More Results on Almost Noetherian Domains

Adil Kadir Jabbar

Department of Mathematics, College of Science, University of Sulaimani, Sulaimani-Iraq.

Abstract

In this paper we prove some theorems, the first states: If R is an almost Noetherian domain, then the following statements are equivalent: - R is an almost Dedekind domain.

- $A(B\cap C) = AB\cap AC$, for all ideals A, B and C of R. - $(A+B)(A\cap B) = AB$, for all ideals A and B of R and the second states: If R is an almost Noetherian domain which is not a field, then the following statements are equivalent: - R is a valuation domain. - The nonunits of R form a nonzero principal ideal of R. - R is integrally closed and has exactly one nonzero proper prime ideal. In addition to the above some other results are proved.

$$R : \\ A(B \cap C) = AB \cap AC - . \qquad R - : \\ R (A, B) \qquad (A+B)(A \cap B) = AB - .R (A, B, C) \\ : \qquad \qquad R : \\ R - .R \qquad \qquad R - . \qquad$$

. Introduction

Let *R* be a commutative ring with identity and *S* is a nonempty subset of *R*, then *S* is called a multiplicative system in *R* if $0 \notin S$ and $a, b \in S$ implies that $ab \in S$ []. Define a relation (~) on $R \times S$ as follows: For $(a, r), (b, s) \in R \times S$, we let $(a, r) \sim (b, s)$ if and only if there exists $t \in S$ such that t(as - br) = 0. It is easy to show that (~) is an equivalence relation on $R \times S$. Then, denote the equivalence class of (a,r) by $\frac{a}{r}$ [] (some times this equivalence class denoted by (a, r) []) and denote the set of all equivalence classes of $R \times S$ relative to the equivalence relation (~) by R_S , that is, we let $R_S = \{\frac{a}{r} : (a, r) \in R \times S\}.$ Next, we define (+)

and (.) on R_S as follows:

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}$$
$$\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st},$$

for all

and

$$\frac{a}{s}, \frac{b}{t} \in R_S$$

It can be shown that these operations are welldefined and that $(R_s, +, .)$ forms a commutative ring with identity (In fact, $\frac{s}{s}$ is the identity element of R_s , for all $s \in S$) and this ring is called the total quotient ring of R [] (this ring is also denoted by $S^- R$ and called the localization of R at the multiplicative system S []). Next, we mention to the following facts: If R is an integral domain, then R_s is a field (and hence an integral domain). If A is an ideal of R, then the set $\{\frac{a}{s} : a \in A, s \in S\}$ forms an ideal of R_s and

is denoted by AR_S [] and if A' is an ideal of R_S , then there exists an ideal A of R such that $A' = AR_S$ []. It is known that if P is a prime ideal of R, then R-P forms a multiplicative system in R

for the sake of simplicity we denote R_{R-P} just by R_P , so that $R_P = \{\frac{a}{m} : a \in R, m \notin P\}$. Also, in this

and thus R_{R-P} is the total quotient ring of R and

case PR_P is the unique prime ideal of R_P and hence it is the only maximal ideal of R_P which means that R_P is a local ring with PR_P as its unique maximal ideal, so that if M is a maximal ideal of R, then it is prime and thus the total

quotient ring of R is
$$R_M = \{ \frac{a}{m} : a \in R, m \notin M \}.$$

. Some Basic Definitions and Some

Known Results:

Before proving the main results of this paper, we restate some basic definitions. A commutative ring is called a Noetherian ring if the ideals in R satisfy the ascending chain condition or equivalently, if every ideal of R is finitely generated [] and by a Noetherian domain is meant a Noetherian integral domain []. An integral domain is said to be an almost Noetherian domain if R_M is Noetherian for each maximal ideal M of R []. If A is an ideal of a commutative ring *R*, then we define $A^- = \{x \in R_S:$ $xA \subseteq R$ [], where S is the set of all nonzero divisors of R and A is called an invertible ideal of R if $AA^{-} = R$ []. An integral domain R is called an almost Dedekind domain if R_M is Dedekind for each maximal ideal M of R []. A ring R is called an arithmetical ring if for all ideals A, B, C of R we have $A \cap (B+C) = A \cap B + A \cap C$ and by an arithmetical domain is meant an arithmetical ring which is also an integral domain []. A commutative ring is called hereditary if every ideal of R is projective [] and it is called semihereditary if every finitely generated ideal of R is projective []. An integral domain R is called a valuation domain if for any ideals A, B of R we have $A \subseteq B$ or $B \subseteq A$ []. A ring s called local if it has only one maximal idea and it is called semilocal if it contains a finite number of maximal ideals. Let R be a subring of a ring R, we say an element $b \in R'$ is integral over R if there exists a positive integer n and a $a, \ldots, a_{n-} \in R$ such that a + a b + a b,..., $+ a_{n-} b^{n-} + b^n = []$ and if every element of R' is integral over R we say that R' is integral over R and R is said to be integrally closed in R' if the elements of R are the only elements of R' which are integrally closed over R and R is said to be integrally closed if it is integrally closed in its total quotient ring [].

Next, we mention to the following results the proof of which can be found in the pointed references:

Theorem . :[]

If R is a commutative ring with identity and M is a maximal ideal of R, then:

- $(A \cap B) R_M = AR_M \cap BR_M$, for all ideals A, B of R and
- $(A+B) R_M = AR_M + BR_M$, for all ideals A, B of R.

Theorem . :[]

If R is a commutative ring with identity and A, B are ideals of R, then

A = B if and only if $AR_M = BR_M$, for each maximal ideal M of R.

Theorem . :[]

Let R be a Noetherian domain, then the following conditions are equivalent:

- . *R* is a Dedekind domain.
- $A(C \cap B) = AB \cap BC$, for all ideals A, B and C of R.
- $(A+B)(C\cap B) = AB$, for all ideals A, B of R.

Theorem . :[]

If *R* is an almost Noetherian domain, then the following conditions are equivalent:

- . *R* is an almost Dedekind domain.
- . *R* is an arithmetical domain.
- . If A, B and C are ideals of R with A nonzero and contained in each maximal ideal of R such that any multiple of A is a prime ideal, then AB = AC implies that B = C.

Theorem . :[]

If R is an almost Noetherian domain, then R is an almost Dedekind domain if and only if R is semihereditary.

Theorem . :[]

If *R* is a Noetherian domain which is not a field, then the following statements are equivalent:

- . *R* is a valuation domain.
- . Then nonunits of *R* form a nonzero principal ideal of *R*.
- *. R* is integrally closed and has exactly one nonzero proper prime ideal.

Theorem . :[]

If R is a Noetherian ring and S is a multiplicative system in R, then R_S is also Noetherian.

Theorem . :

Let R be a commutative ring with identity, then R is a local ring if and only if the nonunits of R form an ideal.

Theorem . :

An almost Noetherian ring which is semilocal is Noetherian and hence an almost Noetherian ring which is local is Noetherian.

. The main Results:

Before giving the main results of this paper, we prove some simple results which will help us to prove the main theorems.

Lemma . :

If R is a commutative ring with identity and M is a maximal ideal of R, then for each positive integr n

$$\sum_{i=1}^{n} a_i b_i$$

$$\sum_{i=1}^{n} a_i \frac{b_i}{m}, \text{ for all } a_i, b_i \in R \text{ and}$$

$$m \notin M.$$

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} \frac{a_i}{m}, \text{ for all } a \in R \text{ and } m \notin M.$$

Proof:

. We use mathematical induction on n. For $n^{=}$, we have

$$\frac{\sum_{i=1}^{l} a_i b_i}{m} = \frac{a_1 b_1}{m \cdot 1} = \frac{a_1}{m} \frac{b_1}{1} = \sum_{i=1}^{l} \frac{a_i}{m} \frac{b_i}{1}$$

Next, suppose that the result is true for n-, (where $n \ge$), that is

$$\frac{\sum_{i=1}^{n-1} a_i b_i}{m} = \sum_{i=1}^{n-1} \frac{a_i}{m} \frac{b_i}{1}$$

and to show the result is true for *n*. Now, we have

$$\frac{\sum_{i=1}^{n} a_i b_i}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i + a_n b_n}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i + a_n b_n}{m} \frac{m}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} \frac{m}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} + \frac{a_n b_n}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} \frac{m}{n} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} + \frac{a_n b_n}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} \frac{m}{n} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} + \frac{a_n b_n}{m} + \frac{a_n b_n}{m} = \frac{\sum_{i=1}^{n-1} a_i b_i}{m} + \frac{a_n b_n}{m} + \frac{a_n b_n}{m$$

. Take $b_i =$, for all *i* in () the result follows directely.

Proposition . :

If *R* is a commutative ring with identity and *M* is a maximal ideal of *R*, then, $(AB)R_M = AR_MBR_M$, for all ideals *A*, *B* of *R*.

Proof:

Let $y' \in (AB)R_M$, so $y' = \frac{x}{m}$, for some $x \in AB$ and $m \notin M$, so there exists a positive integer n such that $x = \sum_{i=1}^n a_i b_i$, for $a_i \in A$ and $h \in R$ and then as $1 \notin M$, by using

and $b_i \in B$ and then as $1 \notin M$, by using

Lemma . , we get that

$$y' = \frac{x}{m} = \frac{\sum_{i=1}^{n} a_i b_i}{m} = \sum_{i=1}^{n} \frac{a_i}{m} \frac{b_i}{1} \in AR_M BR_M$$

Thus $(AB)R_M \subseteq AR_M BR_M$. Next, if $y' \in AR_M BR_M$, then there is a positive integer k such that

$$y' = \sum_{i=1}^{k} \frac{a_i}{m_i} \frac{b_i}{q_i}$$
, for $a_i \in A, b_i \in B$

and

$$m_i \not \in M \,, q_i \not \in M$$
 .

Then we get

$$y' = \sum_{i=1}^{k} \frac{a_i}{m_i} \frac{b_i}{q_i} = \sum_{i=1}^{k} \frac{a_i b_i}{m_i q_i} \in (AB)R_M$$

(Since $a_i b_i \in AB$ and $m_i q_i \notin M$, for all *i*) and so that $AR_M BR_M \subseteq (AB)R_M$. Hence $(AB) R_M = AR_M BR_M$.

Now it is the time to give our first theorem

Theorem . :

If *R* is an almost Noetherian domain, then the following conditions are equivalent:

.*R* is an almost Dedekind domain.

- . $A(B \cap C) = AB \cap AC$, for all ideals A, B and C of R.
- $(A+B)(A \cap B) = AB$, for all ideals A, B of R.

Proof:

First, we will prove (\leftrightarrow).

Suppose that R is an almost Dedekind domain and A, B, C are ideals of R. Now, if M is any maximal ideal of R, then R_M is a Dedekind domain and AR_M , BR_M and CR_M are ideals of R_M . As R is an almost Noetherian domain, we get R_M is a Noetherian domain and hence by **Theorem**

$$AR_M (BR_M \cap CR_M) = AR_M BR_M \cap AR_M CR_M.$$

Then, using **Theorem** . () and

Proposition . we get

 $(A(B\cap C))R_{\rm M} = (AB \cap AC)R_{\rm M}$

and by Theorem . , we get

 $A(B\cap C) = AB \cap AC.$

Convesely, suppose that

 $A(B\cap C) = AB \cap AC$, for all ideals A, B and C of R and to show that R is an almost Dedekind domain. Let M be any maximal ideal of R, so that R_M is a Noetherian domain. If A', B' and C' are any ideals of R_M , then there exist ideals A, B and C of R such that $A' = AR_M$, $B' = BR_M$ and $C' = CR_M$, then by the given condition we have $A(B\cap C) = AB \cap AC$ and by making the use of **Theorem** . (), **Proposition** .

and Theorem . , we get

 $AR_{\rm M} (BR_{\rm M} \cap CR_{\rm M}) = AR_{\rm M}BR_{\rm M} \cap AR_{\rm M}CR_{\rm M},$ that is, $A'(B' \cap C') = A'B' \cap A'C'$ and as B is

 $A'(B' \cap C') = A'B' \cap A'C'$ and as R_M is a Noetherian domain,

so by **Theorem** . , we get $R_{\rm M}$ is a Dedekind domain and hence *R* is an almost Dedekind domain.

To prove (\leftrightarrow), we use exactly the same technique as in the above and getting the result. Combining **Theorem** . , **Theorem**

. and **Theorem** . , we give the following corollary:

Corollary . :

If *R* is an almost Noetherian domain, then the following statements are equivalent:

- . *R* is an almost Dedekind domain.
- $A(B \cap C) = AB \cap AC$, for all ideals A, B and C of R.
- $(B+C)(B\cap C) = AB$, for all ideals A, B of R.
- . *R* is an arithmetical domain.
- . If A, B and C are ideals of R with A nonzero and contained in each maximal ideal of R such that any multiple of A is a prime ideal, then AB = AC implies B = C. . R is semihereditary.

Lemma . :

If R is a valuation domain which is not a field, then the nonunits of R form a nonzero prime ideal of R.

Proof:

Let P be the set of all nonunits of R. If P=, this means that the zero element is the only nonunit element of R and thus R is a field which is a ontradiction. Hence $P \neq$. Clearly, P is a nonempty subset of R. Let $a, b \in P$ and $r \in R$. If $ar \notin P$, then ar is a unit of R and hence a is a unit of R, so that $a \notin P$ which is a contradiction. Thus $a \notin P$. Similarly we can get that $ra \in P$. Also, if $a - b \notin P$, then a - b is a unit of R and thus (a-b) x =, for some $x \in R$, then ax-bx=. But since R is a valuation domain, so we have $\langle a \rangle \subseteq \langle b \rangle$ or $\langle b \rangle \subseteq \langle a \rangle$. If $\langle a \rangle \subseteq \langle b \rangle$, then $ax \in \langle a \rangle \subseteq \langle b \rangle$ and hence ax = by, for some $y \in R$, then we get b(y-x) = 1, which means that b is a unit of R and thus $b \notin P$ which is a contradiction and if $\langle b \rangle \subseteq \langle a \rangle$, then by using the same technique again we get a contradiction and so $a - b \in P$. Hence P is a nonzero ideal of R and clearly $1 \notin P$, so that $P \neq R$ and finally, suppose that for $a, b \in R$, we have $ab \in P$. If $a \notin P$ and $b \notin P$, then both a and b are units of R and hence ab is a unit of R, so that $ab \notin P$, which is a contradiction and thus $a \in P$ or $b \in P$. Hence P is a nonzero prime ideal of R.

Lemma . :

Let *R* be a valuation domain. If *P* is the set of all nonunits of *R*, then R_P is not a field.

Proof:

By **Lemma** . , *P* is a nonzero prime ideal of *R* and thus *PR_P* is an ideal of *R_P*. We will show that *PR_P* is non trivial. Since $P \neq 0$, so there exists $0 \neq x \in P$ and $as 1 \notin P$, we get $\frac{x}{1} \in PR_P$. Now, if $\frac{x}{1} = \frac{0}{1}$, then there exists $u \notin P$ such that ux = 0. But $u \notin P$ gives $u \neq 0$ and as *R* is integral domain we get x = 0 which is a contradiction and thus $\frac{x}{1} \neq \frac{0}{1}$. Hence $PR_P \neq$. If $PR_P = R_P$, then $\frac{1}{1} \in PR_P$, so that $\frac{1}{1} = \frac{p}{m}$, for some $p \in P$ and $m \notin P$ and then there exists $v \notin P$ such that $vm = vp \in P$ and as *P* is a prime ideal we get $v \in P$ or $m \in P$, which is a contradiction and so, $PR_P \neq R_P$, that means PR_P is non trivial ideal of R_P . Hence R_P is not a field.

Lemma . :

Let *R* be a valuation domain. If *P* is the set of all nonunits of *R*, then PR_P is the set of all non units of R_P .

Proof:

By **Lemma** . , *P* is a nonzero prim ideal of *R* and thus PR_P is a local ring with PR_P as its unique maximal ideal and thus every element of PR_P is a nonunit of R_P and if $\frac{a}{m}$ is any nonunit of R_P , then it must contained in some maximl ideal of R_P and since PR_P is the unique maximal ideal of R_P , so $\frac{a}{m} \in PR_P$. Hence PR_P is the set of all non units of R_P .

Lemma . :

Let R be a valuation ring. If P is a prime ideal of R, then R_P is also a valuation ring.

Proof:

Let A' and B' are any ideals of R_P , then there exist ideals A and B of R such that $A' = AR_P$ and $B' = BR_P$. As R is a valuation ring we have $A \subseteq B$ or $B \subseteq A$, which in consequence give $AR_P \subseteq BR_P$ or $BR_P \subseteq AR_P$, that is $A' \subseteq B'$ or $B' \subseteq A'$. Hence R_P is a valuation ring.

Lemma . :

Let R be an almost Noetherian domain which is not a field. If R is a valuation domain and P is the set of all nonunits of R, then P is the only maximal ideal of R and R_P is Noetherian.

Proof:

Let M be any maximal ideal of R, then if $x \in M$, so x is a nonunit of R and hence

 $x \in P$, so that $M \subseteq P$ and as M is maximal, we get P = R or M = P, but by **Lemma** . , we have P is prime, so $P \neq R$ and thus we get M = P, that means P is the only maximal ideal of R and as Ris almost Noetherian, we get R_P is Noetherian.

Lemma . :

Let R be an almost Noetherian domain. If R is a valuation domain and P is the set of all nonunits of R, then PR_P is a principal ideal of R_P .

Proof:

By **Lemma** . , R_P is not a field and thus by **Lemma** . , we have P is a maximal ideal and hence a prime ideal of R and R_P is Noetherian and so by **Lemma** . , R_P is a valuation domain and also by **Lemma** . , PR_P is the set of all nonunits of R_P and as R_P is both Noetherian and valuation, by **Theorem** . , we get PR_P is a principal ideal of R_P .

The last theorem of this paper is a generalization of **Theorem** . , to almost Noetherian domains.

Theorem . :

If *R* is an almost Noetherian domain which is not a field, then the following statements are equivalent:

.*R* is a valuation domain.

The non units of R form a nonzero principal ideal of R.

. R is integrally closed and has exactly one nonzero proper prime ideal.

Proof:

 (\leftrightarrow)

Let R be a valuation domain and let P be the set of all nonunits of R. By **Lemma** . , P is a nonzero prime ideal of R. Then, by **Lemma** . , PR_P is a principal ideal ideal of R_P , so let $PR_P = \langle \frac{x}{y} \rangle$, for some $\frac{x}{y} \in R_P$. To show $P = \langle x \rangle$. Now, $\frac{x}{y} = \frac{a}{b}$ for some $a \in P$ and $b \notin P$, so that there exists $q \notin P$ such that $qxb = qya \in P$ and as P is a prime ideal and $qb \notin P$, so $x \in P$ and hence $\langle x \rangle \subseteq P$. Next, let $p \in P$, then $\frac{p}{1} \in PR_P = \langle \frac{x}{y} \rangle$ and hence $\frac{p}{1} = \frac{r}{s} \frac{x}{y}$, for some $\frac{r}{s} \in R_P$, then there exists $u \notin P$ such that urx = upsy = usyp. As $u, s, y \notin P$, we get $usy \notin P$ and hence usy is a unit of R, that means $(usy)^{-1} \in R$, then we get $p = (usy)^{-1}usyp = (usy)^{-1}urx \in \langle x \rangle$. Hence $P \subseteq \langle x \rangle$ and thus $P = \langle x \rangle$ as required.

To prove (\leftrightarrow)

Suppose that the nonunits of R form a nonzero principal ideal of R and let us denote it by P. By **Theorem** . , R is a local ring and since R is an almost Noetherian domain, so by **Theorem** . , R is a Noetherian domain. As R is not a field and the nonunits of R form a nonzero principal ideal of R, so by **Theorem** . , we have R is integrally closed and has exactly one nonzero proper prime ideal.

To prove (\leftrightarrow)

Suppose that R is integrally closed and has exactly one nonzero proper prime ideal and thus R must be a local ring and since it is an almost Noetherian domin, so it is a Noetherian domain which is also not a field, thus by **Theorem** . , we get that R is a

valuation domain.

References

. Hersteien, N. , *Topics in Algebra*, Vikas Publishing House PVT LTD, Pp - .

- . Larsen, M. D. and McCarthy, P. J. , *Multiplicative Theory of Ideals, Academic press*, New York and London, p P , P , P , P , P , P , p , p , p , p .
- . Aschenbrenner, M. , Bounds and definability in polynomial rings, arXiv: math, Pp .
- . Jabbar, A. K., , On Locally Noetherian Rings, M. Sc. Thesis, University of Baghdad, P .
- . Kaplansky, I. , *Commutative Rings*, University of Chicago press, Chicago and London, p .

- . Zariski, O. and Samuel, P. , *Commutative Algebra*, New York D. Van Nostrand, Vol. I, p .
- . Ali, M. M. and D. Smith, J. , Generlaized GCD Rings II, *Contributions* to Algebra and Geometry (): - .
- . A. K. Jabbar, , Almost Noetherian domains which are almost Dedekind, *KAJ*, () Part A: - .
- . S. Kabbaj and A. Mimouni, , Class Semigroups of Integal Domains, *Journal of Algebra*, (), , - .