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Abstract
Properties of the value function and dual value function for an optimal control
problems of Lagrange and Bolza are described. A main theorem is proved, this theorem
deals with the existence of a maximum solution to the Hamilton — Jacobi equation for the
Lagrange problem, with satisfies the Lipschitz condition by using the dual dynamic

programming method. Finally gives an example which illustrates the value of the main
theorem.
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Introduction U(r) ={u(r) measurable; such that re [a, b] and
The problem we consider in this paper consists of  #(f)e K, where K is a compact subset of R™ }
minimizing the optimal control problem of Lagrange. Throughout this paper we shall assume the

following hypothesis:
J(x, 1) = J':’ L(t, x(0),u(0)) dt » (1) (t, x, u) = f (1, x, w) and (¢4, x, u) = L(4, x,

u) are continuous and bounded functions
in
where the absolutely continuous trajectory x : [a, [a, b]x R" xK; they are Lipschitz functions
b] -R" and the Lebesgue measurable control with respect to ¢, x, u.
function u : [a, £] -»R™ are subject to the non- (Z)

linear controlled state-space system For the above problem if we replacing (1) by:

i) =S x (1), u (1)), ae. in [a, b], 2 ¥
g S, a0, in e 0] @) J(xu)= J'L(!,x(r).rr(t))df+f’(.r(b)}, (5
u(t) e UD), 1 € [a, b], 3) ’

where £:R"—> RU{+»}, then we get that the
x{a)=c 4)

optimization problem which is called a Bolza
. _ problem. And it is not difficult to check that these
—— 3 . I w1 . 1 ] N ; ;

fiere f [f:,.h]x }f'xiit’ — R E L .’[f«’- ‘b]-'\’f xR optimization problems (1) and (5) are equivalent
> R are given functions, ¢ is point in R™, U/ (7) so that cach can be formulated as one of the other (
is the set of controls with the initial condition x(a) see, [1],12]).

= ¢ which is defined as : ‘
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It is well-known (see, [3], [1], [2], [4]) that in
classical dynamic programming (briefly, CDP) the
whole family of problems with fixed initial points is
considered. For one problem the initial point is
fixed, but when a family of problems with different
initial points is considered, the solution to these
problems are dependent on their initial points. This
dependence is called the value function. The CDP
method describes the properties of this function, e.g.
presents the necessary and sufficient conditions for
the optimality of solutions.

According to [1] and [2], in the CDP the sufficient
condition for optimality of the solution to the
Lagrange (or Bolza) problem is expressed as the
solution to the Hamilton-Jacobi (briefly, H-J)
equation (see, Theorem 2) of this paper.

For the Bolza problem (5), the author in [6]
suggested the nonclassical approach for the
dynamic programming. He defined the dual
value function for the Bolza problem, and used
it in [7] to study the properties of the classical
value function for problem (5) directly. This
method does not require that the classical value
function is differentiable. The method in [7]
focuses on the construction of a new function,
which guarantees the sufficient conditions of
optimality of the Bolza problem, and it is

completely in the spirit of the dynamic
programming technique.
In [8] the problem considered is that of

approximation numerical minimization of the non-
linear control problem of Bolza (or Lagrange),
starting from the CDP method of Bellman, an e-
value function is defined as an approximation for
the value function being a solution to the H-J
equation. Local optimally conditions and
Lipschitzian solution to the H-J equation discussed
in [9].

From all the above, it can be seen that the
solution to the H-J equation for the problem is
essential in the study of optimality. Therefore, it
is found to be a reasonable justification to
accomplish the study of this paper.

The aim of this paper 1s to study the existence
solution to the H-J equation for the Lagrange
problem (1) — (4), by using the nonclassical
approach to dynamic programming (the dual
dynamic programming) in [7]. Thus, in section
4, it shall be proven that the dual value function
(&, p) = Sp (& p), (1, p) € P = R™ for the
problem (1) — (4) is a maximum solution to the
H-J equation and that is satisfies the Lipschitz
condition.
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Properties of the Value Function and
Dual Value Function

In this section the properties of the classical
value function and dual value function for the
Lagrange problem (1) - (4), and Bolza problem (5)
are described (see, [1], [2], [7] and section 1 of this
paper).

Definition 1. For the problem (1) —(4), a pair x(.),
u(.) is admissible if it satisfies (2), (3) and r—L(z,
x(1), u(7)) is summable; then the corresponding
trajectory 1 — x(f) will be called admissible.

Let T < [a, b]x R" be a set with a non-empty
interior, covered by graphs of admissible
trajectories, i.e., for every (#, xo)e T there exists an
admissible pair x( ), u(+), defined in [#,, b], such
that x(#) = xo and (s, x(5)) € T for s € [1,, b].

Definition 2. Function (¢, x) — S(#, x) defined in
T is called the classical value function for the
problem

(1}—(4) if,
S(t,x)= :'nf{ IL(.':‘, x(s), r:(s)}ais} 5

where the infimum is taken over admissible
pairs x(s), u(s), s € [t, b] whose trajectories start
at (¢, x) € T and their graphs are contained in 7.
If only the value function (1, x) — S(z, x) is
differentiable in the open set Oy < T, then it

satisfies the partial differential

equation of
dynamic programming known as the H-J equation,
Si(t,x)+H(t,x,8,(t,x))=0,(t,x) € Oo

with the boundary condition, S (b, x) =0, (b, x) €
O, where the Hamiltonian is given by

H(t, x,y)=yf(t, x, u(t,x)) + L (1, x, u(t.x)),

and 1 — u(1,x) is an optimal control.

One can be notice that for the considered

problem

(1) — (4) the above H-J equation can be re-
written in the following way:

AES(!,x) + mi;r{iS(J,,r)f(t,x,u) +L(1,x, u)} =0,
or wek ax

((., X) S Q(]_

One of the most important properties of the
classical value function is stated in Theorem 1.

Theoreml. If the functions (¢, x, ) — (1, x, «) and
(4, x, u) = L(t, x, u) satisfy assumptions (Z) for the
problem (1) — (4), then the value function (¢, x) —
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S(¢, x) satisfies a Lipchitz condition and is the solution
to the H-J equation :

ES(!,x)+mr:}3 —a—S(f,x)_f(f,):,u)+L(r,x,u) =0,
ot vek | Gy

forae (,x) e T, (6)

with the boundary condition S (b, x) = 0, (b,x)
T.

Proof. see( [2, Ch. IV, Th. 4.2 ] )l |

According to [1] and [2], in the CDP the sufficient
condition for optimality of the solution to the
considered problem is expressed as the solution to
the H-J equation so that following Theorem 2
holds.

Theorem 2. Let (¢, x) — G(t, x) be a solutior.
of the class C'( T ) to the H-J equation

G(t,x)+ H(t,x, G, (t,x)) =0, (1, x) € Oy

with the boundary condition, G (b, x) = 0, (b, X)
€ Qo where Quc T
Hamiltonian is given by the formula,

H (6,%,9) =/ (1, x, (1) + L (, x, u(tx)),
and £ — u(1,x) is an optimal feedback control.

If x = x(f) and a pair x(-), u(+), defined in [q, b],
x(a)= c, is admissible and such that

iIs an open set, the

%G(r,x{:‘)} + —_:a—G(f,.\'(f))f(I,x(!),I'f(.’)) +L(t,x(t)u(t) =
ax

then the pair x(+ ), u(+ ), is optimal, and also G(z, x)
=8t x) , (t, x) € Oy, where S (,, .) is the value
function.

Proof. See ( [2, Ch. IV, Th. 4.4])) &

It can be seen that some regularity of the
function

(t,.x)—> G(1,x), being the solution to the H-J
equation, is required, i.e. it must be at least a
Lipschitz function ( see. Th.1).

Notel. The above Theorems 1,2 are holds also
for the problem of Bolza (5), if only we addition
to the assumptions (Z), functionx — ¢(x) is a
Lipschitz function with respect to x, and replacing
the boundary conditions by S(b,x)=/(x), and
Gib,x)={(x).

Now for the definition of the dual value function for
the Lagrange problem (1) — (4), let us suppose that
T <R"™ be as defined above, denotes a set
covered by the graph of all admissible trajectories
for the problem (1) - (4), and P < R"*be a set of
variables  (1,y", y)=(1,p), te {a, 1")]. ¥’ <0, with
non-empty interior and take a function x(7, p ) defined

0,
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in P such that (1,x(1,p))eT, (1,p)eP,and
assume that it is satisfies the following :

x(t,p), (1,p)e P,is a Borel measurable, locally
bounded, Lipschitz function and such that for each
admissible trajectory x(1) lying in T there exist an
absolutely continuous function p(1)=(y’, y(t))
lying in P such that x(1)=x(1, p()),also if all
trajectories x(7) start at same ( 1,,x,)then all the
corresponding P(#) have the same first coordinate

i

y.

Definition 3. function (1, p)—>S,(1,p) defined

in Pc R"™is called the dual value function for
the problem (1) — (4) if,

Sp(t,p)= ,-,,f{_f _"Lf’s,x(S),u(S))dS}, ¥ <0,(7)

where the infimum is taken over admissible x(s),
us), se [r.b] whose trajectories start (,x(1,p))
and their graphs contained in 7.

Note 2. Let (1,p)— S,(t,p) be as in (7) with T
and x(t, p)defined above, then we see that

So (1, p) = =°S (t, x(t, p)), (¢, p) € P. Thus it is
natural to expect that the dual value function has
properties analogous to the classical value function

(see, 2], [7]).

Therefore since (7, x, u) — f (¢, x, u) and

(f, x, u) - L(t, x, u) and are Lipschitz
functions in

[a,b]x R"x K,and since x(t,p), (1,p)e P,
te[0,6], is Lipschitz function then we deduce
that

J(x(t, p),u)and L(1,x(1, p),u ) are Lipschitz
function in Tx K.

Now since (1, x) — S(#, x) is a Lipschitz function
( see, Th. 1), we see that the dual value function
So(t,p) = —°S (6, x(t, ), (1, p) € P, 1€[0,b)

is a Lipschitz function for (1, p)e P,and it is a
solution to the H-J equation

'S, (&, x(1, p)) + min{~°S, (1, x(t, p)) £ (¢, x(1, p),
W)L (t,x(t, p), u):u € K} =0ae., (4, x (1, p))
T,

3

t€(0,b) (8)

with the boundary condition

S (b, x(b. p(b))) = 0, for all (b, x(b, p(b))) € T
©
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Definitions and Auxiliary Results

This section presents some definitions and
lemmas which will be used in the proof of the
main theorem (Theorem 4) in this paper.

Definition 4 [10]. Suppose that f and g are two
(complex-valued) functions on R", then we
define their convolution to be the function f*g
given by:

T*86) = [f(x-y)g(y)dy. (10)

It is easy to see (by a change of variable) that f *g =g
*

i3
One has to be careful to make sure that (10) makes
sense. One way is to require f € L°(R") and g € L*
(R"), in which case the integral in (10) is well
defined for all x by Holder’s inequality, let 1/p +
/g =1 with

| <p<ow,q>l,and fe L"(R") and g € LYR"),
then

(72)x) =/ (x) g(x), is in L'(R") and
[ ek <11 I,

where || f||, is Ly-norm of f.
Theorem 3. Let j be in L'(R") with jj =i .Fore>
R"

0, we define j, (x)= &"j (x/g), so that j j.=1land

Idli =11l Let f € L(R") for some I <p < o0
and define the convolution f,. =j *fthen

Je e (R and || fellp < |Vl 11 £11,

Jfe = funiformly in L(R") as £ — 0,

If jeC?(R"), then f, € C*(R') and D%, =
(DG *f

where D (o is a nonnegative integer) denote the

multi-derivative.
Proof . See [10, p.580

Definition 5. Let us define the set ¥ as follows:

W={H(,p)=-y"w(t x(t,p)) | isa Lipschitz

fort,p; (,p)e P,te[0.b8], (t,x(t,p) e T

with the boundary condition

H(b, p(b)) = —"w(b, x(b, p(b))) < 0, for all x(z,

p)eT, (1, p)eP; and

—" 8w (t,x (t, p)) + min{—" 3 w (1, x(t, p)) (4,
ot ox

A, p), WL (¢, x (1, p), u) © ueKy>0 ae.,

(Lx(p) YeT,{t,p)eP. (1) }.

And we define on the set 17 the following partial

ordering:

Q
(s )
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H< i o H(p)<A(Lp);(tp)e P 1e |0,
b,V H, e W.
Note 3. From the definition of the function Sp, (1,
p), (1, p) € P in (7), and (8), (9), we observe that
the dual value function Sy (¢, p) = —°S (¢, x(1, p)),
(¢, p) € P belongs to the set W of all Lipschitz
solutions to the H-J equation (11), when there
exists x(f) = x (¢, p(1)), (1, p) € P, lying in T, as a
multiplied solution for the Lagrange problem (1)
-4
Now let us formulate and prove three Lemmas
which will simplify and shorten the proof of the
Main Theorem (Theorem 4) in this paper that the
dual value function Sp (¢, p), (1, p) € P defined in
(7) is a maximum element of the above set W.
To formulate these Lemmas, let us assume that
< b and consider & > 0 such that the interval |£, +
8, b — 8] has a nonempty interior. Now let x, (#)
= Xo (%, polt)) be arbitrary and let it belong to T,
ul)e U(t).

Since (¢, x, u) = f(t, x, u) and (1, x, u) = L (1, x,
u) satisfy assumptions (Z) (see, section 1), and
since x (1, p), (1, p) € P is bounded and
Lipschitz, then the functions, f(z, x(¢, p), «) and
L (¢, x(t, p), u) are bounded and Lipschitz with
respect to £, x(#, p), u in TxK, when (¢, p) € P.
Therefore the response of the system 1 — x(f) =

x(4, p(0), t € [to, b] with xq (1) = xo (£, po(to)).
lying in T"is bounded, i.e.,

x(t,p(0)) € 0, forall (1, p(t)) € O, 1€ [10, ],

where Qand Qare compact subsets of 7" and P
respectively.

Now we define a set O as follows: 0 = O +
B(R™),

where B\(R"*) is the sphere centered at the
origin having a radius of 1.

For a shorter and simpler definition, we propose
the following notations:

J,pu)= £(t,x(t, p),u) -
L(t, p.u) = L(t,x(t, p),u),

since f: [a, b]x R'xK — R" and L : [a, b]x R"xK
— R are Lipschitz, satisfies assumptions (Z), and
x(1, p) is a Lipschitz function for (7, p) € P, then we
deduce that 7 p ) and L(t,p,u) are also
Lipschitz functions in PxK.

And since H (1, p) = —"w (¢, x(t, p)), (1, p) € P
then the H-J equation (i1) becomes

H (1, p) + min{H. (1, p) 71, p.uy — Y L1, p,1t)
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cueK}y=0ae,(t,p)e P,te[0,b] (13)
with the boundary condition

H (b, p(b)) <0 forall (b, p) € P.

Note 4. We need in the proof of the Main
Theorem of this paper to construct a new

function (¢, p) — Hi(t,p), (L, p) € Q t e+
8, b — 8], which is sufficiently regular and
satisfies the inequality (13). So an arbitrary

function (1, p) —H (t, p) of the set W can be
chosen and modified in a few steps of

construction until the resulting function (7, p) —
Hj(t, p) satisfies the inequality (13).

Thus for this fact suppose that the function (z, p)
— H(1, p) be any function in the set W. We may
construct a new function (7, p) — H, (¢, p) by
shifting the function (7, p) — H(t, p), as follows:

H\(t,p)=H(t,p) + o (1 - b) (14)

where a is a positive number which is close to
zero.

Since the function H(t, p) € W, (t,p) € P, 1 € [0,
b}, and since H,(t, p) = H/(t, p) + o, Hy (t, p) =
H{t,p), (1, p) € P, t € [0, b], then we see that

the function (¢, p) — Hy(t, p) is a Lipschitz
function and satisfies the following:

Hy (L,p) — o + min{H, (f,p)f(r,p,u) =
yof(:,p,u) rue K} >20ae,(t,p)e P, t € (0,

b).
Thus,

Hy (¢, p) + min{Hy. (&, p) (¢, p,u) hynj’:(t,p.u) :
ue K} >oae,(t,p)e P, te(0,b). (15)

and this implies that the function (¢, p) — H(1,
p) belongs to the set W (see, definition 5).

In order to define a new function (1, p)
—>H; (t,p), (t, p)e é, t €[4+ 6, b— 8], for
arbitrary and fixed € < min (1, 8), such that
Hi(t,p)e CI(Q,t € [ty + 8, b - 3)) and it
satisfy the inequality (15), we have to define a new
function (¢, p) — H;(t,p)by using the
convoluticn of the function (1, p) — H, (1, p) with a
function of class C7(R"°) having a compact
support.

So we will define a function (¢, p) — H: (t,p).(t,p)
0,

1 € [fp+ 0, b — 3], for arbitrary and fixed € < min
(1. 8) by using the convolutien of the function (2.
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p) = H, (1, p) with a function (¢, p) — p.(t, p) of
class C* (R'"?) having a compact support as
follows:

H; (1, p)=(H *p)(t, p) (16)
where the function (¢, p) — H,(t, p) as defined in
(14); p; - RxR"' — R is a function of class
C;(R"™%) having a compact support; and
5

+2

satisfies J‘ p,(t, p)didp = L, pe(t, p) = (

Rt +2

8”

p(L,2) e Cc;®Y; supp pi < B (R,
E €

where B (R"?) is a sphere centered at the origin

having a radius of 1.

Clearly, this function (¢, p) — HE(t, p) will also
be a Lipschitz function, because the function
(Hy*pe)( ., . ) is Lipschitz for ¢, p. (14)

In order to show that the function (¢, p) -
H:(t,p),(t,p) e Q t € [ty + 3, b — 8] satisfies
the inequality (15), i.e.,

3¢ >0|V8££',2Hf(r,p)+m:‘n {in(r,p)
o - ox

}(:,p,u}—y"l‘(r,p,u);ueK}2%>o, (17)

we need to prove some lemmas, so that the proof of
the above fact (17) becomes shorter and simpler ( see,
Theorem 4).

According to the proof of Theorem 4 ( the Main

Theorem ) the fact that the functions —° L(.,.,.) and
—" (L * py)(...)have values arbitrarily close to
each other is needed. Therefore lemma 1 should be
proved first. This gives an estimate of the

difference between the values of these two
functions by arbitrary real number close to zero.

Lemma 1. Let L(,.,.) be a function as defined in
(12), and p, (- ,*) be the function of class

e= )

defined above. Then for arbitrary real number
o, described during the definition of function
Hy(+,*) there exists "> 0 such that for all € <&’
and for all (1, p, u) e éxK, tefty+ & b -9
the following inequality holds:

| Lt pou) — (L * p)(1, p, w) | < %

Proof. For (f, p, u) €QxK, the fellowing
estimation holds:

| = Let pu) = (=" (L * p) (1, p, )|
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=9I L1, pu) (L *po)(t,pu)|
=|“,VO| ‘[ [E(I,P,ﬁ)“f(t—s,p~p’,u)]
Be(R"™? )

pls.p)dsdp|<io| [ [ Lt pu)-
H.l.‘{)d'”)}
L(t-s,p-p'u)lps, p') | ds dp' <
- sup | L(t, pu)-
uek
(r,p)eQ,te]ty+6,b-8)
(5,p")eB, (R™?)
L(t-s, p-pLuwl
the functionZ(,.,.)is
continuous in the compact set 0 xK, re [0, b]

B4 sup | L(t, p,u)~
uek
(t,p)eQ. e[ty +8,6-8)
(s.p")eBy (R™?)

L(t-s,p—p'u)l > 0ase— 0,

and consequently,

| L(t, pyuy = (°(L *pe)(t, p, w)) | > 0 as &
— 0.

Hence, for an arbitrary real number o, there
exists €' > 0 such that for all € < & and for all (1,
P, u) € éxK, t € [to + 8, b — 5] the following
holds:

| 5" L(t, pu) —(=°(L * p))t, pou) | <%.

The fact that the functions
—-H}(..)J{(,..)and Hﬁﬁjg,.,,_)* p. H(.,.)
ax Ox

have values arbitrarily close will be needed in
the proof of Theorem 4, so lemma 2 must be
proved. This gives an estimate of the difference
between the values of these two functions by a
real number arbitrary close to zero.

Lemma2. Let H/(,), H!(,.) and p(,)be

because uniformly

.....

a function as defined in (12). Then for an
arbitrary real number o described in the
definition of H,(,.) there exists €' > 0 such that
forall € <" and for all (7, p, w) € Q xK, t € [1,
+ 6, b - &] the following inequality holds:

o = o ., - l<
2 i, p)f(r,p.u)—{(:%ﬂ ) ps](r.p,:|
X (#29 d

©.
4

Proof. Since the function H,(,.)is a Lipschitz
function, then it is satisfies the Lipschtiz
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condition, i.e.,

ol H,(,.)I <M for some constant
ox

M= 0. Thus

forall 2, p, u) € Q xK, 1€ [ty + 38, b~ 8], and

by using the definitions of H}(,.) and the
convolution, the following holds:

a - 0 - =
ah‘(;(f, p}f(!'s P,“] —{(aﬁx'Hlf(’a'su)} *Dc:[(f,p)’

d = d -
‘Er-(lll *p;)(fsp)f("sp:y)_[(EHL)(.('»'!H))*pg](:!p}r

|

B£(R"+2)

J y .
= di(t=s.p=p )f(t.pu)

[ ZHy-s.p-p)
B.‘:(R"+2} x

f(r—s,p—p',u)pe(s,p’)dsdpll <

J

pe(s,p )dsdp -

o o~
5 Hi(t=s.p=p") |7t pu)-

HC(R’H?) aX
J(t=s,p=p'u)| p,(s,p )dsdp <
M Suf ’}U»Pa“)—}(f*‘T:P“P’s"‘)l'
uek

(r,;))eQ,!e[r0+5,b—5]
(5.p)eB, (R"*?)
the fl.)is
continuous on the compact set O xK, 7 e [0, &],
then we obtain the last inequality tends to zero

as € — 0, that is

sup
L uek
(r.p)eQ reliy+8,b-5]
(5.p')eB, (R™?)

as & — 0, and consequently,

Since function

uniformly

| 7t.pw)-Ft-s5.p-pla|> O

3 . . ,
ZH(t,p) f(t, poae) - {(—a— H,f(-,,u))* pu](;, p)
ox A J

as € — 0.

Thus, for arbitrary « there exists €' > 0 such that

forall e < ¢’ and for all (¢, p, u) € Q xK,t € [ty +

8, b - 3], the following holds:

-ih’"(r )f(t, pou)— {—a—H FCou) = ](r }1{ =.

ax 1P PO ~| G ) o, |(p)| 7

In the proof of Theorem 4, the uniform

convergence of the sequence { Hi(t,p)} 10 Hy (¢, p)

as g converges to zero, for all (1, p) € O, € [ty+

8, b-3] is also required as is shown in the
fellowing resuit.
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Lemma 3. Let H,(,.),H!(,)and p; (*,*) be
functions defined in Q (see (16)). Then for all
(t,p) e é, te [to+06,b— 5], we have

lim HY (t,p)=H,(t,p),

and this convergence is uniform.

Proof. By definition of uniformly convergent
sequence of functions to prove that this lemma
holds, it is sufficient to show that for arbitrary y
>0 a €' > 0 exists such that for every ¢ < ¢’ and
forall (1, p) € Q, 1 € [fo+ 0, b — 8] the following
holds:

| #; (t.p)—Hi(t,p)| <y

Now by using the definitions of the function
H!(..) and the convolution, for all (1, p) € O,

1 € [ty + 8, b — 3], the following holds:

| H3(t,p) — Hi (t, p) |= | (Hi*pc)(t, p)- H (1, p)

=
J

3,_.(’\'”"}

[ |l @=sp-p)-Hp)pisp)
B(R™)

<

dscty

< sup | Hy (1= s, p—p") = Hi (1, p)
_uek
(1.p)e0 telty+5,b-8]
(5.p)eB: (R™*?)
l.
Since the function H,(,.)is uniformly

continuous in the compact set Q, then we have

sup | H(t=s,p—p) - Hi({t,p)[—->0 as
_uek

(t,p)eQ.re[1y+8.6-8]

(5.0")eB. (R™?)

e—0.

Consequently,

| H; (t,p)—H,(t,p)| > 0 as € > 0.

Therefore, for an arbitrary y > 0 a £> 0 exists

such that for all € <€ and for all (¢, p) e@_, tefly
+ § b — o] the following holds: | H: (1,p)— H,
&p)<y.

The Main Theorem

The main result of this work is formulated in
Theorem 4, which ensures that the dual value
function Sy, (1, p). (t. p) € P is
element of the set W.

s

a maximum
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Theorem 4. The dual value function S), (¢, p), (t,
p) € Pt € [0, b] for the Lagrange problem (1)-
(4), (see, (10) and (6)) is the maximum element
of the set W (see, definition 5), that is
Spt,p)>H @ p) foral Ht, p) eW, (1, p) e
P.

Proof. Suppose that the function (¢, p) > H (1, p), (1,
p) € P is any function in the set W then by using the
definition 5 of W, and equation (9), we get

H (b, p(b)) <0 =Sp (b, pb)), forall (1, p) € P, t € [0),
bJ.

Now as stated in section 3, notes 3 and 4, let 7, < b
and consider & > 0 such that the interval [1, + § b —
6] has a non-empty interior, and let xy(tg)= xy(t,
Polty) be an arbitrary belonging to T, and u() €
U®). and let the functions (¢, p, u)— f(r,p,u),
(Lp, u — Z(r,p,u), and (1, p) > H: (1,p)be as
defined in (12) and (16) respectively.

we need here to show that the function (,p) -
H? (1, p) satisfies the inequality (17), i.e.,

[H,(t=s,p-p')-H,(1.p)]p.(s.p')dsdp' 3’ >0|Ve SE',gH;(f,p)+mm{-g—H_:(r,p)
»

}H‘(!,p,u)—y"f.—(l,p,u):zte K }2%:»0,

and this fact implies that the function (,
pP)=>H; (1,p)
also belongs to the W, (see, (11) and (16)).

Now to prove that the above inequality (17) is
hold, we have

2 H3@.p) + 2 Hip) T _ 0Lt pu)
ot ox

= = PHOPO_ T p)apw + K%H; +

_\i H, ?(.,.,n)— y“:{""”}) *p (1, p) + 2 H(,p)

ox Ox

f(z,p,u)_[(ai H, TG %0611, p) (18)
w

In order to find the values of the left side of
(18), it is sufficient to find the values of each
term of the right side in (18).

From Lemma 1 we know that for an arbitrary
positive real number oo which is close to zero,
there exists €' > 0 such that for all (7, p, w) €

é) xK,

1€ [top+9,b—3], we get:

| L1, pou) — (= (L #pJtpw)| < *.
4

Moreover, lemma 2 gives: for an arbitrary
positive reai number a which is close to zero,
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there exists €' > 0, such that for all € < ¢ and for

all(t, p,u) Q xK, t € [1;+5, b-8], we have

|- H: (Lp) F(6pa) (2 Hy 7 )it )
Ox x
e,
4
Therefore, by using the values of all terms in the
inequality (15), lemmas 1 and 2, we see that, it
is possible to estimate the values of the left side

in (18) for all (4, p) € O, 1 € [t + 5, b — 5] as
follows:

9 mp * % H3p) T pow) =Y Tt p)
2 (oxpe)(t, p) — & =% = % >,
4 4 2

thus we have,

0

= A P9
1yt 2 1y p) Tt poy =Y L, pay> > 0.
ot é 2

X Z
(19)

Since the right hand side of the above inequality is
independent of #(- ), then we see that the inequality
(17) is satisfied.

By Theorem 3, we get H; (1,p) € C2(0, 1€ [to+
8, b—38])and since H: (1, p)=—"w’ (t.x(t, p))
(see, definition of ), then we obtain

d i d . -
— H (1,p)=2 H: (t,p)+=- H: (1.p) Ft. pu)
dt a‘, ax

(20)

Hence, by substitution of the above equation
(20) in the inequality (19), we get,

-’ Z(!,p, uy = —di H;(t,p), foralle <g',
{

and by taking the integration of both sides of the
above inequality, we get that for all e <¢’

0~ b .
-y L(I,p,n)dta*Li %Hz(f‘p)d’
{4

fg+8
== Hi(1,p)|i= Hi(t,+8,p(t,+5)) -
Hi(b-68,p(b-5)).
By the properties of convolution (see, Theorem
3; approximation by C”-functions) and by
lemma 3. we see that, /: (1, p) converge to H,(t, p)
uniformly in Q1 € [t +8, b—3]. Therefore,
-~ J”"a y”}:“”,,,u)dt = Hy (to + 8, p(ty + 8)) — H,
ip+d '
(b =8, p(b — 8))= H(ty+8, p(ty+8)) - H(b-3,
p(b=08)) + a(ty+28-b)
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Now, putting oo — 0, we obtain

Jb_6
- 1] +b
(b5, p(b-9))

Hence, by taking the limit 8 — 0, and (12) we
have

b
i _LO L(t, x(t, p), ) dt > H (1, po(to)) — H(b,

p(b)) 2 H (1o, po)

(because in the definition of the set W, the
boundary condition H(b, p(b))<0).

Since the right hand side of the above inequality
is independent of u(- ), we observe that

b
inf (" [ L2 p)wydry > H (1 po)
u(-Jek 0

Thus, 58 (to, xo(t0, po)) = H (1o, po),

and since Sp(t, p) = 5°S (1, x(t, p)), (4, p) € P,
we get that S,:)(!Q, [)u) = [{(f(}, [)0)

Now, since 7y and xq (£, po) = xo with a suitable
function pq (1) = py are arbitrary, we see thi)
Sp(t, p) = H(t, p), for all (¢, p) € P, t € [0, b].
Therefore, Sp (7, p) is the maximum element of set
w.

Y L(t, pouydt = H (to + 8, plto + 8)) — H

Conclusion

According to the properties of the classical
value function (1, x) — S (1, x), and the dual value
function @, p) - Sp 4, p) = —y'JS(r, x(t, p)) (see,
section 2), we observe that, the Main Theorem 4
of this paper identifies that (in the case where
there is not a unique solution for problem (1) —
(4)) the dual value function which satisfies the
Lipschitz condition is an approximate of
optimal, when it is a solution to the H-J
equation, i.e., if the dual value function S, G,.)
is evaluated along any admissible trajectory
such that it is Lipschitz and satisfying the
solution to the H-J equation (8) and (9), then
that trajectory is optimal.

Example

To illustrate the importance of the Main
Theorem 4, we present the following example.
Consider the optimal control problem:

minimize r (a()x*(2) + (1) (1)) dt
-1

subject to
w0y =f (@t x(0), u(t)) = B(yu(t) ae., in [-1, i},
uit) e Un=[-1,1} 1 e [-1, xn],
x(=1) = x(x) = 0, where
a(t) = [-1/2, 0<t<m,
iO, -1<t1<0.
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b(t) = {1;2, 0<t<m,
L

-1<t<0.
B I, O<t<m,
L=
@ -1, J!f—:!k1 u]k_‘,
0, Ir—_']k)U{—l},

I =1+@G), -1+ (3, j=1,2,3,

X U Ul = (-1, 0].

k=0 j=t

k=0,1,.

To study the existence of a solution for the H-J
Egs. for the above problem and obtained of the
optimal pair for the problem by using Theorem
4, we help ourselves by resolving the maximum
principle (the necessary optimality conditions)
for the above problem, that is, x(7), u(%), y(¢), and
" <0 satisfy the following conditions:

dy(r);’dr = ﬂ2y a(Ox(t) ae., t € [-1, ]

max {"b(ty’ + y(1)B(O)u % a(f)x (O |ue U}
=y'b(end (»’) +y(f)3(f)u(l) + ) a(ty? (t) ae,te[-1,
m), (m)eR ', -’ € [0, @), ()| +)° # 0.

Then we calculate from it the following triplets
x(1), u(f), and p(f) = (O°, ¥(1)) as follows:

yﬂ =—e,x(t,c1)=cisint, W, ec;) = ec; cos 1, u(t,
c1) = ¢y cos t, where t € [0, ), ¢; € (-1, 1), e e
(172, 3/2);

V=-ex(te)=0,te)=0,u(t,e)=0,1c [,

m;

yo =€ 2 x(f., Cz) = _C_z J{.Bz(sl}d‘. '!y(ta ECQ) = 862 £l
24

“(t:l "32): 0_28(;):!6 [_'15 0]: 6 € (_I" l)'

For p(t) = (y WD), t € [-1, ], we define u(z, )",
y) and x(1, )", y) as follows:

—%. 1e[-1,01y "e(-3/2,-1/2),ye(-3/2,3/2),
-y
, 0, te[-1,x)y ’e(=3/2,-1/2),y =0,
ut,y',y)= ’
—%, ref0,m)y ’e(-3/2,-1/2),

3
]y|~:51cw:|,y:0 Jort=mn/2

1806
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o7 [ B ret101y e32-12,pe323,
;

0, te[-1n}y e(-3/2-1/2),y=0
EGUTE

L tel0m}y e(-3/2-1/2),
;

3
|y|<i|mﬁ|.y=0 Jort=n/2

Next, define M, )°, y) in the same sets of ¢ and (°, y),
respectively (see, [9] and section 7), as

y2

4 = B(s)ds,
(t.y°,y)=10,

y
—1gf.
2y° .

Now, define w(z, x(1, p)) as follows:

'I J‘Bu:fs t=[-10) v "e (=321 2 v (-3 2,37,

0,

tf=1a] v e (=372 -1/ v =0
L 1[0,y 02 (=3, 2-172),

3
1 I_\'I\;—‘Inurl__l':u‘forr‘-—.'r-':

Itis stmple to verify that the functions H(z, ', y)
=" w (s, x(t, p)), as described above, is a
Lipschitz functions in the sets of 7 and (3", y) and
they satisfies (11) and the boundary condition in
the set I¥ (see, definition 5). Thus the functions
H(t, )", y) in the sets of 7 and 0, y) described
above, are belongs to set 7.

And we see that for p(7) = (yu, W), whent e [-1,nt
1, ¥ is any given number in the interval (-3/2,
—1/2), and y = 0, it is not difficult to check that
the dual value function for the above problem
Sn(t, p) = =°S (1, x(t, p)) = =’ V;o (4, p) ( see,
section 7) which is equal to zero, satisfy (8) and
(9), and thus it belongs to the set .

Therefore, from all above and Theorem 4, we
observe that the dual value function Sp(t, p), t €
[~1, m] which is equal to zero is the maximum
element of the set ¥, and we fined that x(¢) =
and u(1) =0, t € [-1, ] is an optimal pair.

Future Study

For the Bolza problem (5} {(see, section 1) of
optimal control in [9, Th.3.1], established that
the sufficient conditions for the control to be
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optimal is that, there exists a function ¥/, p), (4,
p) R 1 € [0, ], such that it's a Lipschitz
solution to the dual partial differential equation
of dynamic programming

and it satisfies the boundary condition yV,q(b, p) =
¥t (=Vb, p)), (b, p) € P R, and the relation
V1, p) = Vio (t, p)y° + Vo (¢, )y ==Sp (1, p) - x(1,
Py =V, p)p, (t, p) € P, where S, (,.) is the
dule value function of Bolza problem and x(., )
as defined in section 2.
Thus, the future study, is the existence of the
solution for the optimal control problem of Bolza,
and show that the
function M, p), (1, p) € P is the minimum of the set
W which is defined as:
W' ={H'(t, p) | is Lipschitz for (¢, p) € P, t € [0,
bl, H(t, b) ==Si(t, p) — x(t, p)y = y*H (1, p) +
H}(!a P)y =

Hﬂ(l’ P)Ps
with the boundary condition
YHyo (b, p) 2"t (~-H (b, p)), ¥ (b, p) € P, and
H, (A 12ks max DARL—H (1.p)u)y+y’L

(t,—H (t,p)u)}<0, ae., (t,p) € P, t € [0, b],
where K compact subset of R™ }.
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