Iraqi Journal of Science

] ——
journai

Scence

ON THE GREEDY RIDGE FUNCTION NEURAL NETWORKS FOR
APPROXIMATION MULTIDIMENSIONAL FUNCTIONS

Reyadh S. Naoum and Najlaa M. Hussein*
Department of Mathematics, College of Science, University of Baghdad. Baghdad -Irag.
*Department of Computer Science, College of Science, University of Baghdad. Baghdad -Iraq.

Abstract

The aim of this paper is to approximate multidimensional functions

fe C(Rs) by developing a new type of Feedforward neural networks (FFNNs)

which we called it Greedy ridge function neural networks (GRGFNNs). Also, we
introduce a modification to the greedy algorithm which is used to train the greedy
ridge function neural networks. An error bound are introduced in Sobolev space.
Finally, a comparison was made between the three algorithms (modified greedy
algorithm, Backpropagation algorithm and the result in [1]).

gl @3 Aypumnl) AN alakaly S Sasia O sl cujis Joa
EuS At) g3 xa Aglial)

Layal

g5 iy £ eCRY) sl 500l Jdl i 50 Giadl 18 G (ot Cangl
Jisl @3 Laadl Gl il lgde Gk, (FFNNs) Gesill Lpasdl Gl 50 uaa
Caod) st Al (Greedy) suS deilsal diaed Les (L ((GRGFNNs) bl
Wi ol il .(Sobolev) Caghpus elimi i Laill aa s 5 . Zbeall Jgall 43 Tapamall SL20

gl 5 Backpropagation iue)lsas Ul 58 da))lsd) OB clajisal o Gl

Introduction

Approximations of multidimensional
function have been studied by many researchers
such as Burger and Neubauer [2], Ciesielski and
Sacha [3], Ellacott [4] and Pinkus [5]. Burger
and Neubauer, [2], they gave an error bound in
Sobolev space W™"(Q)for approximation
multidimensional functions by a linear
combination of ridge functions. Ciesielski and
Sacha, [3], focused on a development of a
constructive formula for the upper bound of L,
error approximation. Ellacott, [4], proved that a
semilinear (multilayer perceptron ~ MLP)
feedforward network with one hidden layer can
uniformly approximate any continuous function

([14] b st

in C(K) where K is a compact setin R* and s
is a positive integer. Pinkus, [5], presented an
algorithm for approximating the
multidimensional function by using feedforward
neural network.

The main result of this paper is the construction
of a new type of Feedforward neural networks
(greedy ridge function neural networks
GRGFNNs) to approximate multidimensional

functions f € C(IR") and modifies the greedy

algorithm to train greedy ridge function neural
networks. Also, a comparison was made
between the three algorithms (modified greedy
algorithm, Backpropagation algorithm and the
result in [1]), where the method in [1] use the

Naoum and Hussein

Radon Transform and ridge function neural
networks to approximate f € C(R").

Greedy Ridge Function Neural Networks

(GRGFNNs)
An artificial neural network is a
mathematical model of the human brain. In

many literatures, (6], [7], and [4], different types
of neural network models had been studied. In
this section we present a new type of
Feedforward Neural Networks (FFNNs) which
we called it greedy ridge function neural
networks (GRGFNNs). Our neural network
consists of a large number of computing units
(processing elements PEs) arranged
schematically in three layers as shown in figure
(1), i.e. mput layer, one hidden layer and output
layer, with s inputs, 7 hidden PEs and £ outputs
PEs.

Lput layer ~ Hidden layer

Qutput layer

Figure (1): Greedy Ridge Function Neural

Networks.

Each unit of the input layer can be connected to
each unit (PE) of the hidden layer, this
connection has been associated with a weight,
which is a real number. The weight attached to
the link from input unit j to unit 7 on the hidden

layer is denoted by Ww; (j=1 and
i=1,2,...,n). In a typical operation, each unit
on the input layer will contain a real number.

2,...,8

Let the /" input unit contain the real number x .

Then unit i on the hidden layer will receive from
unit j on the input layer the quantity w, x . The

total input that unit i receives from all the input

5
units is then Z W, X, i=1,2....,n.Unition

j=i
the hidden layer now processes this input with a
continuous ridge function @ (activation
function).

193

Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 192-203

Definition 2.1, [7]:
A ridge function is a multivariate function

h:R* -5 R of the form
h(x)=0(¢(x)) = (0 g)(x),
xeR’

where

¢$:R* >R and 0:R->R are

continuous functions.

Since every continuous linear functional on R’
has the form,

px)=¢-x=& x5+ x5+ + 8 X,

&, x € R*. Then a ridge function on R * has
the form A(x)=6(¢ - x), [7].
Then the output the

2 (i W, X, +b,

J=1

is real number

J:Q(ne;,.). This output is

then transmitted, with a weight a,, from the

unit 7 in the hidden layer to the output unit p in
the output layer. Each output unit implements a
linear combination of these ridge functions. The
output is then have the form

| =net, Za G(Zw x +b)

b pzlaza-ﬂag

()

The above formula can be generalized to neural
network with multiple hidden layers.

In our network we take the case when { = 1,
£ sl q n=18 and
x € [-4, 4] X [—4.4] We choose fitles

function and hyperbolic tangent function as the
activation functions. Also, we compute the error
by using the mean square error function, i.e.

E——(d*ﬂ.)

where d is the desired output (exact) and y is the
approximation output which came from our
network.

Function Approximation

Function approximation can be described as
follows: For a function f, known exactly or
approximately, find an approximation that has a
more simply computable form, where the error
of the approximation within a given error
tolerance. Often the function f is not known
exactly. For example, if the function comes

Naoum and Hussein

from a physical experiment, that is, only we
have a table of function values. In our paper we
will consider these properties of f which can
be use to serve our goal of understanding how
neural networks can be used to approximate an
arbitrary function f. A classical result, over
[a,b], is the well-known Weierstrass theorem

(Let f €Cla,b], let £>0. Then there exists
a polynomial p(x) for which ” f-p]L <e¢
for all x €[a, b]), [8].

Legendre and Gauss used polynomials to

approximate continuous functions over R .
Chebyshev developed the concept of best
uniform approximation. Series expansions (i.e.
Taylor series) have been utilized for many years
to approximate and compute the value of a
function in a neighborhood of the operating
point. Trigonometric polynomials are also
widely used as function approximators, but their
computation is a bit more involved, [6].

To explain how the artificial neural networks
(ANNSs) can be used to approximate real-valued

fe€CR"), we will consider a model called

Greedy ridge function neural networks
(GRGFNNs) with input layer, output layer and
one hidden layer, given in section (1). Thus our
neural network consists of a large number of
computing units (PEs) arranged schematically in
three layers, as in Figure (1). Then the total
output of the neural network has the form

n

Z a: gf [Z\: w.-..r x_! +b-‘}:.}:(x1’x2=""!x.v)'
=1 =1
(2)

It is known, [6], that any continuous function of
s variables can be approximated with arbitrary
precision on compact set by a function given in
equation (2). Thus, by suitable adjusting the

parameters », b,, a, and W,

approximately any desired
GRGFNNS just described above.
Till now, the best achievable approximation
accuracy (rate of convergence) for
approximating s-variable function with d

we can reproduce

output with

continuous derivatives is O(n 6}’() [7]. Thus
we note that for a given error approximation the
number of parameters n. number of basis
functions. exponentiaily increases with s (for a
fixed measure of “complexity” d). It implies that

Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 192-203

the number of samples needed for accurate
estimation of » parameters also grows
exponentially with dimensionality s. This result
constitutes the curse of dimensionality. It is
more accurate to view the ratio s/d as the

complexity index of the possible trade-off
between the smoothness and dimensionality,
which is the rate of convergence and the number
of samples needed, for training, for accurate
estimation that increases exponentially with the
complexity index. Thus fast rate of convergence
for high dimensional problems can be obtained,
in principle, by imposing stronger smoothness
constraints.

Mathematically, the neural network depending
upon its architecture can be used to approximate
any continuous fuiiction,. For example, if
s,n=>1 are integers, the output of a neural
network with one hidden layer comprising n
processing elements PEs (neurons), each
evaluating a nonlinear function 6, and receiving

an input vector x € IR’ can be expressed in the

form i a, 6, (w, -x+b,), where for
i=l

i=1,2,...,n, the weights w,e R’ and the

thresholds b, and the coefficients a, are real
numbers. In the sequel, the class of all such

output functions will be denoted by HQ”‘S,

which often refers to the output function of the

neural network.

The following questions arises, in a theoretical

study, when we approximate a function

feC(R*) by using an artificial neural
networks procedure, are the following:

1. Density, Given a continuous (real-valued)
function f on a compact subset K c R*
and a positive number ¢, is it possible to find
some integer n, and a network Ne[l,,

such that

| f(x)-R(x)|<e 3)

What are the necessary and sufficient
conditions should be putted on @ for the
property (3) to hold?
If it does not hold, what the type of functions
that can be approximated by this way?

2. Complexity, If we know a priori assumption
about the target function f, formulated

Naoum and Hussein

mathematically by the statement f ew,
for some function space W, can one obtain
necessary number of neurons, », in the neural
network of (2) in terms of £ ? How does the
choice of @ affect this bound?

3. Construction, How does one construct a
neural network with, theoretically, minimal
size that approximates any function from W
within a prescribed accuracy?

4. Limitations, Is there any advantage to be

gained by wusing a more complicated
architecture, such as networks with multiple
hidden layers; i.e., are there any limitations
on the networks with one hidden layer?

The density problem is perhaps the most widely
investigated problem. In the context of neural
networks, the works of Cybenko [9] and Hornik
et al. [10] are often cited. Hornik, et al. showed
that feedforward neural networks (FFNNs) are
universal approximators, the proof is based on
an extension of the Weierstrass theorem (the
Stone-Weierstrass theorem). The study of
Cybenko [9], was concerned with the use of
ridge functions and radial basis functions. In
[11], Mhaskar and Micchelli have formulated
necessary and sufficient conditions for the
function & (where @ is a ridge functions) so as
to achieve density. Also, they have given similar
conditions for the radial basis function networks.
From the point of view of function
approximation, the hidden units provide a set of
activation functions that constitute an arbitrary
“basis” for representing input patterns in the
space spanned by the hidden units.

However another important characteristic, of
approximating a function by the use of neural
network, is the study of complexity which
means how the error decreases with the number
of layers, number of neurons, and the dimension
of the input space. The importance of
Feedforward neural networks (FFNNs) for
function approximation was reinforced by the
work of Barron, [12]. He showed that the
asymptotic accuracy of the approximation with
Feedforward neural networks (FFNNs) is
approximately independent of the dimension of
the input space s, i.e. the order of the error

O(1/n) depends only on the number of

neurons. This is unlike approximation with
polynomizals, spline, trigonometric expansions
and series expansions with n terms, where the
error convergence rate is exponentially related
to the number of dimensions of the input, i.e. the

Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 192-203

order of the error O(1/n)** where s is the

dimension of the input space of the function f.
This means that Feedforward neural networks
(FFNNs) become much more efficient, for

approximating / € C(IR*) in high dimensional

space, than using polynomials, spline,
trigonometric expansions and series expansions.

Greedy Approximation

Greedy process is a technique which can be
used to approximate large classes of functions.
Cheney, [6], use such technique to produce a

sequence of functions, f,, which can be used to

approximate the original function f, where he
proved the following result.

1
<Cn?,

/-7,

“)

where n denotes the number of neurons (PEs),
in the proposed neural networks and C is a
constant depending on the function /' to be
approximated. However, Cheney [6], in his
work does not apply the above result and its just
a theoretical results. Our numerical result, for
approximation of a function with two variables,
conform the above Cheney result.

The pay off for this nice convergence behavior
is the necessity to compute global minimum for
high-dimensional nonlinear optimization
problems (in particular for large ») in order to

obtain the approximating functions f, . In the

context of neural networks, the so-called
backpropagation algorithm is the most popular
approach to solve the arising optimization
problems (called training), mainly due to its
simple realization. But since the
backpropagation (BP) algorithm is a version of
the gradient method, steepest descent method, so
one cannot expect global convergence and this is
due to lack of losing the density property. Thus
Cheney result, [6], can not be used.

Moreover, the performance of such iterative
algorithms is limited by the inherent ili-
posedness of the training problem. Our
numerical results in section (6) conform such
conclusion and such, iterative, convergence is
very slow and our conclusion coincide with the
cenclusion given in Burger, [13].

Greedy process is an iterative algorithm which
can be used, also, to train neural networks and
such training algorithm basically depends on the

Naoum and Hussein

function property without the need of using the
derivatives of the function to be approximated,
also it can be implemented efficiently. This
iterative algorithm, greedy algorithm, is also
called projection pursuit or convex
approximation techniques. The main idea of
such algorithm is to increase the number of
nodes in the network, Figure (1), step by step by
one neuron (by wusing suitable convex
combination) and to optimize only over the
parameters of the new node, which yields a
sequence of low-dimensional optimization
problems. The original motivation for such

method is the possibility to maintain the
-1
convergence rate » ? with low computational

effort.

To give a detail analysis to the above algorithm,
we need the following definition and lemma
given in [6].

Definition 4.1, [7]
Let G be a subset of an inner product space H

with induced norm H . ” . Then the convex hull of

The closure of this set is denoted by ES(G).

Furthermore let the elements of the set G be
bounded in the norm, by a constant b, which
may be abbreviated as G < B(0, b).

G 1is the set

i=]

co(G)z{i e g:ncll g eG,q 20,20:, =1

1=l

Lemma 4.2, |7]

Let G be a subset of an inner product space
H, and let f be an element of H. In order that

feco(G) it is necessary and sufficient that
there exists a sequence {gn} in G and a
sequence {fn} with f, eco{g,,.-.,gn} for
each n, such that f, — f .

For further analysis we define the constant y as

v=inf swp(lg—vf-[r) ©
2 gels

This value is in some sense a measure for the
number of different elements of G that are
needed to represent /. If the norm of £ is close
to the bound » and therefore f is close to the

196

Iraqi Journal of Science, Vol 49, No.1, 2008, PP. 192-203

boundary of E(G) then the value of y will be

very small. In this case f can be represented by
few different elements of G, see Figure (2).

Figure (2): Interpretation of condition (5). The
objective function is the difference of the radius of
the two dashed circles. In this symmetric case the
infimum is attained for v lying in the center of G.

Nete that the value of y can be bounded from
above by b* — " f ”2 since 0 € H. In our paper

we combine the two results of Cheney, [6], and
Burger, [5], so that the constant y can be used to
provide an estimate for the rate of convex
approximation to the function /. The following
lemma in [14] is useful to illustrate the above
claim.

Lemma 4.3, [5]
Let G B(0,b), feco(G), heco(G)

and let y be defined as in equation (5). Then the
estimate

inf | £ -Mh-(1-M)g T f-hff +a-2)y
gels

holds for A €[0,1].

From the above lemma, the function f, which
is defined in the error bound (4) has the form
[, =Ah—(1-%)g. Now we shall present the

Greedy algorithm, as a result of above analysis.

1. The Greedy Algorithm:

Initialization:
Choose a constant M, such that M >y (as
defined in (5)).
Choose a positive sequence &, , tending to zero
that fulfills

ol
o

k 2

Choose a positive integer max.

Naoum and Hussein

Set f,=0.

Iteration:

For k:=1to max do

Find an element g, € G such that

2

<inf
geli

k-1 1|
”f_Tfk—l _;gkn

2
+ £,

1

Ba==8

k-1
/- k k

is satisfied and define f, as

gb-ly 1

A kgk‘

End For.
Note that in each step only one element of

G is chosen, the other components of f, are

fixed. Nevertheless with the greedy algorithm,
still, the rate of convergence is independent of
the dimension. Such claim can be justified by
using the following theorem which is given in

(5).

Theorem 4.4, [5]

Let the conditions of Lemma (4.3) be
satisfied. Then the approximating functions f,

generated by the above algorithm fulfill an error

estimate “ f=r “2 < %

The ridge function feedforward neural networks,
with one hidden layer of ridge functions f,, can

be represented as in section (3) by
.fn = Z ai a(wl X"f‘b._.),
i=l

where w, , i=1,2,...,n, is the connections

(weights). Hence for the above neural networks
we can write

[, = i a, O(x,w,).
i=l
(6)

In order to apply the above algorithm, using
equation (6). we consider the Hilbert space H

which is a Lebesgue space 7°(Q), where Q is

a (not necessarily bounded) domain in IR*, and
G be the set

197

Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 192-203

G, ={a®(x,w):|a|$b, weT }c I’ (Q),
where T is the compact set of parameters in
IR’ The set G, can be interpreted as the set of
all possible nodes of the neural networks. If the

function ® is scaled such that its L’ -norm is
bounded above by 1, uniformly in w, i.e.,

I | O(x, w)‘zdx <1

9]

forall weT .
)

then G, is bounded and G, < B(0,b6). For

simplicity, assuming equation (7), one can use

the bound b = b/sup " O(x, w)” for the
weT

Q)

factor a in G, . Observe that b can not be zero

because the set T is compact. The value of ¥,
given in equation (5), is now has the value

y=inf sup ("a@(x,w)—v"z—|if~—v|jl)

vel? |a|sb. weT

®)

The convex hull of the set G, is defined as

i

,co(G,,):{feLz(Q):f=Z

i=l
‘a,| <bweT,ne N }

the sign of the parameters @; is not important,

because the original set G, is symmetric.
Further the sum needs not to be equal to 5 but
can be smaller, because the zero function is an
element of G, . Note, that co(G,)contains all

functions having a representation of the form

z": a, ®(x,w,) and _[a@(x,w)dw.
]

i=1
Now we shall consider the Greedy algorithm for
training greedy ridge function neural networks
(GRGFNNS).

1.1 The Greedy Algorithmmn with Ridge
functions:

In this section we shall explain how the
greedy algorithm, using ridge functicns, can be

Naoum and Hussein

used to produce a sequence f, which
approximates f € C(R*).
Initialization:
Choose £ >0, say 107
Choose a constant M, such that

M > v (as defined in (8)), e.g. choose
M equal to M =%(b2 —"f”j) and
set M

apt
Choose a positive integer max.
Set f,=0.
Iteration:
For k:=1to Min(k
<

apt ?
I /= s j"(/Ic+1)

set f, == f,_, and go to the next

step of the iteration.
End If
Find parameters w, b and a such

=M,k =o.

apt

max) do

then

that

2
< M opt

| . &=1 1
Hf—T_ﬂ_I—;ag(wa'l'b)] X

and define f, as

k—1 1
So=—— fiyu——aé (wa + b).
k k
End for
5, (bias)
[O~ wal®
o M)
Inpus vecrer S ve(h)
x(thye? ST

W, (k)
)

synapuc l
weights i
]
v

Denvauve of activation
functon

Iragi Journal of Science, Vol. 49, No. 1, 2008, PP. 192-203

Check:
it | /-4l
go to end.
Else
Reduce M and repeat the iteration.

End If
End.

, <& then

Complexity

As we know, the Backpropagation training
algorithm depends on the derivative of the
activation function & and it's easy to be
computed if the activation function is logistic
function or hyperbolic tangent function. Cheney,
[6], in his work use the property that the
function @ has the derivative @', which can be
putted in term of . But this is not always true
that the derivative can be expressed in term of
the original function. The weakness of the above
analysis is that the norm defined in Hilbert space
which has been used does not include the
derivative of ¢ and thus we may loss the
completeness, or density, property. Thus we
consider the problem of approximating a

OeW™r(Q), W™ (Q)
denote the Sobolev spaces and Q is a (not

necessarily bounded) domain in R*. For
example, if @' cannot be putted in term of &
then we need to add a stage to the neural

network so that to handle the derivative as in
Figure (3).

function where

Sigmoid actvanon

fuscton 5(°) Neuron output

e Ngl#)

L.

® «

desired newron
outpu

k) Non huear ener

hd
‘ Weight update algorithm |
|

Figure (3): The Single ¢" Neuron in MLP with Sigmoid Activation

198

Naoum and Hussein

Definition 5.1, [1]
Let m be a non negative integer, p €[1,].

The Sobolev space W™”(Q) is the set of all
functions ve L, (Q) such that for each multi-
index o with Io: | < m, the o™ weak derivative
D v exists and D*ve L”(Q). The norm in
the space W™7(Q) is defined as

P
HD"va ,1Sp<wo
” v"w’” b= (!a|zsm LP(Q)J P
-
|ex|<m L)

When p=2, we writt H"(Q)=W"™*(Q).
Note that the Sobolev space H"(Q)
Hilbert space with the inner product

<uv>, = J’ > D u(x)D* v(x)dx

0 |cz |Sm
u,ve H"(Q).
Thus H™(Q) is a completion of the set of ali

real-valued functions f € C*(Q).

Now, the problem of approximating / can be
written in the form

is a

inf [/-,
)

where X is referred as a Sobolev spaces and
X, denotes the set of all functions of the form
(6), i.e.

X, ={g=i a0x,w):weTcl',aq GR}
i=]
(10)

Usually, the convergence rate of using g in
equation (9) if it exists (note that X, is not a
finite dimensional subspace of X) is arbitrarily
slow, since the approximation problem is
asymptotically ill-posed, i.e. arbitrarily small
errors in the observation can lead to arbitrarily
large errors in the approximation as # — o,
our numerical results in section (6) confirm such

i ()'ui}

Iraqi Journal of Science, Vol 49, No.1, 2008, PP. 192-203

observation, slow rate of convergence, and such
observation coincide with that given in [3].
However, it was shown in [4] that the set of
functions to which neural networks of the form
in equation (6) converge is just the closure of the
range of the integral operator

hio [h(w)O(x,w)dw .
T

To improve rates of convergence, or concord the
ill-posed approximation to f, usually one should
impose additional conditions on f. A natural
condition seems to be that /' is in the range of
the above operator, i.e.

f(x)= I h(w)O(x, w)dw .
T (11)

[t was shown in [16] that under this condition
the convergence rate

T
:?Xt:, ﬂ f_g ”L‘U(Q) = O(" 2)a
(12)

is obtained if © is a continuous function.

In [6], they improved the above error bound,
equation (12), by imposing additional
smoothness assumptions on the basis function ®

defined in H"(Q) as in the following theorem.

Moreover, they gave error bounds in W™ 7 (Q)

that depend on the dimension, r, of T and this is
the weakness of such approach. Also, they gave
a sufficient conditions on f so that condition in
equation (11) hold.

Theorem 5.2, [6]
Let X, be defined as in (10) with T R’
bounded and ® such that

| O(x,w)—0(x, u) [|
pe(0,1], ¢>0.
Moreover, let f e H"(Q) satisfy (11) with

HM (<) Sc“ w—"“p’

ke L”(T). Then the convergence rate is

inf
geXy

- 3 _l} _)‘r?
" I-8 ”H"”.rg . ()(?’f i
(£2)

Naoum and Hussein

Now, assume OeW™"(Q,Y)

with
Y = H*(T) or Y=C*(T), where k > % and

if we use the following norms

'
5 J' ——ofxw) I<p<e
ﬂ@’i;wwmw khigup
ol
ﬁﬁez::'%g;% L B

Then the following result hold.

Theorem 5.3, [6]
Let X, be defined as in (10) with T = R”

bounded and let @eW™”(Q,Y) with

Y =H*(T), or Y=CHT).

k> = 1
2
Moreover, let feW™7”(Q) satisfy (11) with
he IX(T) if Y=H"(T) and he I(T) if
Y=ct (T). Then the convergence rate is

inf
8e Xy

=
| f-g|,mpe=00""). (13)

We think the above result can be generalized if
the condition given in equation (11) has the
form

Fld

Jx)=% [h p (W)=

la|st T

7 O(x, w)dw,

T<k.
Then the convergence rate is

(k=1)
. TR
inf wm p gy =0

ge Xy

| f-g]|). (14)

The convergence rates, in equations (13) and
(14), decrease with increasing the dimension 1.
The above conjecture requires further study but.
from our numerical result in section (6), we feel
its true and is the best possible result, error

bound, when we use the space W™ (Q)).

200

Iraqi Journal of Science, Vol.49, No.1, 2008, PP. 192-203

Numerical Example

In this section we verify the above theoretical
results by considering a numerical example.
Let us consider the following two dimensional

function /:R* 5> R .

2=1(x,%,)=3(F-x Pexpl-x: ~(x,+1}|-10
(f Ly pL 2 z]_f)
sx‘,—xf 2}'31 X, =X, jexp[—(xﬁ])' 112].

A three dimensional plot of the function f for
—4<x,<4 and —-4<x,<4 is shown in
figure (4). A two dimensional problem is chosen

so that to explain how the steps of the algorithm
can be illustrated.

Z axis

x2 axis

x1 axis

Figure (4): The Function f(x,,x,).

The above algorithm (Greedy Algorithm with
Ridge Functions) was, numerically,
implemented by using MATLAB version (7.0).
Figure (5) shows the approximation to the
function f(x,,x,)and figure (6) shows a
comparison between the exact data of the
function z = f(x,,x,) and the approximation

data with £ =9, i.e. number of neurons, n=9,
in the hidden layer.

z value

Naoum and Hussein

Iraqi Journal of Science, Vol. 49, No.1, 2008, PP. 192-203

Figure (5): Approximation with # =9,

e —
I
|
of — Exact Data
| Approximate Data
4!
i
2t

10 200 250
Data Number
Figure (6): Comparison between exact data

and approximate data with 7 =9

Also, the GRGFNNs use the Backpropagation
algorithm with hyperbolic tangent function in
the hidden layer and pureline function in the
output layer. Figure (7) shows the

approximation to the function f(x,,x,)and
figure (8) shows a comparison between the exact
data of the function z= f(x,,x,) and the
approximation data with £ =9, i.e. number of
neurons, # =9, in the hidden layer.

z value

201

Figure (7): Approximation with 7 =9,

. , R |
| == Exact Data !
6 == Approximate Data]
| |
1 1
41
5
1
0
-2‘-]
| i
4}
! X R, SN N SR O
0 50 100 150 200 250 300
Data Number

fligure (8): Comparison between exact data
and

Figure (9) shows the approximation to the
function f(x,,X,) by using the method in [14]
and figure (10) shows a comparison between the
exact data of the function z = f(x,,x,) and the
approximation data with £ =18, i.e. number of
neurons, # =18, in the hidden layer.

Naoum and Hussein

Figure (9): Approximation with n =18,

8 T = — —
-
l Exact Data
BI Approximate Data

4r

|
!
2t
|
|

z value

0
-2}
4
=) RO RS ¥ | _— S —— —
0 50 100 150 200 250
Data Number
Figure (10) : Comparison between exact data
and approximate data with 7=18.
Conclusions

Our numerical results shows that
Backpropagation (BP) algorithm procedure
more accurate numerical approximation to f than
Greedy algorithm and the method in [1], but the
Greedy algorithm is faster and use less flops
than Backpropagation algorithm and the method
in [1] overcome the problem of dimesionality
which discussed in section (3). Also, if the
derivative of f can be putted in term of 7 and
the derivative of the sigmoidal function can be
putted in term of the sigmoidal function then the
Greedy algorithm, and its modifications, for
training greedy ridge function neural networks
(GRGFNNs) procedure almost the same
accurate as we use Backpropagation algorithm.
However, if we adiust the rate of convergence 7

300

202

Iraqi Journal of Science, Vol 49, No.1, 2008, PP. 192-203

in Backpropagation algorithm, then the BP
algorithm converge faster.

References

1. Naoum, R. S. and Hussein, N. M., 2006,
“Approximation of Multidimensional
Functions by Radon Ridge Feedforward
Neural Networks” Journal of AL-Nahrain
University_Science (JNUS), 9, 1, 100-107.

2. Burger, M. and Neubauer, A., 2001, “Error
Bounds for Approximation with Neural
Networks™ Journal —of Approximation
Theory, 112, 2, 235-250.

3. Ciesielski, K., Sacha, J. P. and Cios, K. J.,
2000, “Synthesis of feedforward networks in
supremum error bound” IEEE Transactions
on neural networks, 11, 6, 1213-1227.

4. Ellacot, S. W., 1994, “Aspects of the
numerical analysis of neural networks” Acta
Numerica, 145-202.

5. Pinkus, A., 1997, “dpproximation by ridge
Junctions™ surface fitting and multiresolution
methods,A. Le Méhauté, C. Rabut, and L.L.
Schumaker(eds.), Vanderbilt University
Press, Nashville, TN, 1-14.

6. Cheney, E. W. and Light, W. A., 2000, “4
Course in Approximation Theory” The
Brooks/Cole Publishing Company, USA.

7. Cherkassky, V. and Mulier, F., 1998,
“Learning From Data: Concepts, Theory,
and Methods” John Wiley and Sons, Inc.,
USA.

8. Atkinson, K. and Han, W. 2001,
“Theoretical ~ Numerical — Analysis: A
Functional Analysis Framework™ Springer-
Verlag, New York, Inc.

9. Cybenko, G., 1989, “dpproximation by
Superposition of Sigmoidal Functions”
Mathematics of Control, Signal and Systems,
2,303-314.

10.Hornik, K., Stinchcombe, M. and White, H.,
1989, “Multilayer Feedforward Networks
are Universal —Anprovimators” Nenral
Networks, 2, 359-366.

11.Mhaskar, H. N. and Micchelli, C. A., 1992,
“Approximation By Superposition of A
Sigmoidal ~ Function and Radial Basis

Functions”, Advances in Applied
Mathematics, 13, 350-373.
12.Barron, A. R., 1993, “Universal

Approximation Bounds For Superposition of
A Sigmoidal Function” 1EEE Transaction on
Information Theory, 39, 3, 930-945,.
13.Burger, M. and Engl, H. W., 2000, “Training
Neural Networks with Noisy Daia as an ill-

