

ACTIONS OF FINITE GROUPS ON COMMUTATIVE RINGS AND INVARIANT IDEALS

A. G Naoum, Wassan Kh. Al-Aubaidy

Department of Mathematics, College of science, Baghdad University. Baghdad- Iraq

Abstract

Let *R* be a commutative ring with \backslash , and let Aut(R) denote the group of ring automorphisms of *R*. We will usually consider a group $G \subseteq Aut(R)$. In this paper we will study the relation between G- invariant ideals and their traces. Also we study C.P modules and C.F modules.

تكن R حلقة إبدالية ذات عنصر محايد ١، ولتكن. G_ Aut(R) زمرة منتهية من التشاكلات المتقابلة الذاتية من R إلى R ذات رتبة n. في هذا البحث سوف ندرس العلاقة بين المثالي اللامتغاير بفعل G وأثره. كذلك سوف ندرس المقاسات من النمط C.P ومن النمط C.F.

Introduction

Let *R* be a commutative ring with $\,^{}$, and let *Aut*(*R*) denote the group of ring automorphisms of *R*. We shall usually consider a group $G \subseteq Aut(R)$. The identity automorphism will be denoted by *e*. The fixed subring of *G* on *R* is $R^G = \{r \in R; g(r) = r, \text{ for all } g \in G\}$. An ideal *I* of the ring *R* is called a G-invariant ideal if g(I) = I, for all $g \in G$.

In this paper we study the relation between Ginvariant ideals and their traces. On the other hand one can consider R as a module over R^G in the obvious way. In this paper we will study C.P modules and C.F modules. In fact we prove That if R is a Goldie ring that has no non-zero nilpotent elements and if R is a hereditary (flat) then R is a C.P (C.F) R^G -module.

We note finally that G in this paper is a finite group of order |G|=n.

). The trace of R **as** R^G -module

Let *R* be a ring, and let *G* be a group of automorphisms of *R*. Let R^G denotes the fixed ring of *R*, we consider *R* as an R^G -module in the obvious way. Note that $R^G \neq \cdot$. Moreover since $i \in R$, then *R* is a faithful R^G -module.

Proposition 1.1: Let *R* be any ring, and let *G* be a group of automorphisms of *R*. If *R* is a cyclic R^G -module, then $R = R^G$, and $G = \{e\}$. The converse is clear.

Proof: Since *R* is cyclic, then $\exists 0 \neq x \in R$, such that $R = R^G x$. But $\forall \in R$ Then $\exists 0 \neq y \in R^G$, such that $\forall = yx$. Thus *y* is invertible in *R*, and hence is Invertible in R^G .

Thus $\exists 0 \neq z \in \mathbb{R}^G$, such that $\exists yz$. Then x = xyz = z, which implies that $R = \mathbb{R}^G z \subseteq \mathbb{R}^G$, and hence $R = \mathbb{R}^G$.

Next we give the following definitions:

Definition 1.^{Υ}: Let *G* be a group of automorphisms of *R*, and let |G|=n, be the order of *G*. Assume |G| is invertible in *R*, hence is invertible in R^G . We define the trace of *R* to be the function $T(x) = \frac{1}{n} \sum_{i=1}^{n} g_i(x)$, for each $x \in R$, where $G = \{g := e_i, g_i, \dots, g_n\}$.

Remark 1.":

Note that $T(x) \in R^G$. Moreover, if one considers R as an R^G -module, then T is an R^G -module, homomorphism. Observe that $1 = \frac{1}{n} \sum_{i=1}^{n} g_i(1)$, and hence $T(R) = R^G$, and T(1) = 1.

Y. T(I) is an ideal in R^G ; for each ideal I in R.

For any ring S, recall that for an S-module M, trace $(M) = T_s(M) = \sum_f f(M)$, where the sum is taken overall $f \in M^* = Hom(M,S)$, [$\]$]. And the S-module M is called a generator, if $T_s(M) = S$, [$\]$]. Since the map $T: R \rightarrow R^G$ is an R^G homomorphism, then $T \in Hom_{R^G}(R, R^G)$

Moreover, by remark \uparrow .", if $|G|^{\neg} \in R$, then $T(R) = R^G$. Thus trace $R = T(R) = R^G$. Hence we have:

<u>Proposition</u> 1.4: Let *R* be any ring, and let *G* be a finite group of automorphisms of *R*. If $|G|^{-1} \in R$, then *R* is a generator as an R^G -module.

An *R* -module *M* is called a self-generator, if for every cyclic submodule $Ra; Ra = \sum_{\varphi} \varphi(M),$

where the sum is taken over all $\varphi:M \to Ra$. This implies that for each submodule N of M; $N = \sum_{\varphi:M \to N} \varphi(M)$ where the sum is taken over all

 $\varphi: M \rightarrow N$, [\P]. And a special self-generator, if for each cyclic submodule *N* of *M*, there exists $\varphi: M \rightarrow N$ such that $\varphi(M)=N$. Thus every special self-generator is a self-generator, [\P]. Hence we have the following:

<u>Proposition 1.9</u>: Let *R* be any ring, with $|G|^{-1} \in R$, then *R* is a special self-generator R^G - module.

<u>Proof:</u> Let $T: R \to R^G$ be defined by $T(x) = |G|^{-1} \sum_{i=1}^n g_i(x); \forall x \in R$, and let

 $\varphi_a: R^G \to R^G{}_{\alpha}$ be defined by $\varphi_a(r) = ra$, $\forall r \in R^G$. $\varphi_a \circ T$ is an R^G -homomorphism, and $(\varphi_a \circ T)(R^G) = R^G{}_{\alpha}$. An *R*-module *M* is called a cancellation module, if whenever AM=BM for some ideals A and B in *R*, then A = B, [11]. It is known that every faithful generator module is a cancellation module, [11], hence by proposition $1.\circ$, we have:

<u>Corollary 1.1</u>: *R* is a cancellation R^G -module, provided $|G|^2 \in R$.

Recall that an *R*-module *M* is called a multiplication module, if for each submodule *N* of *M*, N=IM for some ideal *I* of *R*, [^Y].

<u>Proposition 1.7</u>: Let *R* be any ring, and let *G* be a finite group of automorphisms of *R*. If *R* is a multi *R* plication R^G -module, With $|G|^{-1} \in R$ then *R* is a finitely generated R^G -module, and hence $E_{R^G}(R) = R^G$. Thus $E_{R^G}(R)$ is commutative.

Proof: *R* is a faithful R^G -module. Moreover, by corollary 1, 7, R is a cancellation R^G -module. Thus by [17], R is finitely generated. The last assertion follows from $[\Lambda]$.

Y. G-invariant ideals

In this section we study G-invariant ideals in R. In fact we study the relation between G-invariant ideals and their traces. First we start by the following definition.

Definition Y.1: Let *I* be an ideal in a ring *R*, and let *G* be a group of automorphisms of *R*. *I* is said to be G-invariant ideal of *R* or *G*-ideal. if $g(I)\subseteq I$, $\forall g \in G$. Equivalently g(I)=I, for each $g \in G$, where $g(I)=\{g(a); a \in I\}$.

Examples and remarks 7.7:

). If *I* is a G-invariant ideal, then $T(I) \subseteq I$. In fact, if $x \in T(I)$ then $x = \frac{1}{n} \sum_{k=1}^{n} g_k(a)$, for some $a \in I$, hence $x \in I$.

Y. For any set $I = \{a_i, a_i \in R^G, i \in \Lambda\}$, the ideal *RI* in *R* generated by the set *I* in a G-invariant ideal. In fact, if $x \in I$, then $x = \sum r_i a_i, r_i \in R, a_i \in I$.

Let $y \in T(RI)$, then $y = \frac{1}{n} \sum_{k=1}^{n} g_k(x)$, for some

 $x \in RI$. Hence

$$y = \frac{1}{n} \sum_{k=1}^{n} g_{k} \left(\sum_{i} r_{i} a_{i} \right) = \frac{1}{n} \sum_{i} \sum_{k=1}^{n} g_{k} (r_{i}) a_{i}, \text{ thus}$$

 $y \in RI$. Therefore $T(RI) \subseteq RI$.

". If I is any subset of \mathbb{R}^{G} , then $\operatorname{ann}_{\mathbb{R}}(I)$ is a Ginvariant ideal. In particular for each $x \in \mathbb{R}^{G}$, $am_{\mathbb{R}}(a)$ in G-invariant ideal. In fact, $\forall r \in am_{\mathbb{R}}(I)$, and $\forall x \in I$, $rx = \cdot$. Thus $\cdot = g(rx) = g(r)g(x) = g(r)x$, i.e. $g(r) \in am_{\mathbb{R}}(I)$.

- ξ . Note that every ideal of R^G is G-invariant ideal, but there are ideals not in as R^G , that are G-invariant as is seen by the following example. This example shows also that the trace of a G-invariant ideal may be $\{\cdot\}$.
- •. Let *F* be a field of characteristics \neq^{Y} , and let $R=F[x_1, x_r, ...]$ be the ring of polynomials in an infinite countable set of indetermines $x_1, x_7, ..., x_m$, with the relation $x_i \cdot x_j = \cdot \forall i, j$, in particular $x_i^r = \cdot$, \forall_i . Define $g : R \rightarrow R$ by $g(x_i)=-x_i, \forall i$ and $g(a)=a, \forall a \in F$, and then extend this action to all the elements of *R* in the obvious way to make *g* an automorphism of *g*. It is clear that g'=e, and if $G=\{e, g\}$ then $R^G=F$.

Now let $A = \{ax_1, a \in F\}$, then A is an ideal in R, A is a G-invariant ideal, since $g(ax_1)=g(a)g(x_1)=-ax_1$. However A is not contained in R^G . Note that $T(A)=\bullet$. Moreover, it is easily seen that every ideal in R is G-invariant, moreover, if $A_1=id(x_1)$, $A_7=id(x_7)$, then $T(A_1)=\bullet$, $T(A_7)=\bullet$ but $A_1 \neq A_7$.

The following theorem shows that under certain conditions, T(I) is not zero, but first we make the following simple remarks.

<u>Remark Y.Y:</u> If *I* is a G-invariant ideal in *R*, then $T(I)=I \cap R^G$.

<u>Remark Y.</u>^{ξ}: Let *I* be a subset of R^G . And let *RI*. R^GI be the ideals generated by *I* in *R* and R^G respectively, then $T(RI) = R^GI$.

We observed in (I) (example \circ) that T(I) may be zero even if I is G-invariant. The following theorem shows that under certain conditions, T(I) is not zero.

Theorem (Bergman-Issacs) Y.o. [V]

Let *R* be any ring with no non zero nilpotent elements, and let *I* be a non zero G-invariant ideal of *R*, with $|G|^{-1} \in R$, then $T(I) \neq \{\cdot\}$. We need the following stronger result:

Proposition $\check{}$ **.** $\check{}$ **.** $[\check{}$ **"**]: Let *R* be any ring which has no non-zero nilpotent elements, and $|G|^{-1} \in R$, then *T*(*I*) does not vanish for any non-zero ideal *I* of *R*.

<u>Proof:</u> Suppose $T(I) = \cdot$, then $T(a) = \cdot$, for all $a \in I$. Let

$$J = \sum_{k=1}^{n} g_{k} \left(I \right) = \left\{ \sum_{k=1}^{n} g_{k} \left(a \right), a \in I \right\}$$

Then it is easily checked that J is a G-invariant non-zero ideal of R. with $T(J)=\{\cdot\}$. Thus by theorem $\forall .\circ, J=\{\cdot\}$, which is a contradiction. Observe that example $\forall . \forall$ (°) shows that theorem $\forall .\circ$ is false if the ring R has nilpotent elements.

<u>Note</u>: We will assume in what follows, that *R* is a ring with *G* a subgroup of Aut(R), and $|G|^{-1} \in R$, unless otherwise stated.

Proposition Y.Y: Let *I* be a G-invariant ideal of *R*. if *I* is a prime ideal in *R*. then T(I) is a prime ideal in R^G .

<u>Proof:</u> Let $a, b \in \mathbb{R}^G$, such that $a \cdot b \in T(I)$. Since I is G-invariant, then $a \cdot b \in I$, hence either $a \in I$ or $b \in I$. Assume $a \in I$ then $a \in I \cap \mathbb{R}^G$. And by remark $\mathfrak{f}, \mathfrak{f}, a \in T(I)$.

Corollary Y.A. [11]: Let *I* be a subset of R^G , and let *RI*, R^GI be the ideals, generated by *I* in *R* and R^G respectively. if *RI* is a prime ideal in *R* then R^GI is a prime ideal in R^G .

<u>Proof:</u> By remark Υ . ξ , $T(RI) = R^G I$, and hence by proposition Υ . Υ , $R^G I$ Is Prime.

<u>Proposition Y.4</u>: Let *I* be a maximal ideal in *R*, then T(I) is a maximal ideal in R^{G} .

<u>Proof:</u> Let $y \in R^G$, and $y \notin T(I)$, then y = T(y), and hence $y \notin I$. Since *I* is maximal in *R*, then R = Ry + I. Hence 1 = ry + m, where $r \in R$, $m \in I$.

Now 1 = T(1) = T(ry) + T(m) = T(r)y + T(m), and thus $R^G = R^G y + T(I)$ which implies that T(I) is a maximal ideal in R^G .

Corollary Y.V.: Let *I* be a subset of R^G , and let *RI*, $R^G I$ be the ideals generated by *I* in *R* and R^G respectively. If *RI* is maximal in *R*, then $R^G I$ is maximal in R^G .

The converse of proposition Υ . \P is not true even if *I* is G-invariant as example (\circ) in remark Υ . Υ shows.

". small ideals and essential ideals

In this section we study the relation between small (essential) ideals in R and small (essential) ideals in R^{G} respectively.

Recall that an ideal I of a ring R is small, if whenever I + J = R, where J is ideal in R, then J=R, [¹]. We have the following result. **Proposition ". 1:** Let *I* be a G-invariant ideal in *R*. if *I* is small in *R*, then T(I) is small in R^G . The converse is true if every ideal in *R* Is G-invariant.

Proof: Let *I* be a small ideal in *R*, to prove T(I) is small in R^G . Let $T(I)+J=R^G$, where *J* is an ideal in R^G . Hence 1=T(a)+b, where $a \in I$ and $b \in J$. Since *I* is G-invariant, then $T(I) \subseteq I$, hence $\forall x \in R$, x = x(T(a)+b), and thus R = I + RJ. But *I* is small in *R*, then RJ = R. Now, $J = R^G J = T(RJ) = T(R) = R^G$. Thus T(I) is small in R^G .

To prove the converse, let I + K = R, where Kis an ideal in R. Then $T(I)+ T(K)= T(R)=R^G$, thus $T(I)+K \cap R^G = R^G$. But T(I) is small in R^G , then $K \cap R^G = R^G$, hence $K \supseteq R^G$. But $1 \in R^G$, then $1 \in K$, and K = R.

Corollary \P . \P : Let *I* be a subset of R^G , and let $RI ext{ . } R^GI$ be the ideals generated by *I* in *R* and R^G respectively. If *RI* is small in *R*, then R^GI is small in R^G . The converse is true if every ideal in *R* is G-invariant.

Let us say that a ring R satisfies (A.C.C.) on small ideals if every ascending chain of small ideals is stationary.

Corollary $\P.\P$: Let *R* be a ring that satisfies A.C.C. on small ideals. If ever ideal in *R* is G-invariant, then *R* satisfies A.C.C. on small ideals.

Proof: Let $I_1 \subseteq I_2 \subseteq ... \subseteq I_n \subseteq ...$ be an ascending chain of small ideals in R, and let $RI_1, RI_2, ..., RI_n, ...$ be the ideals in R generated by $I_1, I_2, ..., I_n, ...$ respectively. Hence $RI_1 \subseteq RI_2 \subseteq ... \subseteq RI_n \subseteq ...$ is an ascending chain of small ideals in R (by proposition (, ,)). Then $\exists k \in N$, such that $RI_k = RI_{k+1} = ...$, hence $T(RI_K) = T(RI_{K+1}) = ...$, and by remark $(, \xi)$, $R^GI_k = R^GI_{k+1} = ...$.

The converse of corollary "." is false. In remark "." example (°) $\forall n \in N$, let $I_n = id \{x_1, x_2, ..., x_n\}$. Then $I_1 \subseteq I_2 \subseteq ... \subseteq I_n \subseteq ...$ Each of the ideals I_n is small. In fact, if $I_n + J = R$, where J is an ideal in R, then $1 = a_1x_1 + a_2x_2 + ... + a_nx_n + b$ where $b \in J$, and $a_i \in F$, $I \le i \le n$. Thus $b = 1 - \sum_{i=1}^n a_i x_i$. It is easily seen that b is invertible in R, in fact $b^{-1} = 1 + \sum_{i=1}^{n} a_i x_i$, thus J=R. This shows that R does not satisfy A.C.C. on small ideals.

However $R^G = F$ satisfies this condition.

Recall that an ideal *I* of a ring *R* is said to be essential, if whenever $I \cap J = \cdot$, where *J* is an ideal in *R* implies that $J = \cdot$. Equivalently, *I* is essential if and only if $\forall \cdot \neq r \in R$, $\exists t \in R$, such that $\cdot \neq rt \in I$, $[\uparrow t]$.

We have the following result:

Proposition \P **.** \mathfrak{t} **:** Let *R* be any ring which has no non-zero nilpotent elements. If *I* is an essential ideal in *R*, then *T*(*I*) is an essential ideal in R^G . The converse is true if *I* is G-invariant.

Proof: Let *I* be an essential ideal in *R*, and let $\not = x \in \mathbb{R}^G$, then $x \in \mathbb{R}$, hence $\exists y \in \mathbb{R}$, such that $\not = xy \in I$. Let A = id(xy) in *R*, then by proposition $\forall . \forall \exists a \in A$, such that $T(a) \neq 0$. Hence $\exists r \in \mathbb{R}$, such that a = rxy, thus $0 \neq T(rxy) = xT(ry) \in T(I)$.

Now let T(I) be an essential ideal in R, and let $0 \neq x = R$. Let B = id(x) in R, then by proposition $``.", \exists b \in B$, such that $0 \neq T(b)$ in R^{G} . But T(I) is essential in R, thus $\exists 0 \neq y \in R$ such that $0 \neq yT(b) \in T(I)$. Hence $0 \neq T(yrx)$, thus $yrx \in I$, since if $yrx \notin I$, then $T(yrx) \notin T(I)$, and $yrx \neq 0$, for if yrx = 0, then 0 = T(yrx) = yT(rx), a contradiction, hence I is essential in R.

Corollary ".•: Let *R* be any ring which has no non-zero nilpotent elements. Let *I* be a subset of R^G , and let *RI*, R^GI be the ideals generated by *I* in *R* and R^G respectively, then R^GI is essential in R^G iff *RI* is essential in *R*.

٤. Annihilator ideals

In this section we study annihilator ideals. First we recall the following definition.

Definition \pounds **.** I: An ideal *I* of a ring *R* is called an annihilator ideal, if *I* is the annihilator of some subset of *R*.

Note that if $I = ann_{R}(S)$, for some subset of R. then I = ann(RS).

It is well known, and is easy to check, that I is an annihilator ideal in R if and only if I = ann ann(I), $[1^{\xi}]$. We prove the following theorem:

Theorem t.Y: Let *I* be a subset of R^G . and let *RI*, $R^G I$ be the ideals generated by *I* in *R* and R^G respectively. If $R^G I$ is an annihilator ideal in R^G , then *RI* is an annihilator ideal in *R*. The converse is true if *R* has no non-zero nilpotent elements.

Proof: Let $R^G I = am_{R^G}(S)$, where S is a subset of R^G . We claim that $RI = am_{R}(RS)$, where RS is the ideal in R generated by S. Let $a \in I$, then $a \in R^G I$, thus a(RS) = (aS)R = 0, hence $RI \subseteq am(RS)$.

Now let $x \in ann(RS)$, then xRS = 0, and xS = 0. Thus T(x)S = 0 and $T(x) \in ann_{R^G}(S)$. Therefore, $T(x) \in R^G I$, hence $x \in RI$, that is $ann(RS) \subseteq RI$. Thus RI = ann(RS).

To prove the converse, let $RI = an_R(S)$, where S is an ideal in R. We claim that $R^G I = an_R^G (T(S))$, where $T: R \to R^G$ is the trace map. Let $a \in R^G I$, then $a \in an_R^G(S)$, and aS = 0. Therefore, 0 = aT(S), hence $a \in an_R^G (T(S))$ and $R^G I \subseteq an_R^G (T(S))$.

Now let $b \in and_{R^G}(T(S))$, then bT(S) = 0, $\forall s \in S$. Hence $T(bs) = 0, \forall s \in S$, thus T(bS) = 0. But *R* has no non-zero nilpotent elements, then by proposition (T, bS) = 0, and $b \in and_{R^G}(S) \subseteq and_{R^G}(S)$, hence $b \in RI \cap R^G = R^G I$.

A ring *R* is said to satisfy the ascending chain condition (A.C.C) on annihilator ideals, if every ascending chain of annihilator ideals $I_1 \subseteq I_2 \subseteq ...$ terminates after a finite number of steps, that is there exists $k \in N$, such that: $I_k = I_{k-1}$, $[\ell]$.

A ring *R* is said to have no infinite direct sum of non-zero ideals if every direct sum of non-zero ideals in *R* has a finite number of terms, $[\mathfrak{t}]$. Recall that a ring *R* is said to be Goldie ring, if *R* satisfies the (A.C.C.) on annihilator ideals and *R* has no infinite direct sum of ideals, $[\mathfrak{t}]$.

We prove the following:

Proposition \underline{\cdot}.\underline{v}: If *R* satisfies the (A.C.C.) on annihilator ideals, then *R* satisfies the (A.C.C.) on annihilator ideals.

<u>Proof:</u> Let $I_{1} \subseteq I_{n} \subseteq ... \subseteq I_{n} \subseteq$ be an ascending chain of annihilator ideals in R^{G} . Let RI_{i} be the

ideal generated by $I_{j}, j=1, 1, \dots$. Then by theorem ξ . Y, RI_{j} , $j = I, \dots, n, \dots$, is an annihilator ideal in R. Moreover $RI_{1} \subseteq RI_{2} \subseteq \dots \subseteq RI_{n} \subseteq \dots$ is an ascending chain, thus $\exists k \in N$ such that: $RI_{k} = RI_{k+1} = \dots$, hence $RI_{k} \cap R^{G} = RI_{k+1} \cap R^{G} = \dots$. i.e. $R^{G}I_{k} = R^{G}I_{k+1} = \dots$.

Proposition \pounds **.** \pounds **:** Let *R* be any ring which has no non-zero nilpotent elements. If *R* has no infinite direct sum of non-zero ideals, then R^G has no infinite direct sum non-zero ideals.

Proof: Let $R^G I_1 \oplus R^G I_2 \oplus ...$ be a direct sum of ideals in R^G where $I_n \subseteq R^G$, $\forall n$. Let RI_n be the ideal in R generated by I_n , $\forall n$. Let $RJ_n = \bigoplus_{k \neq n} RI_k$, $R^G J_n = \bigoplus_{k \neq n} R^G I_k$, then $R^G J_n \cap R^G I_n = \{0\}$. Now, $T(RJ_n \cap RI_n) = T(RI_n) \cap T(RJ_n) = R^G J_n \cap R^G I_n = \{0\}$. Thus by proposition $\forall . \forall RJ_n \cap RI_n = 0$, hence $\sum RI_n$ is a direct sum in R, hence is finite.

Thus
$$\oplus \sum R^G I$$
 is finite

Propositions $\mathfrak{t}.\mathfrak{r}$ and $\mathfrak{t}.\mathfrak{t}$ give the following:

Theorem t.o: If R is a Goldie ring which has no non-zero nilpotent elements, then R^G is a Goldie ring.

The converse of theorem ξ .° is true, [Y]

Proposition \pounds **.** Υ : Let *R* be any ring which has no non-zero nilpotent elements. If R^G is a Goldie ring then *R* is a Goldie ring.

•. The R^G -module as a submodule of a free R^G -module

In this section we state a theorem of Montgomery, [V], which shows that under certain condition on *R*, *R* may be considered as a submodule of a free R^{G} -module of finite rank, and we will use this theorem to prove that under extra conditions on *RI*, *RI* is a C.P(C.F) module.

<u>Theorem •.1 [Y]</u>: Let *R* be a Goldie ring which has no non-zero nilpotent elements. Then *R* can be embedded in $\bigoplus_{i=1}^{m} \sum R^{G}$ as R^{G} -module of finite rank.

It is known that if *R* is Noetherian (Artinian) ring, with $|G|^{-1} \in R$, then R^G is a Noetherian (an Artinian) ring. Moreover, it was proved by Farkas and Sinder in [r], that if R^G is a

Noetherian ring which has no non-zero nilpotent elements, then R is a Noetherian ring. We give a similar result for Artinian rings.

<u>Proposition</u> •. Υ : Let R^G be an Artinian ring which has no non-zero nilpotent elements, then R is a finitely generated R^G -module. In fact R is an Artinian R^G -module in particular, R is an Artinian ring.

Proof: Since R^G is Artinian, then R^G is Goldie, then by, [V], R is a Goldie ring, and by theorem °. V, R is isomorphic to a submodule of the free

 R^{G} -module $\begin{pmatrix} m \\ \bigoplus \\ i=1 \end{pmatrix} R^{G}$ since R^{G} is Artinian

hence Noetherian, $\bigoplus_{i=1}^{m} \sum R^{G}$ is Artinian R^{G} -

module, and $\bigoplus_{i=1}^{m} \sum R^{G}$ is Noetherian R^{G} -module. And thus R is finitely generated R^{G} -module.

And since every finitely generated module over an Artinian ring is Artinian, [1], then *R* is an Artinian R^{G} -module.

Recall that an R-module M is called a C.P module, if every cyclic submodule of M is projective, and M is a C.F module, if every cyclic submodule of M is flat. The following results are well known, [\uparrow ·].

Proposition \bullet . \P : If *R* is a P.P. ring, and *M* is a projective *R* -module, then *M* is a C.P module. And if *R* is a hereditary (semi-hereditary) ring, and *M* is a projective *R* -module, then every submodule (finitely generated submodule) of *M* is projective.

Proposition •.•, [•]: If R is a P.F. ring and M is a flat R -module, then M is a C.F module. And if R is an F.F. ring and M is a flat R -module, then every submodule of M is flat. Hence we have:

Theorem •.•, [•]: Let R be a Goldie ring which has no non-nilpotent elements. If R^G is a hereditary ring, then R is projective R^G -module and every submodule of R is projective. In particular R is a C.P. R^G -module.

Theorem •.^r, [•]: let *R* be a Noetherian ring which has no non-zero nilpotent elements. If R^G is a hereditary ring, then *R* is a finitely generated projective R^G -module, and every submodule of *R* is projective. In particular *R* is a C.P. R^G -module.

Next we give similar results for flat rings.

Theorem \bullet .V: Let *R* be a Goldie ring which has non-zero nilpotent elements. If *R* is a flat ring,

then *R* is a flat R^G -module, and every R^G - submodule of *R* is flat, hence *R* is a C.F. R^G - module.

<u>Proof</u>: By theorem •. *R* is isomorphic to a submodule of the free R^G -module $\begin{pmatrix} m \\ \bigoplus \\ i=1 \end{pmatrix} R^G \end{pmatrix}$ of finite rank, hence flat, [7]. And by proposition

•. ϵ ; every R^G -submodule of R is flat, and hence R is a C.F. R^G -module.

Recall that an R-module M is faithfully flat, if and only if M is a flat cancellation module, [1,]. Thus we have:

<u>Corollary •. A:</u> Let *R* be a flat Goldie ring, then *R* is a faithfully flat R^G -module.

Proof: By Corollary 1.7, *R* is a cancellation R^G module. Now since *R* is isomorphic to a submodule of the free R^G -module $\left(\bigoplus_{i=1}^{m} \sum R^G \right)$, and *R* is flat, then by [1^r], R^G is a flat ring. But $\bigoplus_{i=1}^{m} \sum R^G$ is a flat R^G -module, hence by proposition \circ . $\in R$ is a flat R^G -module, then *R* is a faithfully flat R^G -module.

References

- ¹. Burton, D. A, 14^{AA}. Abstract Algebra, W.N.C. Brown Puplisher.
- Y. El-Bast, Z. A. and Smith, P. F. 1944. Multiplication modules. Comm. In Algebra, 17, Voo-VV9.
- ^r. Farkas, D. R. and Sinder, R. L. 1977 Noetherian fixed rings, *Pacific Journal of Math.* 19:757-707.
- Herstein, L. N. 197A. Non commutative rings, University of Chicago,.
- Jondrup, S. When is the ring a projective module over the fixed point ring? Report. Dep. Of Math. Universities Parken °.^Y..., Copenhagen, Denmark, 19Y1-199Y.
- ¹. Kasch, F. 1947 *Modules and rings*, Academic press. New York.
- Y. Montgomery, S. YAA. Fixed ring of finite automorphisms groups of associative rings, LUM. ANA. Springer, Verlage, Berlin and Heideberg, New York.
- A. Naoum, A. G. 1992. On the ring of endomorphisms of finitely generated multiplication modules. Periodica Mathematic Hungarica Y9.
- ⁴. Naoum A. C. and Al-Aubaidy, M. A. *Special self-generator Modules*. Submitted.

- Naoum, A. G. Mahmood A. and Alwan, NAN. On projective modules and flat modules, Arab J. Math.
- 11. Naoum, A. G and Khaleel, S.I,II, Actions of finite groups on commutative rings, To appear, *Iraqi J. Science*.
- 17. Naoum, A. G and Mijbass, 1997. A Weak cancellation modules, Kyungbook Math. Journal, TY:YT-AT.
- ۱۳. Naoum, A. G and Wassan K. Al-Aubaidy, *Actions of finite groups on commutative rings*, In preparation.
- 15. Rowen, L. H. 1991. *Ring theory*, Academic press Inc. Boston, New York.