ON THE RANGE OF THE MAP N_{AB}

Sadiq Naji Nassir

Department of Mathematics, College of Science, University of Baghdad. Baghdad- Iraq

Abstract

Let H be an infinite dimensional separable complex Hilbert space and B(H) be the Banach algebra of all bounded linear operators on H.

In this paper we introduce a mapping N_{AB} : B(H) \rightarrow B(H) . By N_{AB} (T)=AT-T*B, T \in B(H).

We study some properties of it, and we study surjectivity of this mapping when A is pseudonormal operator whose spectrum satisfies certain properties if the analytic function f(A) that belongs to the $(RangeN_{AA})^*$ then f(A) is the zero function. Also we generalize some results for the Jordan * derivation J_A and the derivation D_A when A is normal operator and prove it when A is pseudonormal operator.

الخلا صة

Introduction

Let H be a separable complex Hilbert space and B(H) be the Banach algebra of all bounded linear operators on H as is customary, let $\sigma(A)$, $\sigma_p(A)$, and $\sigma_{ap}(A)$ denote the spectrum of the operator A, the set of all eigenvalue of the operator A and approximate eigenvalue of the operator A respectively. The operator A is called normal if $A^*A = AA^*$, T is called a dominant operator if for each $\lambda \in \phi$ there exists a number $M_\lambda > 0$ such that

 $\left\| (T^*-\overline{\lambda})x \right\| \leq M_{\lambda} \left\| (T-\lambda)x \right\| \text{ for all } x \in H [1].$

Furthermore if the constants M_λ are bounded by a positive number M, then T is called M-hyponormal operator [2], and if M=1, T is

called hyponormal operator [3], A is called a *- paranormal operator if $|| A^* x ||^2$ $\leq || A^2 x ||$ for every unit vector x in H [4].

Finally the operator T is called a pseudonormal operator if $Tx = \lambda x$ for some $x \in H$, $\lambda \in \mathfrak{c}$, then $T^*x = \overline{\lambda}$ i.e., if x is an eigenvector for T with the eigenvalue λ then x is an eigenvector for T* with eigenvalue $\overline{\lambda}$. [5,p59]. In this paper we introduce a mapping N_{AB} : B(H) \rightarrow B(H), by N_{AB} (T)=AT-T*B, T \in B(H).

We study some properties of it and its surjectivity. Also we generalize some theorems when A is a normal operator , pseudonormal operator , *- paranormal ,dominant operator , M- hyponormal operator , and hyponormal operator.

We also recall the definition of derivation mapping $D_A(T)$: B(H) \rightarrow B(H) defined by $D_A(T)$ =TA-AT, T \in B(H). [6]. Also the maping $J_A(T)$ =TA-AT* is called Jordan *derivation [7] .We study conditions under which range of J_A , D_A and N_{AB} contain analytic operators when A is a pseudonormal operator.

Propositoin (1)

1- The mapping N_{AB} is bounded in the sense that it maps bounded sets in B(H) in to bounded sets in B(H) and it is clear that it is not a linear mapping.

2- $(RangeN_{AB})^* = RangeN_{B^*A^*}$

3-Let S denote the set of all normal operators defined on H. If A*=B then $(RangeN_{AB}) \subseteq$ S.

4-let S_1 denote the set of all skew- Hermition operators defined on H. If A*=B then $(RangeN_{AB}) \subseteq S_1$. Moreover if A is an invertible operator then $S_1 = (RangeN_{AB})$.

proof (1) It is clear that

$$\|N_{AB}(X)\| = \|AX - X^*B\| \le \|AX\| + \|X^*B\|$$

$$\le \|X\| [\|A\| + \|B\|].$$

Hence if M is arbitrary bounded subset of B(H) we have its image $N_{AB}(M)$ is bounded.

Thus N_{AB} is bounded .

2- $(RangeN_{AB})^* = \{ (AX - X^*B)^* : X \in B(H) \}$ = $\{ X^*A^* - B^*X : X \in B(H) \}$ let $X_1 = -X$, $-X_1^* = X^*$ thus $(RangeN_{AB})^* = \{ B^*X_1 - X_1^*A^* : X_1 \in B(H) \}$ 3- Let $T \in (RangeN_{AB})$ then there exists an operator $X \in B(H)$ such that $T=AX-X^*B$ hence $T^* = X^*A^* - B^*X$. Now $TT^* = (AX-X^*B) (X^*A^* - B^*X)$ = $AXX^*A^* - AX B^*X - X^*B X^*A^* + X^*B B^*X$ = T^*T .

4- Let $T \in (\text{Range } N_{AB})$ then there exists an operator $X \in B(H)$ such that T=AX-X*B, hence

T*= X* A*- B*X=-(B*X- X* A*)=-T and $(RangeN_{AB}) \subseteq S_1$.

Let $A \in B(H)$ be an invertible operator and Let $T \in S_1$, consider $X=(1/2) A^{-1} T$ then T=AX-X*B. Lemma (2)

Let $A \in B(H)$ if $\lambda \in \sigma_{ap}(A)$ then $\lambda^n \in \sigma_{ap}(A^n)$ for each positive integer n. **Proof** See [8.p.71].

Theorem (3)

Let $A \in B(H)$ be a normal operator and $A^n \in (RangeN_{AA})$ for an integer $n \ge 2$ then $(\sigma(A))^{n-1} \subseteq iR$. If n=1, then A=0. **proof :**

Let
$$\lambda \in \sigma(A)$$
 then by a theorem in [9.p44],

 $\lambda \in \sigma_{ap}(A)$, hence there exists a unit vector $\mathbf{x} \in \mathbf{H}$

Such that $\| (Ax - \lambda x) \| < \epsilon, \|x\| = 1 \dots (1)$ Since $\lambda \in \sigma(A)$ then $\lambda^n \in \sigma(A^n)$, by spectral mapping theorem. And by lemma (2) $\lambda^n \in \sigma_{ap}(A^n)$ thus $\| (A^n x - \lambda^n x) \| \le q \epsilon$ $\|x\| = 1$. Hence $|\langle A^n x - \lambda^n x, x \rangle| < q \epsilon$. Thus $|\langle A^n x, x \rangle - \lambda^n| < q \epsilon$ (2)

Thus $|\langle A | x, x \rangle - \lambda | < q \in \dots$ (2) But $A^n \in (RangeN_{AA})$, hence there exists

But $A \in (Rangerv_{AA})$, hence there exists $T \in B(H)$ such that $A^n - (AT - T^*A) = 0$ and thus $|\langle A^n x, x \rangle - \langle ATx, x \rangle + \langle T^*Ax, x \rangle| = 0$(3) We can assume from inequality (1) that $||A x - \lambda x|| ||T|| < \epsilon$ and

 $\begin{aligned} \left\| A ^{*} x - \lambda ^{-} x \right\| \| T \| < \epsilon, \text{ Now} \\ \left| \langle A x, T x \rangle - \lambda \langle x, T x \rangle \right| < \epsilon \text{ and} \\ \left| \langle Tx, A^{*} x \rangle - \lambda \langle Tx, x \rangle \right| < \epsilon \text{ (4)} \end{aligned}$

By adding inequality (2),equation (3),and inequality (4), we get

$$\left|\langle\lambda^{n}-\lambda\langle(T-T^{*})x,x\rangle\right|< \in (2+q)$$

Since $(T - T^*)$ is a skew - Hermitian Thus $\langle (T - T^*)x, x \rangle$ is pure imaginary say z, $z \in iR$, Thus $|\lambda^n - \lambda z| < \in (2+q)$, $z \in iR$.

Since \in is arbitrary, then $\lambda (\lambda^{n-1} - z) = 0$ That is either $\lambda = 0$ or $\lambda^{n-1} = z$, $z \in i\mathbb{R}$ Nassir

Thus $\lambda^{n-1} \in i\mathbb{R}$ and if $\lambda=0$ then $0 \in i\mathbb{R}$, and $(\sigma(A))^{n-1} \subseteq i\mathbb{R}$.

Now if n=1, then by the same way in above we have $(\lambda - \lambda z) = 0, z \in iR$ thus $\lambda(1-z) = 0$, It is obvious that $(1-z)\neq 0$, hence $\lambda = 0$ and $\sigma(A) = \{0\}$, then A is quasinilpotent operator since the only normal quasinilpotent operator is zero operator hence A=0.

Lemma (4)

Let f be an analytic function defined on { $z \in \emptyset$: |z| < r, r > o} and $A \in B(H)$ such that ||A|| < r. If $\lambda \in \sigma_p(A)$ then $f(\lambda) \in \sigma_p(f(A))$.

Moreover if x is an eigenvector corresponding to λ , then x is also an eigenvector for f(A) corresponding to f (λ). **Proof :** See [8,p80].

The next theorem is proved in [1,p81] for normal operator A .we prove it for pseudonormal operator .

Theorem(5)

Let $A \in B(H)$ be a pseudonormal operator and let f be analytic function defined on a neighborhood B_r of zero such that ||A|| < r, r > 0

1-if $f(A) \in \text{Range}(J_A)$ then for each $\lambda \in \sigma_p(A)$, if $\lambda=0$ then $f(\lambda)=0$ and in general $f(\lambda)/\lambda$ is pure imaginary number.

2-If $f(A) \in \text{Range}(J_{A^*})$ then for each $\lambda \in \sigma_p(A)$, $\lambda f(\lambda)$ is pure imaginary number.

Proof (1)

Suppose that $f(A) \in \text{Range}(J_A) = \{\text{TA-AT}^*; \text{T} \in B(\text{H})\}.$ Let $\lambda \in \sigma_p(A)$ then there exist $x \neq 0 \in \text{H}$, $\| x \| = 1$, such that $Ax = \lambda x$ by spectral

mapping theorem $f(\lambda)$ is an eigenvalue for f(A) with the same eigenvector, hence $f(A)x=f(\lambda)x$. Thus $\langle f(A)x-f(\lambda)x, x\rangle =0$.

And $\langle f(A)x, x \rangle - f(\lambda) = 0$ (1)

but $f(A) \in \text{Range}(J_A)$ hence there is $T \in B(H)$ such that $f(A)-(TA-A T^*)=0$. Thus

< f(A)x, x > - < TAx, x > + < AT*x, x > = 0.....(2)

Since A is pseudonormal then $A^*x = \overline{\lambda}x$,hence $\langle Ax \cdot \lambda x, T^*x \rangle = 0$, and $\langle T^*x, A^*x \cdot \overline{\lambda}x \rangle = 0$. Thus $\langle Ax, T^*x \rangle \cdot \lambda \langle x, T^*x \rangle = 0$ (3) And $\langle T^*x, A^*x \rangle \cdot \lambda \langle T^*x, x \rangle = 0$(4) By adding the equations (1), (2),(3) and (4) we get $f(\lambda) \cdot \lambda (\langle x, T^*x \rangle - \langle T^*x, x \rangle) = 0$. Thus $f(\lambda) \cdot \lambda (\langle (T - T^*)x, x \rangle) = 0$. This implies $f(\lambda) \cdot \lambda c = 0$, $c \in iR$. and $f(\lambda) = \lambda c$ If $\lambda = 0$ then $f(\lambda) = 0$, other wise $f(\lambda)/\lambda = c$, $c \in iR$ In a similar manner one can prove (2). **Theorem (6)**

let $A \in B(H)$ be a pseudonormal operator and let f be analytic function defined on a neighborhood B_r of zero such that ||A|| < r, r>0

If $\sigma_p(A)$ contains a simple closed contour then

1-f(A)∈Range(J_A) if and only if f(x)=cx,c ∈ iR **2**- f(A) ∈ *Range*(J_A)^{*} if and only if f=0 **Proof 1** :

Suppose $f(A) \in \text{Range}(J_A)$ then by theorem(5) for each $\lambda \in \sigma_p(A)$, $f(\lambda)/\lambda = c$, $c \in iR$

Since $|\sigma(A)| \le ||A||$ and f is analytic on Br and ||A|| < r then f is analytic on $\sigma_p(A)$. Moreover

if $\lambda \neq 0$, $f(\lambda)/\lambda$ is analytic on $\sigma_p(A)$.

Hence $f(\lambda)/\lambda$ is constant function and for all x, f(x)=xc, $c \in iR$.

Conversely let f(x)= cx, hence f(A)=cA we check thet $f(A)\in Range(J_A)$

Observe that if T=(1/2)cI , then J_A (T)=TA-AT*=(1/2)cIA-A(c\2I)*

=(1/2)cA+(1/2)cA=cA . Hence $cA \in Range(J_A)$

2- Let $f(A) \in Range(J_A)^*$ then by theorem(5) for each $\lambda \in \sigma_p(A)$, $\lambda f(\lambda)=c$, $c \in iR$

Since $\lambda f(\lambda)$ is analytic on $\sigma_p(A)$ and $\sigma_p(A)$ contains a simple closed contour, then by lemma in [8,p78] it is constant function, clearly this is possible only if $f(\lambda)=0$. Conversely if f=0 then f(A)=0A, observe that if T=0 then $J_{A^*}(T)=A^*T^*-TA^*=0$, hence

$$f(A) \in Range(J_A)^{2}$$

Remark

we can prove theorem (5) and theorem(6) in a similar manner if we replace J_A by the derivation mapping D_A .

In next theorem we study conditions under which $(RangeN_{AB})$ contains analytic operators when A is a pseudonormal operator. **Theorem (7)**

Let $A \in B(H)$ be a pseudonormal operator then 1- If $f(A) \in (RangeN_{AB})$ then for each $\lambda \in \sigma(A) \cap \sigma(B)$ such that λ is an eigenvalue of A and B with the same corresponding eigenvector, if $\lambda=0$ then $f(\lambda)=0$. Moreover $f(\lambda)/\lambda$ is a pure imaginary number.

2- if $f(A) \in (RangeN_{AB})^*$ then for each $\lambda \in \sigma_p(A) \ \lambda f(\lambda)$ is a pure imaginary number

Proof (1):

Since λ is an eigenvalue of A and B with the same eigenvector then $Ax = \lambda x$ and $Bx = \lambda x$. If $f(A) \in (RangeN_{AB})$ then there exists $T \in$ B(H) such that f(A)-(AT-T*B)=0 so < f(A)x, x > - < ATx, x > + < T*Bx, x > = 0....(1).Since $\lambda \in \sigma_p(A)$ then $f(A)x=f(\lambda)x$ This implies that $\langle f(A)x, x \rangle - f(\lambda) = 0....(2)$ But A is a pseudonormal operator then A*x= λx and $\langle Tx, A*x \rangle - \lambda \langle Tx, x \rangle = 0....(3)$ And $\langle Bx Tx \rangle - \lambda \langle x, Tx \rangle = 0....(4)$ By adding (1),(2),(3),and (4) we get $f(\lambda)-\lambda(\langle (T-T^*)x, x \rangle)=0$ this implies that $f(\lambda)-\lambda c=0$, $c \in iR$ and hence $f(\lambda)=\lambda c$ if $\lambda=0$ then $f(\lambda)=0$. otherwise $f(\lambda)/\lambda=c$, $c \in i\mathbb{R}$. 2- Suppose that $f(A) \in (RangeN_{AB})^* =$ $\{ B^*T - T^*A^* : T \in B(H) \}$ Let $\lambda \in \sigma_n(A)$ then there exist $x \neq 0 \in H$, $\| x \| = 1$ such that $Ax = \lambda x$. By spectral

mapping theorem $f(\lambda)$ is an eigenvalue for f(A)with the same eigenvector, hence $f(A)x = f(\lambda)x$. Thus $\langle f(A)x - f(\lambda)x, x \rangle = 0$. Hence $\langle f(A)x, x \rangle + f(\lambda) = 0$ (1) But $f(A) \in (RangeN_{AB})^*$, hence there exists $T \in B(H)$, such that $f(A) - B^*T - T^*A^* = 0$. Thus $\langle f(A)x, x \rangle - \langle B^*Tx, x \rangle + \langle T^*A^*x, x \rangle = 0$(2) Since A is a pseudonormal then $A^* x = \overline{\lambda}x$, hence $\langle A^*x, Tx \rangle - \langle \overline{\lambda}x, Tx \rangle = 0$ (3) And $\langle \text{Tx}, \text{Bx} \rangle \cdot \overline{\lambda} \langle \text{Tx}, \text{x} \rangle = 0$(4) By adding the equations (1), (2),(3), and (4) we get $f(\lambda) \cdot \overline{\lambda}(\langle \text{Tx}, \text{x} \rangle \cdot \langle T^* \text{x}, \text{x} \rangle) = 0$. Thus $f(\lambda) \cdot \overline{\lambda} (\langle (T \cdot T^*) \text{x}, \text{x} \rangle) = 0$ This implies $f(\lambda) \cdot \overline{\lambda} c = 0$, $c \in i\mathbb{R}$. and $f(\lambda) = \overline{\lambda} c$ Now if we multiply the sides of the above equation by λ we arrive at $\lambda f(\lambda) = |\lambda|^2 c$.

Since $|\lambda|^2$ is real number hence $\lambda f(\lambda)$ is a pure imaginary number.

Theorem(8)

Let $A \in B(H)$ be a pseudonormal operator and Let f be analytic function defined on a neighborhood B_r of zero such that ||A|| < r, r > 0

If $\sigma_p(A)$ contains a simple closed contour then

1-f(A)∈Range(N_{AA}) if and only if f(x)=cx , c ∈ iR .

2- $f(A) \in Range(N_{AA})^*$ if and only if f=0

The proof theorem(8) is similar to the proof of theorem(6) and hence is omitted.

References

- Stampfli J.G., and Wadhwa B.L., **1976**.
 " An asymmetric Putnam-Fuglede theorem for dominant operators" Indiana Univ.math., J 25.359-365.
- 2. wadha B.L., , **1974**. "*M-hyponormal operators*". Duke math.J.41.655-660
- 3. Stampfli J.G., **1965**. "*Hyponormal operators and spectral Density*", Trans , Amer. Math Soc, 117.469-476.
- 4. RTOO C. S., **1998**. "some class of operators" Math. J, Toyamess univ., 21.147-152
- Naji , Sadiq,,2000, "Some generalizations of hyponnormal operators" M.Sc, Thesis. College of science ,University of Baghdad
- 6. Stampfli J.G., **1972**." *Derivations on B(H)*" Illinois.J.Math.17.518-524.
- 7. P. Semrl, **1990**."*On Jordon*- Derivations and an Application*",Colloq. Math,59.241-151.
- Al-kabbani ,Amina Rasim ,1999." on the range of Jordan *-derivation" M.Sc, Thesis. College of science ,University of Baghdad
- 9. Halmos, P.R., **1982**. "A Hilbert *space problem Book*" springer- verlag New York.