More Results on Almost Noetherian Domains

Adil Kadir Jabbar

Department of Mathematics, College of Science, University of Sulaimani, Sulaimani-Iraq.

Abstract

 In this paper we prove some theorems, the first states: If *R* is an almost Noetherian domain, then the following statements are equivalent: $-R$ is an almost Dedekind domain.

- *A(B∩C)*= *AB∩AC*, for all ideals *A*, *B* and *C* of R. - (*A*+*B*)(*A∩B*)= *AB*, for all ideals *A* and *B* of *R* and the second states: If *R* is an almost Noetherian domain which is not a field, then the following statements are equivalent: $-R$ is a valuation domain. - The nonunits of *R* form a nonzero principal ideal of *R*. - *R* is integrally closed and has exactly one nonzero proper prime ideal. In addition to the above some other results are proved.

$$
A(B \cap C) = AB \cap AC
$$
\n
$$
R
$$

مغلق تكامليا وتمتلك تماما مثاليا اوليا تاما ولا صفريا. بالاضافة الى النتائج اعلاه لقد تم البرهنة على بعض

قسم الرياضيات، كلية العلوم جامعة السليمانية السليمانية-العراق.

. Introduction

Let R be a commutative ring with identity and *S* is a nonempty subset of *R*, then *S* is called a multiplicative system in *R* if $0 \notin S$ and $a, b \in S$ implies that $ab \in S$ []. Define a relation (∼) on $R \times S$ as follows: For (a, r) , $(b, s) \in R \times S$, we let $(a, r) \sim (b, s)$ if and only if there exists

 $t \in S$ such that $t(as - br) = 0$. It is easy to show that (\sim) is an equivalence relation on $R \times S$. Then, denote the equivalence class of (*a*,*r*) by *r* $\frac{a}{a}$ [] (some times this equivalence class denoted by (a, r) []) and denote the set of all equivalence classes of $R \times S$ relative to the equivalence relation (\sim) by R_S , that is, we let

النتائج الاخرى.

and

for all

 $\{\stackrel{\alpha}{\text{--}}: (a, r) \in R \times S\}$ $R_S = \{ \frac{a}{r} : (a, r) \in R \times S \}$. Next, we define (+)

and (.) on R_S as follows:

st at bs t b s $\frac{a}{-} + \frac{b}{-} = \frac{at +}{}$ *st ab t b s* $\frac{a}{c}$ $\frac{b}{c}$ = $\frac{ab}{c}$, $\frac{a}{\cdot}$, $\frac{b}{\cdot} \in R_S$.

 $\frac{b}{t} \in R_S$ *s* It can be shown that these operations are welldefined and that $(R_S, +, .)$ forms a commutative ring with identity (In fact, *s ^s* is the identity element of R_S , for all $s \in S$) and this ring is called the total quotient ring of $R \mid$ 1 (this ring is also denoted by *S*- *R* and called the localization of *R* at the multiplicative system *S* []). Next, we mention to the following facts: If *R* is an integral domain, then R_S is a field (and hence an integral domain). If *A* is an ideal of *R*, then the a : $a \in A$, $s \in S$ } forms an ideal of R_S and

set $\{\leftarrow : a \in A, s \in S\}$ *s*

is denoted by AR_S [] and if A' is an ideal of R_S , then there exists an ideal *A* of *R* such that $A' =$ AR_S []. It is known that if *P* is a prime ideal of *R*, then *R-P* forms a multiplicative system in *R* and thus R_{R-P} is the total quotient ring of R and for the sake of simplicity we denote R_{R-P} just by

 R_P , so that $R_P = \{$ *m a* ∴*a* ∈*R*, *m* ∉*P*}. Also, in this

case PR_P is the unique prime ideal of R_P and hence it is the only maximal ideal of R_P which means that R_P is a local ring with PR_P as its unique maximal ideal, so that if *M* is a maximal ideal of *R*, then it is prime and thus the total

quotient ring of *R* is $R_M = \{$ *m* $\frac{a}{a}$: $a \in R$, $m \notin M$.

. Some Basic Definitions and Some Known Results:

 Before proving the main results of this paper, we restate some basic definitions. A commutative ring is called a Noetherian ring if the ideals in *R* satisfy the ascending chain condition or equivalently, if every ideal of *R* is finitely generated [] and by a Noetherian domain is meant a Noetherian integral domain []. An integral domain is said to be an almost Noetherian domain if R_M is Noetherian for each maximal ideal *M* of *R* []. If *A* is an ideal of a commutative ring *R*, then we define $A^- = \{x \in R_S:$ $xA \subseteq R$ [], where *S* is the set of all nonzero divisors of *R* and *A* is called an invertible ideal of *R* if $AA = R$ []. An integral domain *R* is called an almost Dedekind domain if R_M is Dedekind for each maximal ideal *M* of *R* []. A ring *R* is called an arithmetical ring if for all ideals *A*, *B*, *C* of *R* we have *A* ∩ (*B*+*C*) =*A*∩*B*+*A*∩*C* and by an arithmetical domain is meant an arithmetical ring which is also an integral domain []. A commutative ring is called hereditary if every ideal of *R* is projective [] and it is called semihereditary if every finitely generated ideal of *R* is projective []. An integral domain *R* is called a valuation domain if for any ideals *A*, *B* of *R* we have *A*⊆*B* or *B*⊆*A* []. A ring s called local if it has only one maximal idea and it is called semilocal if it contains a finite number of maximal ideals. Let *R* be a subring of a ring $R^{'}$, we say an element $b \in R'$ is integral over \overline{R} if there exists a positive integer *n* and *a a* ,..., $a_n \in R$ such that $a + a b + a b$, ..., $a_n b^{n-} + b^n = \lceil a_n \rceil$ if every element of R' is integral over R we say that R^{\prime} is integral over *R* and *R* is said to be integrally closed in *R′* if the elements of *R* are the only elements of $R[']$ which are integrally closed over *R* and *R* is said to be integrally closed if it is integrally closed in its total quotient ring [].

Next, we mention to the following results the proof of which can be found in the pointed references:

Theorem . : []

If *R* is a commutative ring with identity and *M* is a maximal ideal of *R*, then:

- . ($A \cap B$) $R_M = AR_M \cap BR_M$, for all ideals *A*, *B* of *R* and
- . ($A+B$) $R_M = AR_M + BR_M$, for all ideals *A*, *B* of *R*.

Theorem . : []

If *R* is a commutative ring with identity and *A*, *B* are ideals of *R*, then

 $A = B$ if and only if $AR_M = BR_M$, for each maximal ideal *M* of *R*.

Theorem . : []

Let *R* be a Noetherian domain, then the following conditions are equivalent:

- . *R* is a Dedekind domain.
- A ($C \cap B$) = $AB \cap BC$, for all ideals *A*, *B* and *C* of *R*.
- $(A+B)(C \cap B) = AB$, for all ideals A, B of R.

Theorem . : []

 If *R* is an almost Noetherian domain, then the following conditions are equivalent:

- . *R* is an almost Dedekind domain.
- . *R* is an arithmetical domain.
- . If *A*, *B* and *C* are ideals of *R* with *A* nonzero and contained in each maximal ideal of *R* such that any multiple of *A* is a prime ideal, then $AB = AC$ implies that $B = C$.

Theorem . : []

 If *R* is an almost Noetherian domain, then *R* is an almost Dedekind domain if and only if *R* is semihereditary.

Theorem . : []

 If *R* is a Noetherian domain which is not a field, then the following statements are equivalent:

- . *R* is a valuation domain.
- . Then nonunits of *R* form a nonzero principal ideal of *R*.
- . *R* is integrally closed and has exactly one nonzero proper prime ideal.

Theorem . : []

 If *R* is a Noetherian ring and *S* is a multiplicative system in R , then R_S is also Noetherian.

Theorem . :

Let R be a commutative ring with identity, then R is a local ring if and only if the nonunits of *R* form an ideal.

Theorem . :

 An almost Noetherian ring which is semilocal is Noetherian and hence an almost Noetherian ring which is local is Noetherian.

. The main Results:

 Before giving the main results of this paper, we prove some simple results which will help us to prove the main theorems.

Lemma . :

If *R* is a commutative ring with identity and *M* is a maximal ideal of *R*, then for each positive integr *n*

$$
\frac{\sum_{i=1}^{n} a_i b_i}{m} = \sum_{i=1}^{n} \frac{a_i}{m} \frac{b_i}{1}, \text{ for all } a_i, b_i \in R \text{ and}
$$

$$
m \notin M.
$$

$$
\sum_{i=1}^{n} a_i
$$

$$
\sum_{i=1}^{n} a_i
$$
 for all $a \in R$ and i

$$
\frac{i=1}{m} = \sum_{i=1}^{n} \frac{a_i}{m}
$$
, for all $a \in R$ and $m \notin M$.

Proof:

.We use mathematical induction on *n*. For *n=* , we have

$$
\frac{\sum_{i=1}^{1} a_i b_i}{m} = \frac{a_1 b_1}{m.1} = \frac{a_1}{m} \frac{b_1}{1} = \sum_{i=1}^{1} \frac{a_i}{m} \frac{b_i}{1}.
$$

Next, suppose that the result is true for *n*-, (where $n \geq 0$, that is

$$
\frac{\sum_{i=1}^{n-1} a_i b_i}{m} = \sum_{i=1}^{n-1} \frac{a_i}{m} \frac{b_i}{1}
$$

and to show the result is true for *n*. Now, we have

$$
\frac{\sum_{i=1}^{n} a_i b_i}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i + a_n b_n}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i + a_n b_n}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i + a_n b_n}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} = \sum_{i=1}^{n-1} \frac{a_i}{m} \frac{b_i}{1}.
$$
\nThus the result is proved.

. Take $b_i =$, for all *i* in () the result follows directely.

Proposition . :

If *R* is a commutative ring with identity and *M* is a maximal ideal of *R*, then, $(AB)R_M = AR_MBR_M$, for all ideals *A*, *B* of *R*.

Proof:

Let $y' \in (AB)R_M$, so $y' = \frac{x}{m}$ $y' = \frac{x}{x}$, for some *x*∈*AB* and *m*∉*M*, so there exists a positive integer *n* such that $x = \sum$ = *n i* $x = \sum a_i b_i$, for $a_i \in A$ 1

and $b_i \in B$ and then as $1 \notin M$, by using

Lemma . , we get that

$$
y'=\frac{x}{m}=\frac{\sum\limits_{i=1}^na_ib_i}{m}=\ \sum\limits_{i=1}^n\frac{a_i}{m}\frac{b_i}{1}\in AR_M\,BR_M\;.
$$

Thus $(AB)R_M \subseteq AR_M$ BR_M. Next, if $y' \in AR_MBR_M$, then there is a positive integer *k* such that

$$
y' = \sum_{i=1}^{k} \frac{a_i}{m_i} \frac{b_i}{q_i}, \text{ for } a_i \in A, b_i \in B
$$

and

$$
m_i \notin M , q_i \notin M .
$$

Then we get

$$
y' = \sum_{i=1}^{k} \frac{a_i}{m_i} \frac{b_i}{q_i} = \sum_{i=1}^{k} \frac{a_i b_i}{m_i q_i} \in (AB)R_M
$$

(Since $a_i b_i \in AB$ and $m_i q_i \notin M$, for all *i*) and so that $AR_MBR_M \subseteq (AB)R_M$. Hence (AB) *R_M* $=$ *AR_MBR_M*.

Now it is the time to give our first theorem

Theorem . :

If *R* is an almost Noetherian domain, then the following conditions are equivalent:

.*R* is an almost Dedekind domain.

- . *A*($B \cap C$) = $AB \cap AC$, for all ideals *A*,*B* and *C* of *R* .
- $(A + B)(A \cap B) = AB$, for all ideals A, B of R .

Proof:

First, we will prove (\leftrightarrow) .

Suppose that *R* is an almost Dedekind domain and *A*, *B*, *C* are ideals of *R* . Now, if *M* is any maximal ideal of *R*, then R_M is a Dedekind domain and *ARM*, *BRM* and *CRM* are ideals of *RM*. As *R* is an almost Noetherian domain, we get R_M is a Noetherian domain and hence by **Theorem**

$$
\cdot
$$
, we have

$$
AR_M(BR_M \cap CR_M) = AR_MBR_M \cap AR_MCR_M.
$$

Then, using **Theorem . ()** and

Proposition . we get

 $(A(B \cap C))R_M = (AB \cap AC)R_M$

and by **Theorem .** , we get

A($B \cap C$) = $AB \cap AC$.

Convesely, suppose that

 $A(B \cap C) = AB \cap AC$, for all ideals *A*, *B* and *C* of *R* and to show that *R* is an almost Dedekind domain. Let *M* be any maximal ideal of R , so that R_M is a Noetherian domain. If A' , B' and C' are any ideals of *RM*, then there exist ideals *A*, *B* and *C* of *R* such that $A^{'=} AR_M$, $B^{'} = BR_M$ and $C' = CR_M$, then by the given condition we have $A(B \cap C) = AB \cap AC$ and by making the use of **Theorem . ()**, **Proposition .**

and **Theorem .** , we get

 AR_{M} (*BR*_M ∩ *CR*_M)= $AR_{\text{M}}BR_{\text{M}}$ ∩ $AR_{\text{M}}CR_{\text{M}}$, that is, $A'(\overline{B'} \cap C') = A'B' \cap A'C'$ and as R_M is a

Noetherian domain,

so by **Theorem** \cdot , we get R_M is a Dedekind domain and hence *R* is an almost Dedekind domain.

To prove (\leftrightarrow) , we use exactly the same technique as in the above and getting the result. Combining **Theorem .** , **Theorem**

. and **Theorem .** , we give the following corollary:

Corollary . :

 If *R* is an almost Noetherian domain, then the following statements are equivalent:

- . *R* is an almost Dedekind domain.
- $A(B \cap C) = AB \cap AC$, for all ideals *A*, *B* and *C* of *R*.
- . $(B+C)(B\cap C) = AB$, for all ideals *A*, *B* of *R*.
- . *R* is an arithmetical domain.
- . If *A*, *B* and *C* are ideals of *R* with *A* nonzero and contained in each maximal ideal of *R* such that any multiple of *A* is a prime ideal, then $AB = AC$ implies $B = C$. . *R* is semihereditary.

Lemma . :

 If *R* is a valuation domain which is not a field, then the nonunits of *R* form a nonzero prime ideal of *R*.

Proof:

Let *P* be the set of all nonunits of *R*. If $P=$, this means that the zero element is the only nonunit element of *R* and thus *R* is a field which is a ontradiction. Hence *P*≠ . Clearly, *P* is a nonempty subset of *R*. Let *a*, $b \in P$ and $r \in R$. If $ar \notin P$, then *ar* is a unit of *R* and hence *a* is a unit of *R*, so that $a \notin P$ which is a contradiction. Thus $a \notin P$. Similarly we can get that $ra \in P$. Also, if $a-b \notin P$, then $a-b$ is a unit of R and thus $(a-b) x =$, for some $x \in R$, then $ax-bx=$. But since *R* is a valuation domain, so we have $\langle a \rangle \subseteq \langle b \rangle$ or $\langle b \rangle \subseteq \langle a \rangle$. If $\langle a \rangle \subseteq \langle b \rangle$, then $ax \in \langle a \rangle \subseteq \langle b \rangle$ and hence $ax = by$, for some $y \in R$, then we get $b(y-x) = 1$, which means that *b* is a unit of *R* and thus $b \notin P$ which is a contradiction and if $\langle b \rangle \subseteq \langle a \rangle$, then by using the same technique again we get a contradiction and so $a - b \in P$. Hence *P* is a nonzero ideal of *R* and clearly $1 \notin P$, so that $P \neq R$ and finally, suppose that for $a, b \in R$, we have $ab \in P$. If $a \notin P$ and $b \notin P$, then both *a* and *b* are units of *R* and hence *ab* is a unit of *R*, so that $ab \notin P$, which is a contradiction and thus $a \in P$ or $b \in P$. Hence *P* is a nonzero prime ideal of *R*.

Lemma . :

 Let *R* be a valuation domain. If *P* is the set of all nonunits of R, then R_P is not a field.

Proof:

By **Lemma .** , *P* is a nonzero prime ideal of *R* and thus PR_P is an ideal of R_P . We will show that PR_P is non trivial. Since $P \neq 0$, so there exists $0 \neq x \in P$ and as $1 \notin P$, we get $\frac{x}{1} \in PR_P$. Now, if $\frac{x}{1} = \frac{0}{1}$, then there exists $u \notin P$ such that $ux = 0$. But $u \notin P$ gives $u \neq 0$ and as *R* is integral domain we get $x = 0$ which is a contradiction and thus 1 0 1 $\frac{x}{1} \neq \frac{0}{1}$. Hence $PR_P \neq$. If $PR_P = R_P$,

then $\frac{1}{1} \in PR_P$, so that *m* $=\frac{p}{q}$ 1 $\frac{1}{1} = \frac{p}{q}$, for some $p \in P$ and $m \notin P$ and then there exists $v \notin P$ such that $vm = vp \in P$ and as *P* is a prime ideal we get $v \in P$ or $m \in P$, which is a contradiction and so, $PR_P \neq R_P$, that means *PRP* is non trivial ideal of *RP*. Hence *RP* is not a field.

Lemma . :

 Let *R* be a valuation domain. If *P* is the set of all nonunits of R , then PR_P is the set of all non units of *RP*.

Proof:

By **Lemma .** , *P* is a nonzero prim ideal of *R* and thus PR_P is a local ring with PR_P as its unique maximal ideal and thus every element of PR_P is a nonunit of R_P and if *m a* is any nonunit of R_P , then it must contained in some maximl ideal of R_p and since PR_p is the unique maximal ideal of *RP*, $\frac{a}{m} \in PR_P$ $\frac{a}{c} \in PR_P$. Hence *PR_P* is the set of all non units of *RP*.

Lemma . :

Let R be a valuation ring. If P is a prime ideal of R, then R_p is also a valuation ring.

Proof:

Let A' and B' are any ideals of R_p , then there exist ideals *A* and *B* of *R* such that $A' = AR_P$ and $B' = BR_P$. As *R* is a valuation ring we have $A \subseteq B$ or $B \subseteq A$, which in consequence give $AR_P \subseteq BR_P$ or $BR_P \subseteq AR_P$, that is $A' \subseteq B'$ or $B' \subseteq A'$. Hence R_p is a valuation ring.

Lemma . :

Let *R* be an almost Noetherian domain which is not a field. If *R* is a valuation domain and P is the set of all nonunits of R , then P is the only maximal ideal of R and R_p is Noetherian.

Proof:

Let M be any maximal ideal of R , then if $x \in M$, so *x* is a nonunit of *R* and hence

 $x \in P$, so that $M \subseteq P$ and as M is maximal, we get $P = R$ or $M = P$, but by **Lemma** ., we have P is prime, so $P \neq R$ and thus we get $M = P$, that means *P* is the only maximal ideal of *R* and as *R* is almost Noetherian, we get R_p is Noetherian.

Lemma .١٠:

Let *R* be an almost Noetherian domain. If *R* is a valuation domain and *P* is the set of all nonunits of R , then PR_P is a principal ideal of R_p .

Proof:

By **Lemma** \ldots , R_p is not a field and thus by **Lemma** \ldots , we have *P* is a maximal ideal and hence a prime ideal of R and R_p is Noetherian and so by **Lemma** . , R_p is a valuation domain and also by **Lemma .** , PR_P is the set of all nonunits of R_P and as R_P is both Noetherian and valuation, by **Theorem** . , we get PR_P is a principal ideal of *RP* .

The last theorem of this paper is a generalization of **Theorem .** , to almost Noetherian domains.

Theorem .١١:

 If *R* is an almost Noetherian domain which is not a field, then the following statements are equivalent:

.*R* is a valuation domain.

.The non units of *R* form a nonzero principal ideal of *R*.

.*R* is integrally closed and has exactly one nonzero proper prime ideal.

Proof:

 (\leftrightarrow)

Let *R* be a valuation domain and let *P* be the set of all nonunits of *R* . By **Lemma .** , *P* is a nonzero prime ideal of *R* . Then, by **Lemma .١٠**, *PRP* is

a principal ideal ideal of *RP* , so let $=\langle \stackrel{\boldsymbol{\Lambda}}{-} \rangle$ $PR_P = \langle \frac{x}{y} \rangle$, for some $\frac{x}{y} \in R_P$ $\frac{x}{-} \in R_p$. To show $P = \langle x \rangle$. Now, $\frac{x}{y} = \frac{a}{b}$ *y* $\frac{x}{-} = \frac{a}{x}$ for some $a \in P$ and $b \notin P$, so that there exists $q \notin P$ such that $qxb = qya \in P$ and as *P* is a prime ideal and $qb \notin P$, so $x \in P$ and hence $\langle x \rangle \subseteq P$. Next, let $p \in P$, then $\in PR_P = \langle \stackrel{\pi}{\longrightarrow} \rangle$ *y* $\frac{p}{f}$ \in PR p $=$ $\left\langle \frac{x}{f} \right\rangle$ $\frac{P}{1} \in PR_P = \langle \frac{x}{y} \rangle$ and hence *y x* $\frac{p}{1} = \frac{r}{s} \frac{x}{y}$, for some $\frac{r}{s} \in R_P$ $T \in R_P$, then there exists $u \notin P$ such that $urx = upsy = usyp$. As $u, s, y \notin P$, we get $usv \notin P$ and hence usv is a unit of *R*, that means $(usy)^{-1} \in R$, then we get $p = (usy)^{-1}usyp = (usy)^{-1}urx \in \langle x \rangle$. Hence $P \subset \langle x \rangle$ and thus $P = \langle x \rangle$ as required.

To prove (\leftrightarrow)

Suppose that the nonunits of *R* form a nonzero principal ideal of *R* and let us denote it by P . By **Theorem** . , R is a local ring and since *R* is an almost Noetherian domain, so by **Theorem .** , *R* is a Noetherian domain. As *R* is not a field and the nonunits of *R* form a nonzero principal ideal of *R* , so by **Theorem .** , we have *R* is integrally closed and has exactly one nonzero proper prime ideal.

To prove
$$
(\leftrightarrow)
$$

Suppose that *R* is integrally closed and has exactly one nonzero proper prime ideal and thus *R* must be a local ring and since it is an almost Noetherian domin, so it is a Noetherian domain which is also not a field,

thus by **Theorem** . , we get that R is a valuation domain.

References

. Hersteien, N. $\qquad \qquad$, Topics in Algebra, Vikas Publishing House PVT LTD, $Pp - -$

- . Larsen, M. D. and McCarthy, P. J. *Multiplicative Theory of Ideals, Academic press*, New York and London, p P, $P, P, P, P, P, P, P, p, p,$ p , p .
- . Aschenbrenner, M. **Bounds** and definability in polynomial rings, arXiv: math, $Pp -$.
- . Jabbar, A. K., **On Locally** Noetherian Rings, M. Sc. Thesis, University of Baghdad, P .
- . Kaplansky, I. **١٩٧٤**, *Commutative Rings*, University of Chicago press, Chicago and London, p .
- . Zariski, O. and Samuel, P. *Commutative Algebra*, New York D. Van Nostrand, Vol. I, p
- . Ali, M. M. and D. Smith, J. Generlaized GCD Rings II, *Contributions to Algebra and Geometry* (\cdot): - .
- . A. K. Jabbar, **1. Almost Noetherian** domains which are almost Dedekind, *KAJ*, $()$ Part A: $-$.
- . S. Kabbaj and A. Mimouni, Class Semigroups of Integal Domains, *Journal of Algebra*, (), , -