
Abdulla Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 212-219

 212

Iraqi Journal of Science

IMAGE SECURITY USING INTRA-FILE SECURITY

Sura N. Abdulla

Department of Computer Science, College of Science, University of Baghdad. Baghdad-Iraq.

Abstract

 Typical image cryptographic systems provide security by encrypting entire
image. This has the advantage of simplicity, but does not allow for fine-grained
protection of data within very large image files, which is very important in some
applications where some but not all the image is sensitive or classified.
In this paper, a new method is proposed for securing parts of the image (i.e. sensitive
information). The proposed method combines the Intra-File security, image
inpainting and cryptography techniques to secure the sensitive parts of an image and
leave the rest of the image without any changes, further more, it allows multiple
levels of security for the same image without the need to have more than one copy
of that image. Experimental results of the proposed method provides better security
than the classical methods.

 الخلاصة
و , إن الطرق التقليدية المستخدمة لتشفير الصور تزودنا بالحماية لهذه الـصور عـن طريـق تـشفيرها كاملـة

هذه الطرق تجعل عملية التـشفير تكـون سـهلة لكنهـا لا تـسمح بتلبيـة بعـض المتطلبـات للمـستخدمين التـي تحتـاج
الـصورة بـدون تـشفير خـصوصا إذا كانـت الـصورة لحماية بعض المعلومات الموجودة في الـصورة مـع تـرك بـاقي

 .كبيرة جدا والمعلومات التي نحتاج لحمايتها صغيرة جدا مقارنة بحجم الصورة
يقدم هذا البحث طريقة جديدة لإخفاء أجزاء من الصورة ضـمن نفـس الملـف الـذي يحـوي الـصورة الأصـلية حيـث

 لغرض إخفـاء تلـك الأجـزاء واسـتخدمنا كـذلك Intra-File Securityاستخدمنا طريقة معروفة للحماية تسمى
 لغرض تعويض الأجزاء المخفية من الصورة بحيث تبدو الـصورة للنـاظر لهـا Inpaintingالطريقة المسماة

كذلك استعنا بالطرق المعروفـة فـي التـشفير لغـرض تـشفير الأجـزاء المخفيـة . متكاملة ولا يوجد فيها شيء ناقص
 . ها في نفس الملفمن الصورة قبل إخفائ

أوضحت نتيجة تجربة هذه الطريقة إنها توفر حماية و أمنيـة جيـدة مقارنـة بـالطرق التقليديـة المـستخدمة لحمايـة
 .الصور

Introduction
 During this time when the Internet provides
essential communication between tens of
millions of people and is being increasingly used
as a tool for commerce, security becomes a
tremendously important issue to deal with.
A secure system should still permit authorized
user to carry out legitimate and useful tasks. One
might be able to secure a computer beyond
misuse using extreme measures:- "The only
truly secure system is one that is powered off,
cast in a block of concrete and sealed in a lead-
lined room with armed guards and even then we

may have doubts" [1]. According to that, a full
secured system is something nearly impossible
to exist. Instead, we have some methods that can
be used to secure the sensitive information.
Computer images may contain large amount of
information that users often want to keep it
confidential and secret such that no body
(unauthorized users) can spy it. This information
may include technique, commercial, military
zones, personal and much more. However,
unauthorized users can act in two different
ways:- passive and active intruders. Passive
intruders just want to view the image which they

Abdulla Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 212-219

are not authorized to view it. On the other hand,
active intruders want to make unauthorized
changes to those images [2].
Most of the personal computers today use
Windows Operating System. However,
Windows does not provide any security level in
the files stored on the hard or floppy disk. Files
contents can be read, deleted, copied, exchanged
and stolen very easily [3].
In order to protect images from unauthorized
users we need to secure them against those
users. Traditionally, image security uses an all-
or-nothing approach (all of an image is
encrypted identically). This approach is
sufficient in situations where an image must be
viewed in its entirety to make sense for a user
application. However, there are many cases
where a user should only have view to part of
the image and the rest of it must be hidden from
that user. For example, a personal picture stored
in a personal computer, that can be accessed by
more than one user, may contain sensitive parts
that the user wants to hide it from all or some of
the other users for a personal purposes. Other
example include a satellite map of a region
containing military zones, a specification for a
vehicle with sensitive information. Users that
desire different levels of security must use
different copies of that image, complicating
access for all users, and using storage space in
such an inefficient way specially when we have
hundreds of images to be stored.
In some applications, it is relevant to hide
content of a message when it enters an insecure
channel. Cryptography, steganography and
operating system techniques are methods used to
protect files from the intruders [2].
Cryptography is the art or science of keeping
messages secret and ensuring that messages
cannot be easily read or modified by
unauthorized users [3]. The initial message
prepared by the sender is then converted into
ciphertext prior to transmission. The process of
converting plaintext into ciphertext is called
Encryption. The process of recovering plaintext
from ciphertext is called Decryption [4][5][6]
(see Figure 1).

This paper is organized as follows: Section 2
illustrates digital image inpainting, Section 3
illustrates Intra-File Security, Section 4 descries
the proposed algorithm, Section 5 is for the
results, and Section 6 is for the conclusions.

Inpainting
The restoration of digital images can be carried
out using two salient approaches [7]:
1- Image inpainting techniques for filling in

small image gabs.
2- Texture synthesis algorithms for generating

large images regions from sample textures.
Image inpainting [8] [9] is the process of filling
in missing data in a designated region of a still
or video image, it is a practice that predates the
age of computers. Image inpainting is a
technique used by art museum crafts men to fill
in parts of a painting which have decayed or
been damaged over the course of many years. It
is called inpainting as a literal terms for the
process of painting in holes or cracks. Digital
inpainting refers to inpainting of digitized
images with computer support[10]. The notion
of digital inpainting was first introduced in the
year 2000 by the Bertalmio-Sapiro-Caselles-
Ballester paper [9]. Digital image inpainting has
received attention over the few years, because of
the many applications that is in image
processing, including removal of scratches,
objects, text or logos from digital images to re-
touching damaged paintings and photographs [7]
[9], it can also be used for airbrushing to
remove unwanted image details[10].
The problem in inpainting is passed as follows:
given an area to be inpainted, filling in the
missing areas or modifying the damaged ones in
a non-detectable way for an observer not
familiar with the original images[7]; in other
words, the problem of local inpainting
is[9][11][12]: let Io be the original image and I
be the inpainted image given a region to be
inpainted Ω in Io and its boundary ∂Ω, we must
synthesize pixel values from the boundary
inwards, using neighborhood pixel information
to continue the inpainting process.
The following pseudo-code describes the
general solution to the problem:
1- Specify the region to be inpainted Ω.
2- Compute the boundary ∂Ω of the region Ω.
3- Initialize Ω by clearing existing color

information.
4- Repeat for all pixels p(x,y) in Ω:

4.1- Inpaint p(x,y) in Ω based on information
from its surrounding pixels.

Figure (1): The encryption/ decryption process

 213

Abdulla Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 212-219

We assume a prior information about the
probability distribution of the relation between a
pixel value and its neighborhood, which will
help fill in a pixel lying on the hole boundary.
On the other hand, texture synthesis accepts a
given sample texture and creates an output
image which can have arbitrary dimensions, but
which retains the texture properties derived from
the original sample[7]. We can think of the
texture synthesis problem, which requires an
input texture, as reducing to the inpainting
problem if we assume that the sample or input
texture which it attempts to replicate can be
found in the same image where the region to be
synthesized lies[7].

Intra-File Security (IFS)
 Cryptographic file systems typically provide
security by encryption entire files or directories.
This has the advantages of simplicity and it is
sufficient in situations where a file must be
accessed in its entirety to make sense for a user
or application, but it does not allow for fine-
grained protection of data within very large
files. This is not an issue in most generated-
purpose systems, but can be very important in
scientific applications where some but not all of
the entire output data is sensitive or classified.
However, there are many applications that
would benefit from the ability to encrypt data in
smaller pieces using different keys to permit
parts of a file to be read and write by different
groups of users, and there are many cases where
a user should only have access to some of the
data in a file such as a large file used for
scientific modeling might contain mostly
unclassified information with some sections of
classified data. Using old techniques, user that
desire different levels of security must use
different file, which means that we should have
a secured file for every group of users, and that
yields to complicating access for all users beside
the large storage place that is taken for storing
all the secured files.

Using Intra-File encryption approach gives us
the ability to use common cryptographic
techniques to secure any arbitrary-sized region
of data within a file, even if the region is
logically noncontiguous[13][2], it allows mixing
data of different sensitivity in a single file. This
benefits users by permitting related data
belonging to a single file to be kept together
rather than separating data of different security
needs. IFS allows users to encrypt extents of
files independently from other extents, so that a
single file may contain one or more secure
regions. A file system incorporating IFS
transparently handles most operations, such as
automatic decryption and key management. The
result is a file system with little extra
programming or runtime overhead for the added
functionality [13].

Figure (2): local inpainting.

IFS uses additional metadata to maintain
information about secure segments, allowing
blocks of a file to be encrypted and decrypted
individually on the client.
IFS allows encryption to be applied to segments
as small as a byte or as large as an entire file,
multiple encrypted segments need not be
logically contiguous with in the file. In an IFS
file, encrypted data is stored logically in-place,
and occupied the physical file blocks that would
have contained the unencrypted data [13]. To
support efficient random file access, we
independently encrypt data from each logical
file block, so there is no dependence on
information from other blocks.

Figure (3): A single logical file address space
broken into secure and insecure regions.

Consider the file shown in Figure 3, which
contains a non-contiguous region that must be
kept secure, the region spans are entire logical
block (L1), and two partial blocks (L2 and L3),
this region is not independently encryptable
using standard techniques. With IFS, this non-
contiguous region of the file can be encrypted
independently and made available only to
appropriate users. Furthermore, because the

 214

Abdulla Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 212-219

encrypted data is left in place, all programs
written to work with the full data set can still
function properly. All regions of the data
encrypted and unencrypted a like, will still be
readable except that the encrypted regions will
not contain the secured data values but will
contain apparently random values [13].

Figure (4): A 4 KB block encrypted with intra-file
security and its associated security node (s-node).
Note that the last entry in the s-node has a
repeat count of 3, representing the three repeated
secure regions near the end of the file. The first of
the four regions must be represented separately
because its distance from the previous region is
larger than that of the following three regions.

By default, all data in the file assumed to be
unencrypted. In order to locate the secure data
within the file, and to find the encryption
parameters, each encrypted block requires a
description of the location of secure segments
and initialization vector information. In IFS, the
structure holding this data is a security node, as
shown in Figure 4. Notice that each security
node consists of four information: the Start
information which is relative to the start of the
previous secure region, or the start of the block
for the first region. The Length information
shows the length of the region in bytes. Some
times many secure regions are formed of
repeating patterns of data of varying levels of
security, so the table contain a shorthand way of
representing simple patterns of data of secure
regions that are a fixed length and fixed distance
apart. This is accomplished by specifying a
repetition Count associated with the offset and
length specified in the secure region
specification.
The last information in each node is S-group,
which store the information necessary to encrypt
and decrypt the secured data and includes key
information for the region as well as an
initialization vector (IV) – a number used to

seed the encryption algorithm when it operates
on the encrypted data in the block. The IV is a
function of the logical block number as well as
per-file values such as file identifier, that's why
it need not stored in the security-node because it
can be calculated at runtime. The IV is
necessary to ensure that encrypted regions with
the same data do not result in the same
ciphertext. We need also to store pointers to
keys in that security-node and avoid storing key
information in the security-node, and since we
have more than one key then we have more than
one security group, that's why we store S-group
identifier for each secure region, this identifier is
translated by the system into a key.
The security-node as depicted in Figure 4 is
simple to implement, but uses space inefficiently
[13]. Instead, security-nodes could be
compressed using any technique for
compressing small numbers.

The Proposed Algorithm
 The common requirement for hole filling
algorithms is that the region to be filled has to
be defined by the user. This is because the
definition of a hole or distortion in the image is
largely perceptual. It is impossible to
mathematically define what a hole in an image
is [7]. A fully automatically hole filling tool may
not just be unfeasible but also undesirable,
because in some cases, it is likely it remove
features of the image which are actually desired.
The user should have control over the selection
of the region after which the filling is entirely
automatic across the spectrum, of methods to fill
texture or inpainting[7].
In this section, we describe an algorithm that can
be used for securing different regions on one
image. The steps of the proposed algorithm can
simply be stated as follows:
Step 1: read the original image.
Step 2: repeat the following steps for each

desired sensitive region:
1- Select rectangular area starting at pixel

p(x1,y1) and ending at pixel p(x2,y2), this
area will be the desired region Ω.

2- Store each pixel p(x,y) from region Ω in
temporary matrix.

3- Change the colors of all pixels in region Ω
to be one color.

4- Inpaint the pixels of region Ω to fill-in the
gab that we made in the last step .

5- In the Intra-File table, store the following
information: the coordinates of region Ω, a
number representing the group of users

 215

Abdulla Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 212-219

allowed to view region Ω, and number of
pixels in this region.

Step 3: Store all temporary matrices in a one
dimensional vector.

Step 4: Store the new inpainted image in a BMP
file.

Step 5: Store the Intra-File table and the one
dimensional vector in the BMP file(at the
end of the new image).

Notice that, in step 2 we needed a rectangular
shape to be the region Ω, since this is the best
shape for our work because we only need to
store x1, y1, x2 and y2(which represents the top
left and the bottom right corners of the
rectangular region) to determine the boundary of
region Ω, that will give us the ability to retrieve
the original image later without the need for any
extra calculations.
For inpainting the selected region we used
algorithm called "Evaluation inpainting method"
which utilizes the search capabilities of
Evolutionary Algorithms (EA) for finding the
appropriate pixels to inpaint the selected region.
The algorithm automatically fills-in the selected
region Ω from the promising EA pixels around
that region. The region to be inpainted must be
selected by the user depending on his subjective
selection. The user indicates the region Ω in an
image Io, to be selected. This step creates a
mask that covers the selected region completely.
Suppose that p(x,y) represents a pixel in the
selected region Ω at coordinates x and y, and
Io (xo,yo) represents any pixel in the image Io
with the coordinates xo and yo excluding Ω.
Moreover, let us assume that there is a
rectangular region ∂Ω surrounds the masked
region Ω with some preselected width Bw. At
this point, the only user involvement to the
algorithm requirements is to mask the region Ω
to be inpainted. The algorithm is used iteratively
to fill-in the selected region in raster scan order,
from top to bottom and from left to right as
follows: for each pixel p(x,y) in Ω (starting from
the pixel in the top left corner of Ω), create
randomly an initial population consisting of six
groups of individuals selected from ∂Ω
region(as shown in Figure 5). The first and the
second groups of individuals are chosen from
the left- and right-sides of rectangular region
passing the horizontal line with the pixel p(x,y)
respectively. The third and forth groups of
individuals are chosen from top- and bottom-
sides of a rectangular region passing the vertical
line with p(x,y) to be inpainted. The reason for
these four groups selection can be traced back to

the fact that these regions may contain
promising solutions to the current pixel p(x,y) to
be inpainted. The fifth group is chosen randomly
from ∂Ω, depending on the boundary Ω. The
sixth group is been calculated from the
previously inpainted pixel. Then compute the
fitness value of each selected group, executing
and repeating calculations on the pixels of each
selected group to find the pixels with the best
fitness value. The last step is to update the value
of the current pixel p(x,y) inside he region Ω to
be filled with the fittest pixel from the selected
groups(This is a brief explanation for the EA
algorithm, for more details refer to reference
[12]). This algorithm works good with small
regions and with large regions too, which is
good for our work.

Figure (5): initialization procedure

We have to decide from the beginning the
groups of users allowed to view the image, each
group can view only parts of the image, and
choose encryption method for each users-group.
Users who are allowed to view the sensitive
parts of the image are grouped together in
separated groups, each group of users is given a
number (s-group) to be used later as an
identification to them, which means: group no.1
are allowed to view the first region Ω only,
group no.2 are allowed to view the second
region Ω only, and so on. Each users group will
have a different encryption method. The
complexity of that encryption method depends

 216

Abdulla Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 212-219

upon the degree of sensitivity or importance of
the corresponding hidden region Ω, if the hidden
region Ω is very sensitive region and it must be
very hard to be viewed by other users groups or
any unauthorized users, then the technique used
to encrypt it must be complex and hardly to be
broken by intruders. We need one encryption
method for each sensitive region, then the
number of encryption methods needed for one
image is equal to number of sensitive regions in
that image, which is equal to number of s-groups
that we had.
Each security node in our Intra-File table has the
following fields:

Field
name

purpose

Start_X The X axis of the top left corner of
region Ω.

Start_Y The Y axis of the top left corner of
region Ω.

End_X The X axis of the bottom right corner of
region Ω.

End_Y The Y axis of the bottom right corner of
region Ω.

length Number of pixels in the temporary
matrix of region Ω.

s_group Number represent the group of users
allowed to view region Ω, used also to
determine the encryption method for the
region.

Each security node in the Intra-File table
contains information about one hidden region Ω
in the original image file. We store this table at
the end of the inpainted image, in the same BMP
file.
we can't leave the encrypted regions in its
original place in the image, because any viewer
for that image will notice those regions
immediately, that's why we replace them with
inpainted regions, then we need to keep them in
one dimensional vector that holds all the
encrypted regions one after the other, and then
stored that vector after the Intra-File table.
Each software usually used to open BMP, reads
the header table first then displays the image
according to the information stored in those
tables, and since we stored the Intre-File table at
the end of the BMP file without changing those
fields then any software opens that BMP file
will ignore the extra information that we added
and the user will never notice the hidden
information.

Results
 In Figure 6 we show the original image,
image with selected regions for hiding them, and
the resulted image that contains the inpainted
image with the hidden Intra-File and the one
dimensional vector.
Using the proposed algorithm for hiding only
the sensitive parts of an image will give a good
security for the desired image according to the
following:
1- When an intruder views the secured image he

will see an ordinary picture without any gabs
in it, each hidden part is inpainted in such
away that makes it hard to determine which
parts of the image are inpainted.

2- The size of the secured image file is an
ordinary size, it does not bring any
suspicions because its not a large size that
can be noticed by any intruder.

3- The original image file is hidden no one can
reach it, only the secured image file is
available for every body. Hence, no one can
have the ability to make a comparison
between the sizes of the two image files,
which means that no one can have the ability
to notice the little change in the size of the
secured image file.

4- Using the available software (such as
Photoshop) to view the secured image will
show only the secured inpainted image
without giving any notice or hint about the
hidden data at the end of the file, because it
depends on the information stored in the
BMP file header to determine the dimensions
of the image. The proposed algorithm stores
the hidden data at the end of the new BMP
file and uses the header of the original image
to be a header for the new secured image,
which means that the secured image will
have the same dimensions of the original
image .

5- Reading data from a BMP file needs a
special care [14][15], it needs a previous
knowledge about how that data is stored
otherwise the information read from that file
will be all wrong and worthless.

6- The hidden information is stored at the end
of the file as a sequence of numbers, a
sequence of encrypted data where several
encryption methods were used, one for each
group of users. Only the authorized group of
users have the ability to find and decrypt the
information that corresponds to the region
which they have its decryption key to view it.

 217

Abdulla Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 212-219

Figure (6): Images before and after using Image Security Using Intra-File Security

 218

Abdulla Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 212-219

 219

Conclusions
 In this paper, we had introduced a new
method that uses Intra-File tables for hiding
sensitive parts of images inside the same image
file. If any unauthorized user try to open the
secured image using the available software (e.g.
windows paint software, ACDsee software,
Photoshop software, …) he will get the
inpainted image only without noticing that there
are hidden information after that image and that
he needs a special program to reach the hidden
Intra-File table and the secured parts of that
image.

References
1. Wikipedia , February 2007, "computer

security", available at:
http://en.wikipedia.org/wiki/computer_securi
ty/

2. Al-Barak A., 2004, "Intra-File Security
System", A thesis submitted to Computer
Science Department, College of Science,
University of Baghdad.

3. Rafal Swiecki, 2004, "Introduction to
cryptography-principles and systems:
principles of cryptography", available at:
http://www.minelinks.com/supercode/index.
html

4. Oli Cooper, 2001, "An introduction to
Cryptography" , available at:
http://www.cs.bris.ac.uk/~cooper/cryptograp
hy/crypto.html

5. Mare Van Droogenbroeck and Raphael
Benedett , September 2002 ,"techniques for a
selective encryption of uncompressed and
compressed imager" , ACIVS Advanced
Concepts for intelligent Vision Systems,
Ghent, Belgium, pages 90-97.

6. Gary C. Kessler, (February 2006), "An
Overview of Cryptography", available at:
http://mio.ece.uic.edu/~papers/WWW/crypto
graphy.html .

7. Nined Pradhan , 2004 , "Digital Image
Restoration Techniques and Automation",
available at : www.ces.clemson.edu
/~stb/ece847/fall2004/projects/proj06.pdf

8. Bertalimo M., Bertozzi A.L., Sapiro G.,
December 2001 , "Navier-Stockes, Fluid
Dynamics and Image and Vidio Inpainting" ,
. Proc. IEEE Computer Vision and Pattern
Recognition (CVPR'01) , Hawaii.

9. Bartimio M., Sapiro G., Ballester C. and
Caselles V., July 2000, "Image Inpainting", "
Computer Graphics", SIGGRAPH 2000,pp.
417-424.

10. Harald Grossauer , "Digital Inpainting" .
Department of Computer Science. University
Innsbruck, A-6020 Innsbruck, Aistria.
Available at:
http://www.it.lut.filmat/EcmiNL/ecmi34/nod
e6.htm.

11. Olivera M. M., Bowen B., McKenna R.,
Chang Y., September 2001, "Fast Digital
Image Inpainting", Imaging and Image
Processing (VIIP 2001)

12. Al-Robaie Z., November 2005, "Inpainting
Problem Based on Evoltionary Algorithms",
A thesis submitted to Computer Science
Department, College of Science, University
of Baghdad..

13. Scott A. Banachowski , Z. N. J. Peterson, E.
L. Miller & Brandt S. A., "Intra-File Security
for a Distributed File System", available at:
ssrc.cse.edu/papers/banachousski-mss02.pdf

14. Stefan Hatzl, 1998, "The .bmp file format",
available at:
http://www.fortunecity.com/skyscraper/wind
ows/364 /bmpffrmt.html

15. UCCS, 2004, "Windows BMP Bitmap File
Format", available at: http://web.uccs
.edu/wbahn/ece1021/STATIC/REFERENCE
S/bmpfileformat.htm

http://en.wikipedia.org/wiki/computer_security/
http://en.wikipedia.org/wiki/computer_security/
http://www.minelinks.com/supercode/index.html
http://www.minelinks.com/supercode/index.html
http://www.cs.bris.ac.uk/%7Ecooper/cryptography/crypto.html
http://www.cs.bris.ac.uk/%7Ecooper/cryptography/crypto.html
http://mio.ece.uic.edu/%7Epapers/WWW/cryptography.html
http://mio.ece.uic.edu/%7Epapers/WWW/cryptography.html
http://www.ces.clemson.edu/
http://www.it.lut.filmat/EcmiNL/ecmi34/node6.htm
http://www.it.lut.filmat/EcmiNL/ecmi34/node6.htm
http://www.fortunecity.com/skyscraper/windows/364%20/bmpffrmt.html
http://www.fortunecity.com/skyscraper/windows/364%20/bmpffrmt.html
http://web.uccs/

