \dots, p_m) \in \mathbb{G} \times \mathbb{G} \times \dots \times \mathbb{G} \text{ and } \forall r \ge 1, \text{ which implies that } \underbrace{\varphi \times \varphi \times \dots \times \varphi}_{q} \text{ is not}$

 $\underbrace{\mathbb{G} \times \mathbb{G} \times \cdots \times \mathbb{G}}_{m-times} - \text{ transitive, which implies a contradiction. Thus } \Phi^m \text{ is } \mathbb{G} - \text{transitive for every}$

 $m \ge 1$ and hence ϕ is totally \mathbb{G} – transitive.

Thus by Proposition 3.2, ϕ is weakly \mathbb{G} -mixing.

Definition 3.4.[5]

Let (\mathcal{M}, d) be a metric \mathbb{G} -space and $\phi : \mathcal{M} \to \mathcal{M}$ be a homeomorphism map that is called positively \mathbb{G} -expansive. If there exists real number $\rho > 0$ such that $\forall m, y \in \mathcal{M}$ with $\mathbb{G}(m) \neq \mathbb{G}(y)$, there exists an integer number $k \ge 0$ such that $d(\phi^k(u), \phi^k(v)) > \rho$, $\forall u \in \mathbb{G}(m)$, and $v \in \mathbb{G}(y)$. ρ is then called a \mathbb{G} -expansive constant for ϕ .

Definition 3.5. [5]

Let (\mathcal{M}, d) be a compact metric \mathbb{G} – space and $\phi : \mathcal{M} \to \mathcal{M}$ be a homeomorphism map. Then ϕ has \mathbb{G} –specification if $\forall \varepsilon > 0$, $\exists \mathcal{D} = \mathcal{D}(\varepsilon) > 0$ such that for each finite sequence of points $g_1m_1, g_2m_2, \dots, g_km_k \in \mathcal{M}$ for some $g_1, g_2, \dots, g_k \in \mathbb{G}$ and for $2 \le k \le j$, picking any sequence of integers $a_1 \le b_1 < a_2 \le b_2 < \dots < a_j \le b_j$ such that $a_k - b_{k-1} \ge \mathcal{D}(2 \le k \le j)$ and an integer ℓ with $\ell \ge \mathcal{D}(b_j - a_1)$, $\exists m \in \mathcal{M}$ with $\phi^\ell(m) = gm, \exists g \in \mathbb{G}$ and hold $d(\phi^i(m), \ell_i \phi^i(m_k)) < \varepsilon$ for some $\ell_i \in \mathbb{G}$ and for $a_k \le i \le b_k$, $1 \le k \le j$.

Theorem 3.6

Let (\mathcal{M}, d) be a compact metric \mathbb{G} – space with d being an invariant metric and let $\phi : \mathcal{M} \to \mathcal{M}$ is a \mathbb{G} -expansive pseudo-equivariant homeomorphism having the \mathbb{G} ASP. If ϕ is topologically \mathbb{G} –mixing then ϕ has the \mathbb{G} -specification.

Proof:

Let $\rho > 0$ be a \mathbb{G} -expansive constant for ϕ and we choose ε such that $0 < \varepsilon < \frac{\rho}{2}$. Since ϕ has \mathbb{G} ASP, $\exists \beta > 0$ such that every (β, \mathbb{G}) - average pseudo-trajectory for ϕ is ε - shadowed in \mathbb{G} -average by the trajectory of some point $m \in \mathcal{M}$. Let $\mathcal{F} = \{A_1, A_2, \dots, A_m\}$ be a finite open cover of \mathcal{M} with $A_i \neq \phi$ and diam $A_i < \frac{\beta}{2}$, $\forall i, i \in \{1, 2, \dots, m\}$. Since ϕ is topologically \mathbb{G} -mixing, then for each open sets A_i, A_j there is $\mathcal{D}_{i,j} > 0$, such that $\forall n \ge \mathcal{D}_{i,j}$, and there is $g'_n \in \mathbb{G}$ satisfying $A_j \cap g'_n \phi^n(A_i) \neq \phi$ (3 - 2).

Let $\mathcal{D} = \max \{ \mathcal{D}_{i,j} : 1 \le i, j \le m \}$ and $g_1 m_1, g_2 m_2, \dots, g_k m_k \in \mathcal{D}$, for some $g_1, g_2, \dots, g_k \in \mathbb{G}$ and for $2 \le j \le k$, picking any sequence of integers $a_1 \le b_1 < a_2 \le b_2 < \dots < a_k \le b_k$ such that $a_j - b_{j-1} \ge \mathcal{D}(2 \le j \le k)$ and an integer p with $p \ge \mathcal{D}(b_k - a_1)$. We define $a_{k+1} = b_{k+1} = p + a_1, m_{k+1} = \varphi^{a_1 - b_{k+1}}(g_1 m_1)$. We denote by A(z) an open ball A in \mathcal{F} containing z. Since $a_{j+1} - b_j \ge \mathcal{D}$, by $(3-2), \exists g'_{a_{j+1}-b_j} \in \mathbb{G}$, such that $A\left(\varphi^{a_j+1}(g_{j+1}m_{j+1})\right) \cap$

 $\begin{aligned} g'_{a_{j+1}-b_j} \, \varphi^{a_{j+1}-b_j} \left(A\left(\varphi^{b_j}(g_j m_j) \right) \right) &\neq \emptyset, \text{ that is,} \\ \exists \, y_j \in \varphi^{a_{j+1}-b_j} \left(A\left(\varphi^{b_j}(g_j m_j) \right) \right) &\neq \emptyset \quad \text{ such that } \varphi^{a_{j+1}-b_j}(y_j) = k'_{a_{j+1}-b_j} \, y'_j. \text{ We establish a} \\ (\beta, \mathbb{G}) - \text{ average pseudo- trajectory } \{ \omega_i : i \in \mathbb{Z} \} \text{ for } \varphi \quad \text{ in } \mathcal{M}, \text{ as follows:} \\ \omega_i &= \varphi^i(g_j m_j) \text{ if } a_j \leq i \leq b_j \\ \omega_i &= \varphi^{i-b_j}(y_j) \text{ if } b_j \leq j \leq a_{j+1} \end{aligned}$

 $\omega_{i+p} = \omega_i$, $\forall i \in \mathbb{Z}$

Since ϕ has the \mathbb{G} ASP, { $\omega_i : i \in \mathbb{Z}$ } is ε - shadowed in \mathbb{G} -average by the trajectory of some point $m \in \mathcal{M}$. Therefore, $\forall i \in \mathbb{Z}, \exists \ell_i, \ell_{i+p} \in \mathbb{G}$ such that

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1-n}^{n-1} d(\phi^{i}(m), \ell_{i} \omega_{i}) < \varepsilon, \quad \text{and} \quad \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1-n}^{n-1} d(\phi^{i+p}(m), \ell_{i+p} \omega_{i+p}) < \varepsilon,$$

this implies that
$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1-n}^{n-1} d(\phi^{i}(m), \ell_{i} \omega_{i}) < \varepsilon,$$

and $\limsup_{n \to \infty} \frac{1}{n} \sum_{\substack{i=1-n \\ \in \mathbb{C}}}^{n-1} d(\phi^{i+p}(m), \ell_{i+p} \omega_i) < \varepsilon, \text{ which implies that } \forall i \in \mathbb{Z}, \exists \ell_1, \ell_k$ $\in \mathbb{G}$, satisfying $\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1-n}^{n-1} d\left(\ell_{i+p}^{-1} \varphi^{i+p}(m), \ell_i^{-1} \varphi^i(m)\right) < 2 \varepsilon < \varepsilon.$ But φ is a \mathbb{G} -expansive homeomorphism. Consequently, $\mathbb{G}(\varphi^p(m)) = \mathbb{G}(m)$. Therefore, $\varphi^p(m) = gm$, for some $g \in \mathbb{G}$. Also for $a_j \leq j$ or $b < b_j$, $\omega_i = \varphi^i(g_j m_j)$.

So,
$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1-n}^{n-1} d(\phi^i(m), \ell_i \omega_i) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1-n}^{n-1} d(\phi^i(m), \ell_i \phi^i(g_j m_j)) < \varepsilon$$

and $\phi^p(m) = gm$. Thus, ϕ has the G -specification by Definition 3.5. Lemma 3.7. [5]

Let \mathcal{M} be a compact connected Hausdorff metric space that contains more than one point and let $m, y \in \mathcal{M}$. Then for a continuous map $\phi: \mathcal{M} \to \mathcal{M}$ and $\delta > 0$, there exists a δ – pseudo- trajectory for ϕ containing m, y in \mathcal{M} .

We recall that the topological space \mathcal{M} is called a **totally disconnected** space if $\forall m, y \in \mathcal{M}$. There are two sets $A, B \subset \mathcal{M}$ that are disconnection such that $m \in A$ and $y \in B$. Theorem 3.8

Let (\mathcal{M}, d) be a compact metric \mathbb{G} – space. Then the identity map $\phi: \mathcal{M} \to \mathcal{M}$ has the \mathbb{G} ASP if and only if the orbit space \mathcal{M}/\mathbb{G} of \mathcal{M} is totally disconnected. Proof: (\Rightarrow)

Assume that the identity map $\phi: \mathcal{M} \to \mathcal{M}$ has the G ASP. By hypothesis, $\frac{\mathcal{M}}{G}$ is compact, then it is enough to prove that dim(\mathcal{M}/\mathbb{G}) = 0. Suppose, conversely, that dim(\mathcal{M}/\mathbb{G}) \neq 0. Since dim(\mathcal{M}/\mathbb{G}) $(\mathbb{G}) \geq 1$, so there is a closed connected subset E in \mathcal{M}/\mathbb{G} which has a dimension that is at least one. E is a compact subset of \mathcal{M}/\mathbb{G} , since \mathcal{M}/\mathbb{G} is compact. So $\exists \mathbb{G}(a) \neq \mathbb{G}(b) \in E$, such that diam E = $d_1(\mathbb{G}(a),\mathbb{G}(b)) = \gamma$. By compactness of \mathbb{G} , there is $y_1 \in \mathbb{G}(a)$ and $y_2 \in \mathbb{G}(b)$ such that r = 1 $d(y_1, y_2)$. Let $\varepsilon = \frac{\gamma}{3}$. We get a contradiction by exhibiting that for $\forall \varepsilon > 0$ there is a (δ, \mathbb{G}) – average pseudo- trajectory for ϕ which is not ε - shadowed in \mathbb{G} –average by the trajectory of some point $m \in \mathcal{M}$.

By Lemma 3.7, there is $a(\delta, \mathbb{G})$ – average pseudo- trajectory $\{m_i : i \in \mathbb{Z}\}\$ for ϕ in \mathcal{M} containing y_1, y_2 . Such a (δ, \mathbb{G}) – average pseudo- trajectory can be obtained as follows: Since E is a compact connected subset of \mathcal{M}/\mathbb{G} by Lemma 3.7, then there is a δ -pseudo- trajectory { $\mathbb{G}(m_i): i \in \mathbb{Z}$ }, for $\check{\Phi}$ containing $\mathbb{G}(a)$ and $\mathbb{G}(b)$. This implies that $\forall i \in \mathbb{Z}$,

$$\frac{1}{n}\sum_{i=0}^{n-1} d_1\left(\check{\Phi}(\mathbb{G}(m_i)), \mathbb{G}(m_{i+1})\right) < \varepsilon.$$

Since G is Compact, implies for $\forall i \in \mathbb{Z}$, $\exists \ell_i, u_i \in \mathbb{G}$ such that,

$$\frac{1}{n}\sum_{i=0}^{n-1} d(\ell_i \phi(m_i), u_i m_{i+1}) < \delta \text{ which implies } \frac{1}{n}\sum_{i=0}^{n-1} d(g_i \phi(m_i), m_{i+1}) < \delta,$$

for some $g_i \in \mathbb{G}$, and hence $\{m_i : i \in \mathbb{Z}\}$, is a (δ, \mathbb{G}) – average pseudo- trajectory for ϕ . Now, $\{\mathbb{G}(m_i): i \in \mathbb{Z}\}$ contains $\mathbb{G}(a)$ and $\mathbb{G}(b)$. Therefore, for some $k, p \in \mathbb{Z}$, $\mathbb{G}(m_k) = \mathbb{G}(a)$ and $\mathbb{G}(m_p) =$ $\mathbb{G}(b)$. Also, $y_1 \in \mathbb{G}(a)$ and $y_2 \in \mathbb{G}(b)$, implies $g'y_1 = m_k$ and $g''y_2 = m_p$, for some $g', g'' \in \mathbb{G}$. We take the place of m_k by $g'y_1$ and m_p by $g''y_2$ in $\{m_i : i \in \mathbb{Z}\}$ and continue to denote the new (δ, \mathbb{G}) – average pseudo- trajectory, containing y_1 and y_2 , by $\{m_i : i \in \mathbb{Z}\}$.

Let $\{m_i : i \in \mathbb{Z}\}\ \varepsilon$ - shadowed in \mathbb{G} -average by the point $m \in \mathcal{M}$. So, $\forall i \in \mathbb{Z}, \exists p_i \in \mathbb{G}, \text{ such}$ that

$$\frac{1}{n}\sum_{i=0}^{n-1} d(m, p_i m_i) = \limsup_{n \to \infty} \frac{1}{n}\sum_{i=0}^{n-1} d(\phi^i(m_i), p_i m_i) < \varepsilon$$
(3-3).

Since $\{m_i : i \in \mathbb{Z}\}$ is a (δ, \mathbb{G}) - average pseudo- trajectory for ϕ containing y_1 and y_2 , $\exists k, n \in \mathbb{Z}$ such that $m_k = y_1$ and $m_n = y_2$. So, by (3-3) d $(m, p_k, m_k) < \varepsilon$ and d $(m, p_n, m_n) < \varepsilon$, which implies that $d_1(\mathbb{G}(m), \mathbb{G}(p_k, m_k)) < \varepsilon$ and $d_1(\mathbb{G}(m), \mathbb{G}(p_n, m_n)) < \varepsilon$, and hence $d_1(\mathbb{G}(a), \mathbb{G}(b)) \leq d_1(\mathbb{G}(a), \mathbb{G}(m)) + d_1(\mathbb{G}(m), \mathbb{G}(b)) < \varepsilon + \varepsilon = \frac{2\gamma}{3}$, which is a contradiction. This proves that dim $(\mathcal{M}/\mathbb{G}) = 0$. Hence, the orbit space \mathcal{M}/\mathbb{G} of \mathcal{M} is totally disconnected.

$Proof: (\Leftarrow)$

Assume that \mathcal{M}/\mathbb{G} is totally disconnected. Then clopen sets form a basis for topology of \mathcal{M} . By hypothesis, \mathbb{G} is compact, then we have the possibility of an invariant metric d on \mathcal{M} congruous with topology of \mathcal{M} . Let $\varepsilon > 0$ be given and let $\{A_1, A_2, ..., A_n\}$ be a finite subcover of \mathcal{M}/\mathbb{G} containing clopen sets such that $A_i \cap A_j = \emptyset$ for $i \neq j$ and diam $A_i < \varepsilon$, $\forall i \in \{1, 2, ..., n\}$.

A set $B_i = \Psi^{-1}(A_i)$, $\forall i$, since A_i is a closed subset of \mathcal{M}/\mathbb{G} and π is a continuous map, $B_i = \Psi^{-1}(A_i)$ is compact, since $B_i \subset \mathcal{M}$, and B_i is a closed. So, $A_i \cap A_j = \emptyset$, implies $\Psi^{-1}(A_i) \cap \Psi^{-1}(A_j) = \emptyset$, implies $B_i \cap B_j = \emptyset$.

Let $\alpha_{ij} = d(A_i, A_j)$ for $\neq j$. Then A_i, A_j is compact, implies $\alpha_{ij} > 0$ for $i \neq j$. Choose α such that $0 < \alpha < \min \{\alpha_{ij} : 1 \leq i, j \leq n\}$. We must prove that the identity map ϕ has the G ASP. We prove that every (α, \mathbb{G}) – average pseudo- trajectory for ϕ is ε - shadowed in G – average by the trajectory of some point $m \in \mathcal{M}$. Let $S = \{m_i : i \in \mathbb{Z}\}$ be a (α, \mathbb{G}) – average pseudo- trajectory for ϕ . Then for $\forall i \in \mathbb{Z}, \exists g_i \in \mathbb{G}$ such that

$$\frac{1}{n}\sum_{i=0}^{n-1} d(g_i \phi(m_i), m_{i+1}) < \alpha \text{ implies to } \frac{1}{n}\sum_{i=0}^{n-1} d(g_i m_i, m_{i+1}) < \alpha, \qquad (3-4)$$

Note that if $m_i \in B_k$ then $m_{i+1} \in B_k$. For if $m_{i+1} \in B_j$, $j \neq k$, then B_k is G-invariant $g_i m_i \in B_k$ and $m_{i+1} \in B_j$, implies

$$\frac{1}{n}\sum_{i=0}^{n-1} d(g_i \phi(m_i), m_{i+1}) \ge \frac{1}{n}\sum_{i=0}^{n-1} d(B_k, B_j) = \alpha_{ij} > \alpha_{ij}$$

This is a contradiction with (3-4). Similarly, if $m_i \in B_k$, then $m_{i-1} \in B_k$. For if $m_{i-1} \in B_j$, $j \neq k$, then B_j is G-invariant $g_{i-1} m_{i-1} \in B_j$ and $m_{i+1} \in B_j$, implies

$$\frac{1}{n}\sum_{i=0}^{n-1} d(g_{i-1}m_{i-1}, m_i) \ge \frac{1}{n}\sum_{i=0}^{n-1} d(B_k, B_j) = \alpha_{ij} > \alpha_{ij}$$

This is a contradiction with (3-4). So, $\forall i \in \mathbb{Z}$, $m_i \in B_k$. This implies that $\mathbb{G}(m_i) \in A_k$, but diam $A_k < \varepsilon$, so $\forall \mathbb{G}(m) \in A_k$ and $\forall i \in \mathbb{Z}$,

$$\frac{1}{n}\sum_{i=0}^{n-1} \mathrm{d}_1\big(\mathbb{G}(m),\mathbb{G}(m_i)\big) < \varepsilon.$$

By hypothesis, G is compact, so $\forall i \in \mathbb{Z}, \exists \ell_i, u_i \in \mathbb{G}$, such that

$$\frac{1}{n}\sum_{i=0}^{n-1} d(\ell_i m, u_i m_i) < \varepsilon.$$

Thus $\forall i \in \mathbb{Z}$, $\exists g_i \in \mathbb{G}$ such that

$$\frac{1}{n}\sum_{i=0}^{n-1} d(\phi^i(m_i), g_i m_i) < \varepsilon.$$

Hence $S = \{m_i : i \in \mathbb{Z}\}$ is ε - shadowed in \mathbb{G} -average by the trajectory of some point $m \in \mathcal{M}$. Since S is an arbitrary (α, \mathbb{G}) - average pseudo- trajectory for ϕ , it follow that every (α, \mathbb{G}) - average pseudo- trajectory for ϕ is ε - shadowed in \mathbb{G} -average by the trajectory of some point $m \in \mathcal{M}$. Hence ϕ has the \mathbb{G} ASP.

Definition 3.9. [5]

Let \mathcal{M} and Y be metric spaces. A continuous onto map $h: \mathcal{M} \to Y$ is called a covering map, if for each $y \in Y$, there exists an open neighborhood B_y of y in Y such that $\phi^{-1}(B_y) = \bigcup A_i$,

 $(i \neq j, \text{ implies } A_i \cap A_j = \emptyset$, where each A_i is open in \mathcal{M} and $h|_{A_i} : A_i \to B_y$ is a homeomorphism).

Theorem 3.10

Let $\phi: \mathcal{M} \to \mathcal{M}$ be a pseudo-equivariant map on a compact metric \mathbb{G} –space (\mathcal{M}, d) and let the orbit map $\Psi: \mathcal{M} \to \mathcal{M}/\mathbb{G}$ be a covering map, then ϕ has the \mathbb{G} ASP iff the induced map $\phi: \mathcal{M}/\mathbb{G} \to \mathcal{M}/\mathbb{G}$ has the ASP. Proof: (\Rightarrow)

Assume that ϕ has the G ASP. We must prove that ϕ has the ASP. We choose $\varepsilon > 0$. Since Ψ is uniformly continuous, $\exists \gamma > 0$, such that $d(m, y) < \gamma$, implies $d_1(\Psi(m), \Psi(y)) < \varepsilon$. Also, ϕ has the G ASP, so $\exists \mu > 0$, such that every (μ, \mathbb{G}) – average pseudo- trajectory for ϕ is γ - shadowed in G – average by a point $m \in \mathcal{M}$. Since Ψ is a covering map on a compact space, $\exists \delta > 0$, such that $\forall m \in \mathcal{M}$. We find an α_m satisfying $(\Psi|_{A_{\alpha_m}})^{-1}(A_{\delta}(\Psi(m))) \subset A_{\mu}(m)$. We must prove that ϕ has the ASP. We show that every δ – average pseudo- trajectory for ϕ is ε -shadowed in average by a point of \mathcal{M}/\mathbb{G} . Let {G $(m_i): i \in \mathcal{N}_0$ } is an δ – average pseudo-trajectory for ϕ . Then $\exists \alpha_{m_{i+1}}$ such that $m_{i+1} \in (\Psi|_{A_{\alpha_{m_{i+1}}}})^{-1}(A_{\delta}(\Psi(\phi(m_i)))) \subset A_{\mu}(\phi(m_i))$, implies {G $(x_i): i \in \mathcal{N}_0$ } is an (μ, \mathbb{G}) – average pseudo- trajectory for ϕ and so is γ – shadowed in average by some point $m \in \mathcal{M}$. Hence, $\forall i \in \mathcal{N}_0$, $\exists g_i \in \mathbb{G}$, such that :

$$\frac{1}{n}\sum_{i=0}^{n-1} \mathrm{d}\left(g_i \, m_i, \varphi^i(m_i)\right) < \gamma \, .$$

Moreover, using uniform continuity of the covering map Ψ , we get :

$$\frac{1}{n}\sum_{i=0}^{n-1} \mathrm{d}_1\left(\mathbb{G}\left(\varphi^i(m)\right), \mathbb{G}(m_i)\right) < \varepsilon$$

This proves that $\{\mathbb{G}(m_i) : i \in \mathcal{N}_0\}$ is ε - shadowed in average by $\mathbb{G}(m)$. Hence, ϕ has the ASP. **Proof:** (\Leftarrow)

Assume that ϕ has the ASP. We must prove that ϕ has the G ASP. We choose $\varepsilon > 0$. Since Ψ is a covering map and \mathcal{M} is compact, then $\exists \delta > 0$ such that for $\Psi(m) \in \mathcal{M}/\mathbb{G}$, $\Psi^{-1}(A_{\delta}(\Psi(m)) = \bigcup A_{\alpha}$, where $\forall A_{\alpha}$ in $\mathcal{M}, \alpha \in \wedge, \alpha \neq \beta$, which leads to $A_{\alpha} \cap A_{\beta} = \emptyset$ and that $\Psi|_{A_{\alpha}} : A_{\alpha} \to A_{\delta}(\Psi(m))$ is a homeomorphism. For ε –neighborhood $A_{\varepsilon}(m)$ of m, consider A_{α} which contains m. If diam $A_{\alpha} < \varepsilon$, we have $\Psi^{-1}|_{A_{\alpha}} (A_{\delta}(\Psi(m))) \subset A_{\alpha} \subset A_{\varepsilon}(m)$. If diam $A_{\alpha} < \varepsilon$, then choose $A'_{\alpha} \subset A_{\alpha}$ such that diam $A'_{\alpha} < \varepsilon$ and $m \in A'_{\alpha}$, we have $\Psi^{-1}|_{A'_{\alpha}} (A_{\delta}(\Psi(m))) \subset A'_{\alpha} \subset A_{\varepsilon}(m)$. If diam $A_{\alpha} < \varepsilon$, then choose $A'_{\alpha} \subset A_{\alpha}$ such that diam $A'_{\alpha} < \varepsilon$ and $m \in A'_{\alpha}$, we have $\Psi^{-1}|_{A'_{\alpha}} (A_{\delta}(\Psi(m))) \subset A'_{\alpha} \subset A_{\varepsilon}(x)$. Since ϕ has the ASP then $\exists \mu > 0$, such that every μ – average pseudo- trajectory for ϕ is δ -shadowed in average by a point of \mathcal{M}/\mathbb{G} . Uniform continuity of Ψ implies that $\exists \gamma > 0$ such that every (γ, \mathbb{G}) – average pseudo- trajectory for ϕ is ε - shadowed in \mathbb{G} –average by a point of $\mathcal{M}_{\alpha}(\Psi(m), \Psi(y)) < \gamma$. To prove that ϕ has the GASP, we show that every (γ, \mathbb{G}) – average pseudo- trajectory for ϕ is ε - shadowed in \mathbb{G} –average by a point of \mathcal{M} .

This implies that $\forall i \in \mathcal{N}_0 \exists p_i \in \mathbb{G}$ such that $\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} d(p_i h(m_i), m_{i+1}) < \gamma$,

Therefore, $\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} d_1 \left(\Psi(\phi(m_i)), \Psi(m_{i+1}) \right) < \mu , \quad \text{and hence we have}$ $\limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} d_1 \left(\mathbb{G}(\phi(m_i)), \mathbb{G}(m_{i+1}) \right) < \mu ,$

which proves that $\{\mathbb{G}(m_i): i \in \mathcal{N}_0\}$ is an μ -average pseudo- trajectory for ϕ . Since ϕ has the ASP, then $\{\mathbb{G}(m_i): i \in \mathcal{N}_0\}$ is ε -shadowed in average by a point of \mathcal{M}/\mathbb{G} .

Suppose that
$$\mathbb{G}(x)$$
 and hence $\frac{1}{n}\sum_{i=0}^{n-1} d_1\left(\mathbb{G}\left(\Phi^i(m)\right), \mathbb{G}(m_i)\right) < \delta, \quad \forall i \in \mathcal{N}_0.$ But this

gives $\Psi\left(\phi^{i}(m)\right) \subset A_{\alpha}\Psi(m_{i})$, implies $\phi^{i}(m) \in \Psi^{-1}\left(A_{\delta}\left(\Psi(m_{i})\right)\right) \subset A_{\varepsilon}(m)$ $\limsup_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1} d\left(\phi^i(m_i), g_i m_i\right) < \varepsilon, \quad g_i \in \mathbb{G}.$ and therefore

Hence ϕ has the **G** ASP.

References

- 1. Anosov D.V. 1967. Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Russian, Trudy Mat. Inst. Steklov, 90, 209 PP.
- 2. Blank M. L. 1989. Small Perturbations of Chaotic Dynamical Systems, *Russian Math. Surveys*, 44(6): 1-33.
- 3. Palais R. S. 1960. The classification of G-spaces, 190 Hope street providence R.I., Memoirs of the American Mathematical Society, 36: 1–71.
- 4. Shah E. and Das T. K. 2003. On pseudo orbit tracing property in G-spaces, JP Journal of *Geometry and Topology*, **3**(2): 101–112.
- 5. Shah E. 2005. Dynamical properties of maps on topological spaces and G-spaces, Ph.D. Thesis, Department of Mathematics, University of Science The M.S. University of Baroda.
- 6. Bredon G. 1972. Introduction to compact transformation Groups, New York and London Academic Press.
- 7. Park J.J. and Zhang Y. 2006. Average Shadowing Properties on Compact Metric Spaces, Commun. Korean Math. Soc. 21(2): 355-361.
- 8. Das R. and Das T. 2012. Topological transitivity of uniform limit functions on G-spaces, Int. J. Math. Anal. 6(30): 1491-1499.
- 9. Garg M. and Das R. 2017. Exploring stronger forms of transitivity on G-spaces, Journal of Math. Aticki Vesnik Math. Bechnk, 69(3): 164–175.