

SOME RESULTS ON (σ,τ) -DERIVATION IN PRIME RINGS

Abdul-Ruhman Hameed and Kassim Abdul-Hameed

Department of Mathematics, College of Science, University of Baghdad. Baghdad -Iraq.

Abstract

Let R be a prime ring and $d: R \to R$ be a (σ, τ) -derivation of R. U be a left ideal of R which is semiprime as a ring. In this paper we proved that if d is a nonzero endomorphism on R, and $d(R) \subset Z(R)$, then R is commutative, and we show by an example the condition d is an endomorphism on R can not be excluded. Also, we proved the following.

(i) If $Ua \subset Z(R)$ (or $aU \subset Z(R)$), for $a \in R$), then a=0 or R is commutative.

(ii) If d is a nonzero on R such that $d(U)a \subset Z(R)$ (or $ad(U) \subset Z(R)$ for $a \in Z(R)$, then either

a=0 or $\sigma(U)+\tau(U)\subset Z(R)$.

(iii) If d is a nonzero homomorphism on U such that $d(U)a \subset Z(R)$ (or $ad(U) \subset Z(R)$) for

 $a \in R$, then a=0 or $\sigma(U)+\tau(U)\subset Z(R)$.

بعض النتائج على مشتقة - (٢,٥) في الحلقات الاولية

الخلاصة

لتكن R حلقة أولية ولتكن $R \leftarrow R$: $R \leftarrow R$: R مشتقة $R \leftarrow R$: R مثل R حلقة شبه اولية . في هذا البحث أثبتنا انه اذا كان R دالة متشاكلة غير صفرية على الحلقـ R , وأن R حلقة شبه اولية . في هذا البحث أثبتنا انه اذا كان R دالة متشاكلة على الحلقة R لا R يمكن الاستغناء عنه . أيضا أثبتنا النتائج التالية:

. أو $Z(R) \supset Z(R)$ او $Z(R) \supset U$ او $Z(R) \supset U$ الما $Z(R) \supset U$ او $Z(R) \supset U$

zاكل ($Z(R) \supset ad(U)$ او $Z(R) \supset d(U)$ اكل $Z(R) \supset d(U)$ الكل على الحلقة R على الحلقة على الحلقة على الحلقة العلى ال

 $Z(R) \supset \tau(U) + \sigma(U)$ او $Z(R) \supset Z(R)$ فانه أما

الكل $Z(R) \supset ad(U)$ و الحيث أن $Z(R) \supset d(U)a$ لكل على الكل غير صفرية على الكل على الكل كانت $Z(R) \supset ad(U)$ الكل الكل على الكل ع

 $Z(R) \supset \tau(U) + \sigma(U)$ أو O = a أو $Z(R) \ni a$

Introduction

Let $d: R \to R$ be an additive mapping. If $d(xy)=d(x)\sigma(y)+\tau(x)d(y)$ for all x, $y\in R$, then d is called a (σ,τ) -derivation of R,where $\sigma,\tau:R\to R$ be two mappings on R [1].

On the other hand we said that d is an endomorphism or anti-endomorphism respectively if d(xy)=d(x)d(y) or d(xy)=d(y)d(x) for all $x, y \in R$

Recall that a ring R is a prime if aRb=0, $a,b \in R$, implies that either a=0 or b=0[2].

Also, we recall that a ring R is a semi-prime if aRa=0, $a \in R$ implies that a=0[2].

Neset Aydin and Oznur Golbasi proved that if R is a prime ring and d is a (σ, τ) -derivation of R, where $\sigma, \tau: R \to R$ be two

 (σ,τ) -derivation of R, where $\sigma,\tau:R\to R$ be two automorphisms on R, see [3]. Then

(i) If d is an endomorphism on R, then d=0.

(ii)If d is an anti-endomorphism on R, then d=0.

(ii) If U is a nonzero left ideal of R which is a semiprime as a ring.If Ua=0(aU=0)

for $a \in R$, then a=0.

(iii) If U is a nonzero left ideal of R which is a semiprime as a ring such that

d(U)=0, then d=0.

So, we generalized some of above results. In this paper we considered R is a prime ring, U a left ideal of R and d is a (σ,τ) derivation of R, where $\sigma, \tau: R \to R$ be two automorphisms on R.

Also, we used the identities in this paper as follows: For all $x, y, z \in R$.

(i)
$$[xy,z] = x [y,z] + [x,z] y$$

 $[x,yz] = [x,y] z + z [x,z]$
(ii) $[xy,z]_{\sigma,\tau} = x [y, \sigma(z)] + [x,z]_{\sigma,\tau} y$
 $= x[y,z]_{\sigma,\tau} + [x,\tau(z)] y$

Results

Theorem (2.1)[2]

Let R be a prime ring. If d is a (σ,τ) - derivation of R which is an endomorphism on R, then d=0.

Remark (2.2)

We can not exclude the condition d is an endomorphism on R. So, the following example shows.

Example(2.3)

Let $R = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} , x, y, z, t \in Z, \text{ where } Z \text{ is the } \right\}$ number of integers be 2× 2 matrices with respect to the usual operation of addition and multiplication, then R is a prime ring, see[4].Let $\sigma, \tau: R \rightarrow R$ be automorphisms

$$\sigma \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & -y \\ -z & t \end{pmatrix}, \ \tau \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & -y \\ -z & t \end{pmatrix}.$$
Let $d: R \to R$, defined by
$$d \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 0 & -y \\ z & 0 \end{pmatrix}, \text{ is a } (\sigma, \tau)\text{-derivation of } \sigma$$

R but is not an endomorphism on R, so $d \neq 0$.

Remark(2.4)

From Theorem (2.1), if d is an antiendomorphism on R, then the previews example stay true.

To prove the first main theorem, we need the following Lemma.

Lemma(2.5)

Let R be a prime ring. If d is a nonzero (σ,τ) - derivation of R which endomorphism on R, then $d(R) \subset Z(R)$. proof

For all $x, y, r \in R$ we have $[d(xy),r] = [d(x) \sigma(y) + \tau(x)d(y),r]$ on the other hand [d(xy),r] = [d(x)d(y),r]. So, we have $[d(x)d(y),r] = [d(x) \sigma(y),r] + [\tau(x)d(y),r]$ [d(x)d(y),r] = d(x)[d(y),r] + [d(x),r]d(y) $=d(x)[\sigma(y),r]+[d(x),r]\sigma(y)+\tau(x)[d(y),r]$ +[$\tau(x),r$]d(y) for all $x,y,r \in R$ (1)

On the other hand

d(xy)=d(x) $\sigma(y)+\tau(x)d(y)=d(x)d(y)$, for all x, y $\in R$. Substituting xr for x in (1), we get $d(xr) \sigma(y) + \tau(xr)d(y) = d(xr)d(y), r \in R$ Since d and τ are homomorphism of R, we have $d(x)d(r) \sigma(y) + \tau(x) \tau(r)d(y) = d(x)d(r)d(y)$ Expanding the last equation, we have $d(x)d(r) \sigma(y) + \tau(x) \tau(r)d(y) = d(x)d(ry)$ $= d(x)d(r)\sigma(y)+d(x)\tau(r)d(y)$ or equivalently, $0 = d(x)\tau(r)d(y) - \tau(x) \tau(r)d(y)$ $=(d(x)-\tau(x))\tau(r)d(y).$ Since τ is an automorphism of R, we get $(d(x)-\tau(x))R d(y)=0$, for all $x,y\in R$. Since R is a prime ring, we conclude that $d(x)=\tau(x)$, for all $x \in R$ or d=0. Since d is a nonzero, so we have $d(x)=\tau(x)$. Then , from (1), we get $d(x) \left[\sigma(y), r \right] + \left[d(x), r \right] \sigma(y) = 0.$ So $[d(x)\sigma(y),r]=0$ for all $x, y, r \in R$. zx instead of x, $z \in R$, then $0=[d(zx)\sigma(y),r]=0$ for all $x,y,r,z\in R$ $0=[d(z) d(x)\sigma(y),r]$ $= d(z) [d(x)\sigma(y),r] + [d(z),r] d(x)\sigma(y)$ $= [d(z),r] d(x)\sigma(y)$, for all $x,y,r,z \in R$. Since $d(x)\sigma(y) \in Z(R)$, then $0=[d(z),r]Rd(x)\sigma(y)$, for all $x,y,r,z\in R$. Hence, $0=[d(R),R]Rd(R)\sigma(R)$. Since R is a prime ring and $d(R)\neq 0$, then we have $d(R) \subset Z(R)$.

Theorem(2.6)

Let R be a prime ring and let d be a nonzero (σ,τ) -derivation of R such that is endomorphism on R, then R is commutative.

Proof

By Lemma(2.5), we have $d(R) \subset Z(R)$. Therefore for all $x, y, r \in R$, we have $0=[d(xr),y]=[d(x)\sigma(r)+\tau(x)d(r),y]$

 $=[d(x)\sigma(r),y]+[\tau(x)d(r),y]$ $=d(x)[\sigma(r),y]+[d(x),y]\sigma(r)+\tau(x)[d(r),y]$ + $[\tau(x),y]d(r)$. Since d(R) in the centre of R, then we have $0=d(x)[\sigma(r),y] + [\tau(x),y]d(r)$, for all $x, y, r \in R$. By (2) from a proof of Lemma (2.5), we have $\tau = d$ on R, then $d(x)[\sigma(r),y] + [d(x),y]d(r) = 0$ for all $x, y, r \in R$. Also, we have $d(x)[\sigma(r),y]=0$. Therefore,

Remark(2.7)

By an Example(2.3), we can see from the above Theorem that the condition d is an endomorphism on R, can not excluded. Also, we generalized the following Lemma.

 $d(x)R[\sigma(r),y] = 0$, for all $x, y,r \in R$. So, we have

d(R) R [R,R]=0. By a primeness of R, and

 $d(R)\neq 0$, then R is commutative.

Lemma(2.8)[2]

Let R be a prime ring and U be a nonzero left ideal of R which is a semiprime as a ring. If Ua=0 (or aU=0) for $a \in R$, then a=0.

Theorem (2.9)

Let R be a prime ring and let nonzero left ideal of R which is a semiprime as a ring. If $Ua \subset Z(R)$ (or $aU \subset Z(R)$) for $a \in R$, then a=0 or R is commutative.

Proof

If $Ua\subset Z(R)$, then for $u\in U$, x, $r\in R$ 0=[xua,r]=x[ua,r]+[x,r]ua

=[x,r]ua .Take xy, $y \in R$, instead of x, then we have 0=[x,r]yua and hence, 0=[x,r]Rua, for all $u\in U$, x, $r\in R$. Since R is a prime ring, then we have either

R is commutative or Ua=0. If Ua=0, then by Lemma (2.8) we have a=0.

If $aU \subset Z(R)$, then for $u, v \in U, r \in R$ 0=[auv,r]=au[v,r]+[au,r]v

> =au[v,r]. Replace r by ry, where $y \in R$. So, we have

0=au[v,ry]=aur[v,y]+au[v,r]y.

= aur[v,y]. for all $u,v \in U,r,y \in R$.

Hence, aUR[U,R]=0

Since R is a prime ring, then either aU=0 or $U\subset Z(R)$. If aU=0, then by Lemma

(2.8) we have $\alpha=0$. If $U\subset Z(R)$, then R is commutative.

Now, we generalize the following Theorem.

Theorem(2.10) [2]

Let R be a prime ring, U a nonzero left ideal of R which is semiprime as a ring. If d is a nonzero (σ,τ) -derivation of R such that d(U)a=0(or ad(U)=0), then a=0. So, we need the following Lemma.

Lemma (2.11)

Let R be a prime ring and Unonzero left ideal of R which is a semiprime as a ring . If d is a (σ,τ) derivation of R such that $d(U)\subset Z(R)$, then either d(R)=0 or $\sigma(U)+\tau(U)\subset Z(R)$.

Proof

Assume $d(U) \subset Z(R)$. Then for all $u \in U$, $x \in R$ we have

 $0=[d(xu),r]=[d(x)\sigma(u)+\tau(x)d(u),r]$

 $=[d(x)\sigma(u),r]+[\tau(x)d(u),r]$

 $= d(x)[\sigma(u),r] + [d(x),r]\sigma(u) +$

 $\tau(x)[d(u),r] + [\tau(x),r]d(u)$

So, we have

 $0 = d(x)[\sigma(u),r] + [d(x),r]\sigma(u) + [\tau(x),r]d(u)$

Therefore, $d(x)\sigma(u)r-d(x)r\sigma(u)+$

 $d(x) r\sigma(u) - r d(x)\sigma(u) + \tau(x)rd(u) - r\tau(x)d(u)$

 $= d(x)\sigma(u)r - r d(x)\sigma(u) + \tau(x)rd(u) - r\tau(x)d(u)$

 $=d(x)[\sigma(u),r]+[\tau(x),r]d(u)$, for all $u \in U$, x, $y \in R$. In special case assume that x=u, then

 $0=d(u)[\sigma(u),r]+[\tau(u),r]d(u)$

Since $d(U)\subset Z(R)$ So,

 $d(u)[\sigma(u)+\tau(u),r]=0$, for all $u\in U, r\in R$.

Hence, $d(U)R[\sigma(U)+\tau(U),r]=0$. Since R is a prime ring ,then either

d(U)=0or $\sigma(U)+\tau(U)\subset Z(R)$.

If d(U)=0, then by Lemma 2[2], we have d(R)=0.

Theorem(2.12)

Let R be a prime ring and U be a ideal of R which is a left semiprime as a ring. If d is a nonzero (σ,τ) -derivation of R such that $ad(U)\subset Z(R)$ $(d(U)a \subset Z(R))$ for $a \in Z(R)$, then either a=0 or $\sigma(U)+\tau(U)\subset Z(R)$.

For all $r \in R$ and we have $ad(U) \subset Z(R)$, then 0=[ad(U),r]=a[d(U),r]+[a,r]d(U).0=[ad(U),r]=a[d(U),r]. Since $a \in Z(R)$, we have 0 = aR[d(U),r], for all $r \in R$. Since R is a prime ring, then either $\alpha=0$ or $d(U) \subset Z(R)$. If $d(U) \subset Z(R)$, then by Lemma (2.11) and $d(R)\neq 0$, then $\sigma(U)+\tau(U)\subset Z(R)$. we have $d(U)a \subset Z(R)$, then

for all $r \in R$, we have

0=[d(U)a,r]=d(U)[a,r]+[d(U),r]a= [d(U),r]a

Since R is a prime ring then either $d(U) \subset Z(R)$ or a=0.

If $d(U) \subset Z(R)$, then by Lemma (2.11) and $d(R) \neq 0$, we have $\sigma(U) + \tau(U) \subset Z(R)$.

Also, we generalized Theorem (2.10) as following.

Theorem (2.13)

Let R be a prime ring U be a nonzero left ideal of R which is a semiprime as a ring. Let d be a nonzero (σ,τ) -derivation and is a homomorphism on U such that if $d(U)a \subset Z(R)$ or $ad(U) \subset Z(R)$, then either a=0 or $\sigma(U)+\tau(U) \subset Z(R)$.

proof

Assume that $ad(U) \subset Z(R)$.

Since d is a homomorphism on U, then for all $u,v \in U$, we have

 $ad(uv)=ad(u)d(v)\in Z(R)$. So, for all $r\in R$

0 = [ad(u)d(v),r] = ad(u)[d(v),r] + [ad(u),r]d(v)

= ad(u)[d(v),r] for all $u, v \in U, r \in R$

Hence, ad(U)[d(U),R]=0.

Since $ad(U)\subset Z(R)$, then we have ad(U)R[d(U),R]=0. By a primeness of R, we have either ad(U)=0 or $d(U)\subset Z(R)$. If ad(U)=0, then by Theorem (2.10) we have a=0. If $d(U)\subset Z(R)$, then by Lemma (2.11) $\sigma(U)+\tau(U)\subset Z(R)$.

Assume that $d(U)a \subset Z(R)$.

Since d is a homomorphism on U, then for all $u,v \in U$, we have

 $d(uv)a=d(u)d(v)a\in Z(R)$. So, for all $r\in R$

0=[d(u)d(v)a,r]

=d(u)[d(v)a,r]+[d(u),r]d(v)a

=[d(u),r]d(v)a for all $u, v \in U, r \in R$

Hence, [d(U),R] d(U) a=0.

Since $d(U)a \subset Z(R)$, then we have

[d(U),R]R d(U)a=0. By a primeness of R, we

have either d(U)a=0 or $d(U) \subset Z(R)$.

If d(U)a=0, then by Theorem (2.10) we have a=0 .If $d(U) \subset Z(R)$, then by Lemma (2.11) $\sigma(U)+\tau(U)\subset Z(R)$.

References

- Yasuyuki Hirano and Hisao Tominga, 1984, Some Commutativity Theorems for prime rings with derivations and deferentially semiprime rings .Math. J.Okayama Univ. 26, 101-108.
- 2. Herstein, I.N. 1969, Topics in ring theory. Univ. of Chicago press, Chicago,.

- 3. Golbasi,O. and Aydin,N., **2002**, *Some* results on endomorphisms of prime ring which are (σ,τ)-derivation,East Asian Math.J.18.33-41.
- 4. Aydin, N.K. Aya, K. Golbasi, 2001.O., Some results for generalized Lie ideals with derivation II, Applied Mathematics E-Notes 1.24-30.