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Abstract 
     In this paper we prove some theorems, the first states: If R is an almost 
Noetherian domain, then the following statements are equivalent: ١- R is an almost 
Dedekind domain.  
٢- A(B∩C)= AB∩AC, for all ideals A, B and C of R. ٣- (A+B)(A∩B)= AB, for all 
ideals A and B of R and the second states: If R is an almost Noetherian domain 
which is not a field, then the following statements are equivalent: ١- R is a valuation 

domain. ٢- The nonunits of R form a nonzero principal ideal of R. ٣- R is integrally 
closed and has exactly one nonzero proper prime ideal. In addition to the above 
some other results are proved. 
 

 
  نتائج اكثر حول الساحات على الاكثر نويثيرية

 
 عادل قادر جبار

  .العراق-السليمانية، جامعة السليمانية ،ية العلومقسم الرياضيات، كل
 

  الخلاصة

ساحة على الاكثر نويثيرية فان  R اذاكانت: فى هذا البحث نبرهن بعض المبرهنات حيث تنص الاولى      
لكل  A(B∩C)= AB∩AC - ٢. ساحة على الاكثر ديديكنديةR  تكون -١: الشروط الاتية تكون متكافئة

وتنص المبرهنة  Rفى  )A, B(لكل المثاليات  AB =(A∩B)(A+B) -٣. Rفى  )A, B, C(المثاليات 
  :ساحة على الاكثر نويثيرية والتى ليست حقلا فان الشروط الاتية تكون متكافئة Rاذاكانت : الثانية

 Rتكون  - ٣. Rتشكل مثالى اساسى غير صفرى فى  Rاللاوحدات فى  -٢. ساحة تقييمية Rتكون  - ١
بالاضافة الى النتائج اعلاه لقد تم البرهنة على بعض . متلك تماما مثاليا اوليا تاما ولا صفريامغلق تكامليا وت
 .النتائج الاخرى

 
١. Introduction 
     Let R  be a commutative ring with identity ١ 
and S is a nonempty subset of R , then S is called 
a multiplicative system in R if S∉0 and a, b∈S 
implies that ab∈S [١]. Define a relation (~) on 

SR×  as follows: For SRsbra ×∈),(,),( , we 
let ),(~),( sbra  if and only if there exists 

St ∈  such that 0)( =− brast . It is easy to 
show that (~) is an equivalence relation 
on SR× . Then, denote the equivalence class of 

),( ra  by 
r
a

 [٢] (some times this equivalence 

class denoted by (a, r) [١]) and denote the set of 
all equivalence classes of SR×  relative to the 
equivalence relation (~) by SR , that is, we let 
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}),(:{ SRra
r
aRS ×∈= . Next, we define (+) 

and ( . ) on SR  as follows: 

st
bsat

t
b

s
a +

=+  

and 

st
ab

t
b

s
a

=. , 

for all  

SR
t
b

s
a

∈, . 

It can be shown that these operations are well-
defined and that (RS, +, .) forms a commutative 

ring with identity (In fact, 
s
s

 is the identity 

element of RS, for all s ∈S) and this ring is 
called the total quotient ring of R [٢] (this ring is 

also denoted by S-١R and called the localization 

of R at the multiplicative system S [٣]). Next, 
we mention to the following facts: If R is an 
integral domain, then RS is a field (and hence an 
integral domain). If A is an ideal of R, then the 

set },:{ SsAa
s
a

∈∈  forms an ideal of RS and 

is denoted by ARS [٢] and if A′ is an ideal of RS, 
then there exists an ideal A of R such that A′= 

ARS [٤]. It is known that if P is a prime ideal of 
R, then R-P forms a multiplicative system in R 
and thus RR-P is the total quotient ring of R and 
for the sake of simplicity we denote RR-P just by 

RP, so that RP ={
m
a

:a ∈R, m ∉P}. Also, in this 

case PRP is the unique prime ideal of RP and 
hence it is the only maximal ideal of RP which 
means that RP is a local ring with PRP as its 
unique maximal ideal, so that if M is a maximal 
ideal of R, then it is prime and thus the total 

quotient ring of R is RM ={
m
a

:a ∈R, m ∉M}. 

٢. Some Basic Definitions and Some 
Known Results: 

     Before proving the main results of this paper, 
we restate some basic definitions. A commuta-
tive ring is called a Noetherian ring if the ideals 
in R satisfy the ascending chain condition or 
equivalently, if every ideal of R is finitely 

generated [٥] and by a Noetherian domain is 

meant a Noetherian integral domain [٦]. An 
integral domain is said to be an almost 
Noetherian domain if RM is Noetherian for each 
maximal ideal M of R [٢]. If A is an ideal of a 

commutative ring R, then we define A-١={x∈RS: 

xA⊆R} [٧], where S is the set of all nonzero 
divisors of R and A is called an invertible ideal 
of R if AA-١=R [٧]. An integral domain R is 
called an almost Dedekind domain if RM is 
Dedekind for each maximal ideal M of R [٢]. 
A ring R is called an arithmetical ring if 
for all ideals A, B, C of R we have 
A ∩ (B+C) =A∩B+A∩C and by an arithmetical 
domain is meant an arithmetical ring which is 
also an integral domain [٢]. A commutative ring 
is called hereditary if every ideal of R is 
projective [٣] and it is called semihereditary if 
every finitely generated ideal of R is projective 
[٨]. An integral domain R is called a valuation 
domain if for any ideals A, B of R we have 
A⊆B or B⊆A [٢]. A ring s called local if it has 
only one maximal idea and it is called semilocal 
if it contains a finite number of maximal ideals. 
Let R be a subring of a ring R′, we say an 
element b∈R′ is integral over R if there exists a 
positive integer n  and a٠ a١,…, an-١∈R  such 

that a٠ + a١b + a٢b٢ ,…, + an-١bn-١ + bn =[٩] ٠ and 
if every element of R′ is integral over R we say 
that R′ is integral over R and R is said to be 
integrally closed in R′ if the elements of R are 
the only elements of R′ which are integrally 
closed over R and R is said to be integrally 
closed if it is integrally closed in its total 
quotient ring [٢].  
Next, we mention to the following results the 
proof of which can be found in the pointed 
references:  

Theorem [٨] :٢.١  
     If R is a commutative ring with identity and 
M is a maximal ideal of R, then:  
١. (A∩B) RM = ARM ∩ BRM, for all ideals A, B 

of R and  
٢. (A+B) RM = ARM + BRM, for all ideals A, B of 

R. 

Theorem [٢] :٢.٢ 
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     If R is a commutative ring with identity and 
A, B are ideals of R, then 
A = B if and only if ARM = BRM, for each 
maximal ideal M of R. 

Theorem [٢] :٢.٣ 
     Let R be a Noetherian domain, then the 
following conditions are equivalent: 
١. R is a Dedekind domain. 
٢. A (C∩B) = AB ∩ BC, for all ideals A, B and 

C of R. 
٣. (A+B)(C∩B) = AB, for all ideals A, B of R. 

 
Theorem [٨] :٢.٤ 

     If R is an almost Noetherian domain, then the 
following conditions are equivalent: 
١. R is an almost Dedekind domain. 
٢. R is an arithmetical domain. 
٣. If A, B and C are ideals of R with A nonzero 

and contained in each maximal ideal of R 
such that any multiple of A is a prime ideal, 
then AB = AC implies that B = C.  

Theorem [٨] :٢.٥ 
     If R is an almost Noetherian domain, then R 
is an almost Dedekind domain if and only if R is 
semihereditary. 

Theorem [٢] :٢.٦ 
     If R is a Noetherian domain which is not a 
field, then the following statements are 
equivalent: 
١. R is a valuation domain. 
٢. Then nonunits of R form a nonzero principal 

ideal of R. 
٣. R is integrally closed and has exactly one 

nonzero proper prime ideal. 

Theorem [٤] :٢.٧ 
     If R is a Noetherian ring and S is a 
multiplicative system in R, then RS is also 
Noetherian. 

Theorem ٢.٨: 
     Let R be a commutative ring with identity, 
then R is a local ring if and only if the nonunits 
of R form an ideal. 

Theorem ٢.٩: 
     An almost Noetherian ring which is 
semilocal is Noetherian and hence an almost 
Noetherian ring which is local is Noetherian. 

٣. The main Results: 

     Before giving the main results of this paper, 
we prove some simple results which will help us 
to prove the main theorems. 

Lemma ٣.١: 
     If R is a commutative ring with identity and 
M is a maximal ideal of R, then for each positive 
integr n 

١. ∑
∑

=

= =
n

i

ii

n

i
ii

b
m
a

m

ba

1

1
1

, for all ai, bi∈  R and 

m∉  M. 

٢. ∑
∑

=

= =
n

i

i

n

i
i

m
a

m

a

1

1 , for all a∈  R and m∉  M. 

Proof: 
١. We use mathematical induction on n. For 

n=١, we have 

∑
∑

=

= ===
1

1

1111

1

1
111. i

iii
ii

b
m
ab

m
a

m
ba

m

ba
. 

Next, suppose that the result is true for 
n-١, (where n ≥ ٢), that is 

∑
∑ −

=

−

= =
1

1

1

1
1

n

i

ii

n

i
ii

b
m
a

m

ba
 

and to show the result is true for n.  
Now, we have 

=

+

=
∑∑
−

==
m

baba

m

ba
n

i
nnii

n

i
ii

1

11 =

+∑
−

=
m
m

m

baba
n

i
nnii

1

1  

=

+∑
−

=
mm

mbamba
n

i
nnii

1

1
)(

=+
∑
−

=
m
ba

m

ba
nn

n

i
ii

1

1

∑
−

=
=+

1

1 11

n

i

nnii b
m
ab

m
a

∑
=

n

i

ii b
m
a

1 1
. 

Thus the result is proved. 
٢. Take bi =١, for all i in (١) the result 

follows directely. 

Proposition ٣.٢: 

     If R is a commutative ring with identity 
and M is a maximal ideal of R, then, 
(AB)RM =ARMBRM, for all ideals A, B of R. 

Proof: 
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Let MRABy )(∈′ , so
m
xy =′ , for some 

x∈AB and m∉M, so there exists a positive 

integer n  such that ∑
=

=
n

i
iibax

1
, for Aai ∈  

and Bbi ∈  and then as M∉1 , by using 

Lemma ٣.١, we get that 

===′
∑
=

m

ba

m
xy

n

i
ii

1  MM
n

i

ii BRAR
b

m
a

∈∑
=1 1

. 

Thus (AB)RM⊆ARM BRM. Next, if 
y′∈  ARMBRM, then there is a positive integer 
k  such that 

∑
=

=′
k

i i

i

i

i
q
b

m
a

y
1

, for BbAa ii ∈∈ ,   

and 
                              MqMm ii ∉∉ , . 
Then we get 

∑
=

=′
k

i i

i

i

i
q
b

m
a

y
1

=∑
=

∈
k

i
M

ii

ii RAB
qm
ba

1
)(  

(Since aibi ∈AB and miqi∉M, for all i) 
and so that ARMBRM ⊆  (AB)RM. Hence 
(AB) RM= ARMBRM. 
Now it is the time to give our first theorem 

Theorem ٣.٣: 
If R is an almost Noetherian domain, then the 
following conditions are equivalent: 

١. R is an almost Dedekind domain. 
٢. ACABCBA ∩=∩ )( , for all ideals 

BA ,  and C  of R . 
٣. ABBABA =∩+ ))(( , for all ideals 

BA ,  of R . 

Proof: 
First, we will prove (٢↔١). 
Suppose that R is an almost Dedekind 
domain and A, B, C are ideals of R . Now, if 
M is any maximal ideal of R, then RM is a 
Dedekind domain and ARM, BRM and CRM 
are ideals of RM. As R is an almost 
Noetherian domain, we get RM is a 
Noetherian domain and hence by Theorem 
٢.٣, we have 
ARM (BRM ∩ CRM) = ARMBRM ∩ ARMCRM. 

Then, using Theorem (١)٢.١ and 

Proposition ٣.٢ we get 
 (A(B∩C))RM = (AB ∩ AC)RM 

and by Theorem ٢.٢, we get 
A(B∩C) = AB ∩ AC. 

     Convesely, suppose that 
A(B∩C) = AB ∩ AC, for all ideals A, B and 
C of R and to show that R is an almost 
Dedekind domain. Let M be any maximal 
ideal of R, so that RM is a Noetherian 
domain. If A′, B′ and C′ are any ideals 
of RM, then there exist ideals A, B and 
C of R such that A′= ARM, B′ = BRM and 
C′ = CRM, then by the given condition we 
have A(B∩C) = AB ∩ AC and by making 
the use of Theorem (١)٢.١, Proposition ٣.٢ 

and Theorem ٢.٢, we get 
ARM (BRM ∩CRM)= ARMBRM∩ARMCRM, 
that is,  
A′(B′∩C′) = A′B′ ∩ A′C′  and as RM is a 
Noetherian domain, 
 so by Theorem ٢.٣, we get RM is a 
Dedekind domain and hence R is an almost 
Dedekind domain. 
To prove (٣↔١), we use exactly the same 
technique as in the above and getting the 
result. Combining Theorem ٢.٤, Theorem 

٢.٥ and Theorem ٣.٣, we give the 
following corollary: 

Corollary ٣.٤: 
     If R is an almost Noetherian domain, then the 
following statements are equivalent: 

١. R is an almost Dedekind domain. 
٢. A(B∩C) = AB ∩ AC, for all ideals A, B and 

C of R. 
٣. (B+C)(B∩C) =AB, for all ideals A, B of R. 
٤. R is an arithmetical domain. 
٥. If A, B and C are ideals of R with A 

nonzero and contained in each maximal 
ideal of R such that any multiple of A  is a 
prime ideal, then AB = AC implies B = C. 

٦. R is semihereditary.      

Lemma ٣.٥: 
     If R is a valuation domain which is not a 
field, then the nonunits of R form a nonzero 
prime ideal of R. 

Proof: 
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Let P be the set of all nonunits of R. 
If P=٠, this means that the zero element ٠ is 
the only nonunit element of R and thus R is a 
field which is a ontradiction. Hence 
P≠٠. Clearly, P is a nonempty subset of R. 
Let a, b ∈  P and r ∈  R. If ar∉  P, then ar is 
a unit of R and hence a  is a unit of R, so 
that a∉P which is a contradiction. Thus 
a∉P. Similarly we can get that ra ∈  P. 
Also, if a-b∉P, then a-b is a unit of R 
and thus (a-b) x = ١, for some x ∈  R, then 

ax-bx=١. But since R is a valuation domain, 
so we have 〉〈⊆〉〈 ba  or 〉〈⊆〉〈 ab . 
If 〉〈⊆〉〈 ba , then 〉〈⊆〉〈∈ baax  and 
hence byax = , for some Ry∈ , then we 
get 1)( =− xyb , which means that b  is a 
unit of R and thus Pb∉  which is a 
contradiction and if 〉〈⊆〉〈 ab , then by 
using the same technique again we get a 
contradiction and so Pba ∈− . Hence P is 
a nonzero ideal of R and clearly P∉1 , so 
that RP ≠  and finally, suppose that 
for Rba ∈, , we have Pab∈ . If Pa∉  and 

Pb∉ , then both a and b are units of R and 
hence ab is a unit of R, so that Pab∉ , 
which is a contradiction and thus Pa∈  or 

Pb∈ . Hence P is a nonzero prime ideal of 
R.  

 

Lemma ٣.٦: 
     Let R be a valuation domain. If P is the set of 
all nonunits of R, then RP is not a field. 

Proof: 
By Lemma ٣.٥, P is a nonzero prime ideal 
of R and thus PRP is an ideal of RP. We will 
show that PRP is non trivial. Since 0≠P , so 
there exists Px∈≠0  and as P∉1 , we 

get PPRx
∈

1
. Now, if

1
0

1
=

x
, then there 

exists Pu∉  such that 0=ux . But Pu∉  
gives 0≠u and as R is integral domain we 
get 0=x  which is a contradiction and 

thus
1
0

1
≠

x
. Hence PRP ≠ ٠. If PRP= RP, 

then PPR∈
1
1 , so that 

m
p

=
1
1

, for some 

Pp∈  and Pm∉  and then there exists 
Pv∉  such that Pvpvm ∈=  and as P is a 

prime ideal we get Pv∈  or Pm∈ , which 
is a contradiction and so, PRP ≠ RP, that 
means PRP is non trivial ideal of RP. Hence 
RP is not a field.  

Lemma ٣.٧: 
     Let R be a valuation domain. If P is the set of 
all nonunits of R, then PRP is the set of all non 
units of RP. 

Proof: 
By Lemma ٣.٥, P is a nonzero prim ideal of 
R and thus PRP is a local ring with PRP as its 
unique maximal ideal and thus every 

element of PRP is a nonunit of RP and if 
m
a

 

is any nonunit of RP, then it must contained 
in some maximl ideal of RP and since PRP is 
the unique maximal ideal of RP, 

so PPR
m
a
∈ . Hence PRP is the set of all 

non units of RP. 

Lemma ٣.٨: 
     Let R  be a valuation ring. If P  is a prime 
ideal of R, then PR  is also a valuation ring. 

Proof: 
Let A′  and B′  are any ideals of PR , then 
there exist ideals A  and B  of R  such that 

PARA =′  and PBRB =′ . As R  is a 
valuation ring we have BA ⊆  or AB ⊆ , 
which in consequence give PP BRAR ⊆  or 

PP ARBR ⊆ , that is BA ′⊆′  or AB ′⊆′ . 
Hence PR  is a valuation ring. 

Lemma ٣.٩: 
     Let R  be an almost Noetherian domain 
which is not a field. If R  is a valuation domain 
and P  is the set of all nonunits of R , then P  is 
the only maximal ideal of R  and PR  is 
Noetherian. 

Proof: 
Let M  be any maximal ideal of R , then if 

Mx∈ , so x  is a nonunit of R  and hence 
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Px∈ , so that PM ⊆  and as M  is 
maximal, we get RP =  or PM = , but by 
Lemma ٣.٥, we have P  is prime, so 

RP ≠  and thus we get PM = , that means 
P  is the only maximal ideal of R  and as R  
is almost Noetherian, we get PR  is 
Noetherian.       

Lemma ٣.١٠: 
     Let R  be an almost Noetherian domain. If 
R  is a valuation domain and P  is the set of all 
nonunits of R , then PPR  is a principal ideal of 

PR . 

Proof: 
By Lemma ٣.٦, PR  is not a field and thus 

by Lemma ٣.٩, we have P  is a maximal 
ideal and hence a prime ideal of R  and PR  
is Noetherian and so by Lemma ٣.٨, PR  is 

a valuation domain and also by Lemma ٣.٧, 

PPR  is the set of all nonunits of PR  and as 

PR  is both Noetherian and valuation, by 
Theorem ٢.٦, we get PPR  is a principal 
ideal of PR .  
The last theorem of this paper is a 
generalization of Theorem ٢.٦, to almost 
Noetherian domains. 

Theorem ٣.١١: 
     If R is an almost Noetherian domain which is 
not a field, then the following statements are 
equivalent: 

١. R is a valuation domain. 
٢. The non units of R form a nonzero 

principal ideal of R. 
٣. R is integrally closed and has exactly one 

nonzero proper prime ideal. 

Proof: 
(٢↔١) 
Let R  be a valuation domain and let P  be 
the set of all nonunits of R . By Lemma 
٣.٥, P  is a nonzero prime ideal of R . Then, 

by Lemma ٣.١٠, PPR  is 

a principal ideal ideal of PR , so let 

〉〈=
y
xPRP , for some PR

y
x
∈ . To 

show 〉〈= xP . Now,  
b
a

y
x
=  for some 

Pa∈  and Pb∉ , so that there exists Pq∉  
such that Pqyaqxb ∈=  and as P  is a 
prime ideal and Pqb∉ , so Px∈  and 
hence Px ⊆〉〈 . Next, let Pp∈ , then 

〉〈=∈
y
xPRp

P1
 and hence 

y
x

s
rp

=
1

, for 

some PR
s
r
∈ , then there exists Pu∉  such 

that usypupsyurx == . As Pysu ∉,, , 
we get Pusy∉  and hence usy  is a unit of 

R , that means Rusy ∈−1)( , then we get 

〉〈∈== −− xurxusyusypusyp 11 )()( . 
 Hence 〉〈⊆ xP  and thus 〉〈= xP  as 
required. 
To prove (٣↔٢) 
Suppose that the nonunits of R  form a 
nonzero principal ideal of R  and let us 
denote it by P . By Theorem ٢.٨, R  is a 
local ring and since R  is an almost 
Noetherian domain, so by Theorem ٢.٩, R  
is a Noetherian domain. As R  is not a field 
and the nonunits of R  form a nonzero 
principal ideal of R , so by Theorem ٢.٦, we 
have R  is integrally closed and has exactly 
one nonzero proper prime ideal.  
To prove (١↔٣) 
Suppose that R  is integrally closed and has 
exactly one nonzero proper prime ideal and 
thus R  must be a local ring and since it is an 
almost Noetherian domin, so it is a 
Noetherian domain which is also not a field, 
thus by Theorem ٢.٦, we get that R  is a 
valuation domain. 
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