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Abstract  
     The main goal of this paper is to study applications of the fractional calculus 

techniques for a certain subclass of multivalent analytic functions on Hilbert Space. 

Also, we obtain the coefficient estimates, extreme points, convex combination and 

hadamard product. 

 

Keywords: Multivalent functions, Fractional calculus, Extreme points, Convex 

combination, Hilbert Space, Hadamard product.    

 

 المعرفة حول فضاء هلبرتبعض الخصائص الهندسية للدالة المتعددة التكافؤ 
 

 *2، خولة عبدالحسين الزبيدي1محمد هادي لفته
 .والاقتصاد، جامعة سومر، الرفاعي، ذي قار، العراققسم الاحصاء، كلية الادارة 1

 .قسم الهندسة الميكانيكية، كلية الهندسية، جامعة بغداد، بغداد، العراق 2
 

 الخلاصة
لصنف جزئي من الدوال التحليلية  الكسري تفاضلتطبيقات الهذا البحث هو دراسة  الهدف الرئيسي من      

، التركيب المتعددة التكافؤ حول فضاء هلبرت. كذلك، نجن حصلنا على تقديرات المعاملات، النقاط الحرجة
  المحدب وضرب هادمرد )ضرب الالتواء(.

 
1- Introduction:  

     Let        represents a class of functions as below: 

        ∑    
 

 

     

               {     }                                            

which are analytic and multivalent in the open unit disk   {    | |   }. 

Let        represents a subclass 0f        contains functions of the form:  

        ∑    
 

 

     

                    {     }                                 

A function                                           𝛿   𝛿     if it satisfies the condition:  

  {
      

    
}  𝛿 (   )   

and is said to be convex of order 𝛿   𝛿     if it satisfies the condition: 
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  {  
       

     
}  𝛿 (   )   

Denote by   
       and        , the classes of Multivalent starlike and convex functions of order δ, 

respectively, which were introduced and studied by Owa [1]. It is known that (see [2] and [1])    

       𝛿                 
      

 
   

    𝛿       

The classes   
                             were studied by Owa [3].        

Let   be a complex  ilbert Space. Using Ʈ as a linear operator on Ή. For a complex analytic   on the 

unit disk  ,       is represented as operator know by the usual Riesz-Dunford integral [4]  

     
 

   
∫                   
 

 

where   is the identity operator on  ,   is a positively oriented simple closed rectifiable contour lying 

in   and containing the spectrum α    of  Ʈ in its interior domain [5]. Also      can be defined by the 

series  

     ∑
       

  
   

 

   

 

which converges in the norm topology [6].  
Definition (1.1) [7]:  

     The fractional integral operator 0f order ζ       is known by 

  
  
     

 

    
∫

       

              
 

 
  

where   is analytic function in a simple connected region of ᵶ - plane containing the origin.  

Definition (1.2) [7]: 

      The fractional derivative for operator of order ζ         is defined by 

  
 
     

 

      

 

  
∫

         

      
  

 

 

    

where   is analytic in a simply connected region of the ᵶ - plane containing the origin.  

For         , from Definitions (1.1) and (1.2) by applying a simple calculation, we get 

  
  
     

      

        
     ∑

      

        
   

                                        

 

     

 

and 

  
 
     

      

        
     ∑

      

        
   

                                        

 

     

 

 

Definition (1.3): 

      A function          is defined in the class                 iff satisfies the inequality: 

‖                       ‖  ϑ‖      (           )               ‖            

where           
 

 
       and for all operator   with ‖ ‖    and   ∅ (∅ denote the 

zero operator on  ). 
The operators on Hilbert Space were considered by Xiaopei [8], Joshi [9], Chrakim et al. [10], Ghanim 

and Darus [11], Selvaraj et al. [7] and Wanas [12]. 

2- Coefficient Estimates: 

In this section, we obtain coefficient estimates for the function   to be in the class                . 

Theorem(2.1): Let          be defined by (1.2). Then                   for all   ∅ iff  

∑      [                  ]                                                        
       

where           
 

 
           

The result is sharp for the function   given by   

        
            

     [                  ]
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 Proof:  Assume that the inequality (2.1) considered. Then, we have   

‖                       ‖   ‖      (           )               ‖ 

 ‖ ∑              
 

 

     

‖ 

  ‖              ∑      [            ]   
 

 

     

‖ 

 ∑             ‖ ‖
              ‖ ‖ 

 

     

 ∑       [            ]  ‖ ‖
 

 

     

 

                         ∑      [                  ]                     
      

Hence                        

To show the converse, assume that                  . Therefore  

‖          (           )‖   ‖      (           )               ‖, 

gives  

‖ ∑              
 

 

     

‖ 

                           ‖              ∑      [            ]   
  

     ‖.  

Setting             in the a above inequality, we get  
∑              

  
     

              ∑      [            ]   
  

     
                                                                                             

   
By taking (2.3) with     , we obtain   

∑             

 

     

 

              ∑       [            ]  

 

     

 

or 

∑      [                  ]                         

 

     

 

which is the property is proved. 

Corollary (2.1): If                  , then   

   
            

     [                  ]
                                           

3- Extreme Points: 

We obtain here an extreme points of the class                . 

Theorem (3.1): Let          and          
            

     [                  ]
              

Then                   if and only if can be expressed in the form:   

        
  ∑        

 

     

                                                                

Where                   and     ∑         
      

Proof: Suppose that   is expressed in the form (3.1). Then, we have  
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  ∑   [ 

  
            

     [                  ]
  ]

 

     

 

    ∑   
            

     [                  ]
      

 

     

 

Hence 

∑
     [                  ]

            
   

            

     [                  ]

 

     

 

 ∑             

 

     

 

Then                      

Conversely, suppose that                  , we may set 

   
     [                  ]

            
       

where an is given by (2.4). Then 

        ∑    
 

 

     

    ∑   
            

     [                  ]
  

 

     

 

                     ∑ (        )   (  ∑   
 
     )   ∑        

 
     

 
      

    
  ∑            

 

     

 

This completes the proof of the theorem. 

4- Convex Combination:  

Theorem (4.1): The class                 is closed under convex combinations. 

Proof: For          let                   , where    is given by 

         ∑      
     

 

     

 

Then by (2.1), we have  

∑      [                  ]                                                                   
       

For ∑             
   , the convex combination of    may be written as 

∑           ∑ (∑  

 

   

    )      

 

     

 

   

 

Thus, by (4.1), we get 

∑      [                  ] (∑  

 

   

    )

 

     

 

 ∑  

 

   

( ∑      [                  ]    

 

     

) 

 ∑  

 

   

(            )                

Therefore 

∑                            

 

   

 

Corollary (4.1): The class                 is a convex set.  
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5- Applications of the Fractional Calculus: 

Theorem (5.1): If                  , then  

‖  
  

    ‖  
      

        
‖ ‖   [  

                            

                       [                ]
‖ ‖ ]            

and 

‖  
  

    ‖  
      

        
‖ ‖   [  

                            

                       [                ]
‖ ‖ ]              

For the function   , the result is sharp as follows 

        
            

       [                ]
                           

Proof:  Let                  . By (1.3), we have  

        

      
     

  
        ∑

              

              
   

                                 

 

     

 

Setting 

Ψ      
              

              
                 

we get  

        

      
     

  
        ∑ Ψ        

      

 

     

 

Since for Ψ       Ψ is a decreasing function, then we have   

  Ψ      Ψ        
                

                
                              

Now, by the application of Theorem (2.1) and (5.4), we obtain    

‖
        

      
     

  
    ‖  ‖ ‖  ∑ Ψ       ‖ ‖

   

 

     

 

 ‖ ‖  Ψ       ‖ ‖   ∑   

 

     

 

 ‖ ‖  
                            

                       [                ]
‖ ‖      

which gives (5.1) Similarly, we also have also have 

‖
        

      
     

  
    ‖  ‖ ‖  ∑ Ψ       ‖ ‖

   

 

     

 

 ‖ ‖  Ψ       ‖ ‖   ∑   

 

     

 

                                            ‖ ‖  
                            

                       [                ]
‖ ‖        

which gives (5.2). 

By taking ζ    in Theorem (5.1), we obtain the following corollary: 

Corollary (5.1): If                  , then 

‖∫         
 

 

‖  
‖ ‖   

   
[  

             

          [                ]
‖ ‖ ] 

and 

‖∫         
 

 

‖  
‖ ‖   

   
[  

             

          [                ]
‖ ‖ ]    

Proof: By Definition (1.1) and Theorem (5.1) for    , we have   
  

     ∫         
 

 
, the result 

is true. 
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Theorem (5.2): If                  , then  

‖  
 
    ‖  

      

        
‖ ‖   [  

                            

                       [                ]
‖ ‖ ]            

 and 

‖  
 
    ‖  

      

        
‖ ‖   [  

                            

                       [                ]
‖ ‖ ]            

The result is sharp for the function   given by (5.3). 

Proof: Let                  . By (1.4), we have  

        

      
    

 
        ∑

              

              
   

 

 

     

 

                        ∑ ℳ        
   

      

where  

ℳ      
              

              
                

Since for       ℳ is a decreasing function, thus we have  

  ℳ      ℳ        
                

                
     

 Also, by using Theorem (2.1), we get  

∑    
            

       [                ]
    

 

     

 

 Thus 

‖
        

      
    

 
    ‖  ‖ ‖  ∑ Ψ       ‖ ‖

   

 

     

 

 ‖ ‖  ℳ       ‖ ‖   ∑   

 

     

 

                                   ‖ ‖  
                            

                       [                ]
‖ ‖       

Then 

‖  
 
    ‖  

      

        
‖ ‖   [ 

 
                            

                       [                ]
‖ ‖ ]  

and by the same way, we obtain 

‖  
 
    ‖  

      

        
‖ ‖   [ 

 
                            

                       [                ]
‖ ‖ ]    

6- Hadamard product 

     Let the function              be defined by    

         ∑      
 

 

     

        (       )                                            

     The modified Hadamard product of       and       is defined by    

              ∑          
 

 

     

             

Theorem(6.1): Let the function              be in the class                . Then 

                           , where  
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     [                  ]                     
  

The result is sharp for the functions               )    given by   

         
            

     [                  ]
                                 

Proof: Employing the technique used earlier by Atshan and Buti [31], we need to find the largest   

such that  

∑
     [                  ]

            

 

     

            

Since                              , we readily see that    

∑
     [                  ]

            
    

 

     

    

and 

∑
     [                  ]

            

 

     

        

By the Cauchy-Schwarz inequality, we have 

∑
     [                  ]

            
√        

 

     

                            

Thus it is sufficient to show that  
     [                  ]

            
          

     [                  ]

            
√         

or equivalently, that   

√         
 [                  ]

 [                  ]
  

Hence, in the right of inequality (6.3), it is sufficient to prove that 
            

     [                  ]
 

 [                  ]

 [                  ]
                          

which implies  

  
                       

     [                  ]                     
  

Theorem (6.2): Let the functions               defined by (6.1) be in the class                . 

Then the function   

        ∑ (    
      

 )

 

     

   

belong to the class        𝛿         where  

𝛿  
                        

     [                  ]                      
. 

The result is sharp for the function            ) given by    

         
            

     [                  ]
                                  

Proof: By using Theorem (2.1), we obtain   

∑ [
     [                  ]

            
]

 

    
 

 

     

 [ ∑
     [                  ]

            
    
 

 

     

]

 

                                            

and  
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∑ [
     [                  ]

            
]

 

    
 

 

     

 [ ∑
     [                  ]

            
    
 

 

     

]

 

                                            

It follows from (6.6) and (6.7) that   

∑
 

 
[
     [                  ]

            
]

 

(    
      

 )

 

     

    

Therefore, we need to find the largest 𝛿 such that  

     [𝛿                 ]

𝛿           
  

 

 
[
     [                  ]

            
]

 

  

That is  

𝛿  
                        

     [                  ]                      
. 
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