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Abstract 

     Let R be a commutative ring with ١, and let Aut(R) denote the group of ring 
automorphisms of R. We will usually consider a group G⊆ Aut(R).  
In this paper we will study the relation between G- invariant ideals and their traces. 
Also we study C.P modules and C.F modules. 
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  الخلاصة
زمرة منتهية من التشاآلات المتقابلة   G⊆ Aut(R).، ولتكن١حلقة إبدالية ذات عنصر محايد  Rتكن      
  .nذات رتبة  Rإلى  Rاتية من الذ

آذلك سوف ندرس المقاسات من . وأثره Gفي هذا البحث سوف ندرس العلاقة بين المثالي اللامتغاير بفعل 
  . C.Fومن النمط C.Pالنمط 

 
 
Introduction 
     Let R be a commutative ring with ١, and let 
Aut(R) denote the group of ring automorphisms 
of R. We shall usually consider a group 
G⊆Aut(R). The identity automorphism will be 
denoted by e. The fixed subring of G on R is 
RG={r∈R; g(r)=r, for all g∈G}. An ideal I of the 
ring R is called a G-invariant ideal if g(I)=I, for 
all g∈G. 
In this paper we study the relation between G-
invariant ideals and their traces. On the other 
hand one can consider R as a module over RG in 
the obvious way. In this paper we will study C.P 
modules and C.F modules. In fact we prove That 
if R is a Goldie ring that has no non-zero 
nilpotent elements and if R is a hereditary (flat) 
then R is a C.P (C.F ) RG -module. 
We note finally that G in this paper is a finite 
group of order ⎟G⎟=n. 
 

١. The trace of R as RG -module 
     Let R be a ring, and let G be a group of 
automorphisms of R. Let RG denotes the fixed 
ring of R, we consider R as an RG -module in the 
obvious way. Note that RG≠٠. Moreover since 
١∈R, then R is a faithful RG -module. 

Proposition ١.١: Let R be any ring, and let G be 
a group of automorphisms of R. If R is a cyclic 
RG -module, then R= RG, and G = {e}. The 
converse is clear. 

Proof: Since R is cyclic, then ∃0≠x∈R, such that 
R= RGx. But ١∈R Then ∃0≠y∈ RG, such that 
١=yx. Thus y is invertible in R, and hence is 
Invertible in RG. 
Thus ∃0≠z∈ RG, such that ١=yz. Then x=xyz =z, 
which implies that R= RGz⊆RG, and hence 
R= RG. 
Next we give the following definitions: 
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Definition l.٢: Let G be a group of 
automorphisms of R, and let |G|=n, be the order 
of G. Assume |G| is invertible in R, hence is 
invertible in RG. We define the trace of R to be 

the function ( ) ( )
1

1 n

i
i

T x g x
n =

= ∑ , for each x∈R, 

where G={g١=e١, g٢,…gn}. 

Remark ١.٣:  
١. Note that T(x)∈RG. Moreover, if one 

considers R  as an RG -module, then T is an 
RG-module, homomorphism. Observe that 

( )
1

11 1
n

i
i

g
n =

= ∑ , and hence T(R)=RG, and T(١)=١. 

٢. T (I) is an ideal in RG; for each ideal I in R. 
For any ring S, recall that for an S-module M, 

( ) ( ) ( )trace S
f

M T M f M= = ∑ , where the sum is 

taken overall ( ),
S

f M Hom M S∗∈ = , [٦]. And the 

S-module M  is called a generator, if 
( )ST M S= , [٩]. 

Since the map T:R→RG is an RG-
homomorphism, then ( ),

G

G

R
T Hom R R∈  

Moreover, by remark ١.٣, if |G|-١∈R, then 
T(R)=RG. Thus 

GR
trace R= T(R)=RG. Hence we 

have: 

Proposition ١.٤: Let R be any ring, and let G be 
a finite group of automorphisms of R. If |G|-١∈R, 
then R is a generator as an RG -module. 
An R -module M is called a self-generator, if for 
every cyclic submodule ( );  Ra Ra M

ϕ

ϕ= ∑ , 

where the sum is taken over all ϕ:M→Ra. This 
implies that for each submodule N of M; 

( )
:M N

N M
ϕ

ϕ
→

= ∑  where the sum is taken over all 

ϕ:M→N, [٩]. And a special self-generator, if for 
each cyclic submodule N  of M , there exists 
ϕ:M→N such that ϕ(M)=N. Thus every special 
self-generator is a self-generator, [٩]. 
Hence we have the following: 

Proposition ١.٥: Let R be any ring, with  
|G|-١∈R, then R is a special self-generator RG -
module. 

Proof: Let T: R → RG be defined by 

( ) ( )1

1
;  

n

i
i

T x G g x x R−

=

= ∀ ∈∑ , and let  

ϕa: RG→RG
α  be defined by ϕa (r)=ra, ∀r∈RG. 

ϕaοT is an RG-homomorphism, and 
(ϕaοT)( RG)= RG

α. 

An R -module M is called a cancellation module, 
if whenever AM=BM for some ideals A and B in 
R, then A = B, [١٢]. It is known that every 
faithful generator module is a cancellation 
module, [١٢], hence by proposition ١.٥, we 
have: 

Corollary ١.٦: R is a cancellation RG-module, 
provided |G|-١∈R. 
Recall that an R-module M is called a 
multiplication module, if for each submodule N 
of M, N=IM for some ideal I of R, [٢]. 

Proposition ١.٧: Let R be any ring, and let G  
be a finite group of automorphisms of R. If R is 
a multi R plication RG -module, With |G|-١∈R 
then R is a finitely generated RG-module, and 
hence ( )

G

G

R
End R R= . Thus ( )

GR
End R  is 

commutative. 

Proof: R is a faithful RG -module. Moreover, by 
corollary ١.٦, R is a cancellation RG -module. 
Thus by [١٢], R is finitely generated. The last 
assertion follows from [٨]. 

٢. G-invariant ideals 
     In this section we study G-invariant ideals in 
R. In fact we study the relation between G-
invariant ideals and their traces. First we start by 
the following definition. 

Definition ٢.١: Let I  be an ideal in a ring R, 
and let G  be a group of automorphisms of R. I  
is said to be G-invariant ideal of R or G-ideal. if 
g(I)⊆I, ∀g∈G. Equivalently g(I)=I, for each 
g∈G, where g(I)={g(a); a∈I}. 

Examples and remarks ٢.٢: 
١. If I is a G-invariant ideal, then T(I)⊆I. In fact, 

if x∈T(I) then ( )
1

1 n

k
k

x g a
n =

= ∑ , for some a∈I, 

hence x∈I. 
٢. For any set I={ai, ai ∈RG, i∈Λ }, the ideal RI  

in R  generated by the set I  in a G-invariant 
ideal. In fact, if x ∈I, then 

, ,i i i ix r a r R a I= ∈ ∈∑ . 

Let y ∈T (RI), then ( )
1

1 n

k
k

y g x
n =

= ∑ , for some 

x ∈RI. Hence 

 ( )
1 1

1 1n n

k i i k i i
k i i k

y g r a g r a
n n= =

⎛ ⎞= =⎜ ⎟
⎝ ⎠

∑ ∑ ∑∑ , thus 

y ∈ RI. Therefore T (RI) ⊆ RI. 
٣. If I is any subset of RG, then ( )

R
ann I  is a G-

invariant ideal. In particular for each 
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x∈RG, ( )
R

ann a  in G-invariant ideal. In fact, 

( )
R

r ann I∀ ∈ , and ∀x∈I, rx=٠. Thus ٠=g(rx)= 

g(r)g(x)= g(r)x, i.e. ( ) ( )
R

g r ann I∈ .  

٤. Note that every ideal of RG is G-invariant 
ideal, but there are ideals not in as RG, that are 
G-invariant as is seen by the following 
example. This example shows also that the 
trace of a G-invariant ideal may be {٠}. 

٥. Let F be a field of characteristics ≠٢, and let 
R=F[x١, x٢, …] be the ring of polynomials in 
an infinite countable set of indetermines 
x١, x٢, …, xm, with the relation xi .xj=٠∀i, j, in 
particular x٢i=٠, ∀i. Define g : R→R by 
g(xi)=-xi,∀i and ( ) ,g a a a F= ∀ ∈ , and then 
extend this action to all the elements of R  in 
the obvious way to make g  an automorphism 
of g. It is clear that g٢=e, and if G={e, g} then 
RG=F. 

Now let A={ax١, a∈F}, then A is an ideal 
in R, A is a G-invariant ideal, since 
g(ax١)=g(a)g(x١)=-ax١. However A is not 
contained in RG. Note that T(A)=٠. Moreover, 
it is easily seen that every ideal in R is 
G-invariant, moreover, if A١=id(x١), A٢=id(x٢), 
then T(A١)=٠, T(A٢)=٠ but A١≠ A٢. 
The following theorem shows that under certain 
conditions, T (I) is not zero, but first we make 
the following simple remarks.  

Remark ٢.٣: If I  is a G-invariant ideal in R, 
then T (I)=I∩ RG. 

Remark ٢.٤: Let I be a subset of RG. And let RI. 
RGI be the ideals generated by I in R and RG 
respectively, then T (RI)= RGI.  
We observed in ٢.٢ (example ٥) that T (I) may 
be zero even if I is G-invariant. The following 
theorem shows that under certain conditions, 
T (I) is not zero. 

Theorem (Bergman-Issacs) [٧] .٢.٥ 
Let R be any ring with no non zero nilpotent 
elements, and let I be a non zero G-invariant 
ideal of R, with |G|-١∈R, then T(I)≠{٠}. 
We need the following stronger result: 

Proposition [٣] .٢.٦: Let R be any ring which 
has no non-zero nilpotent elements, and |G|-١∈R, 
then T(I) does not vanish for any non-zero ideal 
I of R. 
Proof: Suppose T(I)=٠, then T(a)=٠, for all a∈I. 
Let 

 ( ) ( )
1 1

,
n n

k k
k k

J g I g a a I
= =

⎧ ⎫= = ∈⎨ ⎬
⎩ ⎭

∑ ∑  

Then it is easily checked that J is a G-invariant 
non-zero ideal of R. with T(J)={٠}. Thus by 
theorem ٢.٥, J={٠}, which is a contradiction. 
Observe that example (٥) ٢.٢ shows that 
theorem ٢.٥ is false if the ring R has nilpotent 
elements. 

Note: We will assume in what follows, that R is 
a ring with G a subgroup of Aut(R), and |G|-١∈R, 
unless otherwise stated. 

Proposition ٢.٧: Let I be a G-invariant ideal of 
R. if I is a prime ideal in R. then T(I) is a prime 
ideal in RG.  

Proof: Let a, b∈RG, such that a⋅b∈ T(I). Since I 
is G-invariant, then a⋅b∈ I, hence either a∈ I  or 
b∈I. Assume a∈ I then a∈ I∩RG. And by 
remark ٢.٣, a∈T(I). 

Corollary [١١] ,٢.٨: Let I be a subset of RG, and 
let RI, RGI be the ideals, generated by I in R and 
RG respectively. if RI is a prime ideal in R then 
RGI is a prime ideal in RG. 

Proof: By remark ٢.٤, ( ) GT RI R I= , and hence 
by proposition ٢.٧ GR I  Is Prime. 

Proposition ٢.٩: Let I  be a maximal ideal in 
R , then ( )T I  is a maximal ideal in GR . 

Proof: Let Gy R∈ , and ( )y T I∉ , then 
( )y T y= , and hence y I∉ . Since I  is 

maximal in R , then R Ry I= + . Hence 
1 ry m= + , where r R∈ , m I∈ .  
Now ( ) ( ) ( ) ( ) ( )1 1T T ry T m T r y T m= = + = + , 
and thus ( )G GR R y T I= +  which implies that 

( )T I  is a maximal ideal in GR . 

Corollary ٢.١٠: Let I  be a subset of GR , and 
let RI , GR I  be the ideals generated by I  in R  
and GR  respectively. If RI  is maximal in R , 
then GR I  is maximal in GR . 
The converse of proposition ٢.٩ is not true even 
if I  is G-invariant as example (٥) in remark ٢.٢ 
shows.  

٣. small ideals and essential ideals 
     In this section we study the relation between 
small (essential) ideals in R  and small 
(essential) ideals in GR  respectively. 
Recall that an ideal I  of a ring R  is small, if 
whenever I J R+ = , where J  is ideal in R , 
then J=R, [١]. We have the following 
result. 
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Proposition ٣.١: Let I  be a G-invariant ideal in 
R. if I  is small in R, then ( )T I  is small in RG. 
The converse is true if every ideal in R Is G-
invariant. 

Proof: Let I  be a small ideal in R , to prove 
( )T I  is small in RG. Let ( ) GT I J R+ = , where 

J  is an ideal in RG. Hence ( )1 T a b= + , where 
a I∈  and b J∈ . Since I  is G-invariant, then 

( )T I I⊆ , hence x R∀ ∈ , ( )( )x x T a b= + , and 
thus R I RJ= + . But I  is small in R , then 
RJ R= . Now, ( ) ( )G GJ R J T RJ T R R= = = = . 
Thus ( )T I  is small in RG.  
To prove the converse, let I K R+ = , where K  
is an ideal in R . Then T(I)+ T(K)= T(R)=RG, 
thus ( ) G GT I K R R+ =I . But ( )T I  is small in 

GR ,  then G GK R R=I , hence GK R⊇ . But 
1 GR∈ , then 1 K∈ , and K R= . 

Corollary ٣.٢: Let I  be a subset of RG, and let 
RI . GR I  be the ideals generated by I  in R and 
RG respectively. If RI  is small in R, then GR I  
is small in RG. The converse is true if every ideal 
in R is G-invariant. 
Let us say that a ring R satisfies (A.C.C.) on 
small ideals if every ascending chain of small 
ideals is stationary. 

Corollary ٣.٣: Let R be a ring that satisfies 
A.C.C. on small ideals. If ever ideal in R is G-
invariant, then R satisfies A.C.C. on small 
ideals. 

Proof: Let 1 2 ... ...nI I I⊆ ⊆ ⊆ ⊆  be an ascending 
chain of small ideals in R, and let 

1 2, ,..., ,...nRI RI RI  be the ideals in R generated by 
1 2, ,..., ,...nI I I  respectively. Hence 

1 2 ... ...nRI RI RI⊆ ⊆ ⊆ ⊆  is an ascending chain 
of small ideals in R (by proposition ٣.٢). Then 

k N∃ ∈ , such that 1 ...k kRI RI += = , hence 
( ) ( )1 ...K KT RI T RI += = , and by remark ٢.٤, 

1 ...G G
k kR I R I += = . 

The converse of corollary ٣.٣ is false. In remark 
٢.٢ example (٥) n N∀ ∈ , let 

{ }1 2, ,...,n nI id x x x= . Then 1 2 ... ...nI I I⊆ ⊆ ⊆ ⊆ . 
Each of the ideals nI  is small. In fact, if 

nI J R+ = , where J  is an ideal in R, then 
1 1 2 21 ... n na x a x a x b= + + + +  where b J∈ , and 

ia F∈ , I i n≤ ≤ . Thus 
1

1
n

i i
i

b a x
=

= − ∑ . It is 

easily seen that b  is invertible in R, in fact 

1

1
1

n

i i
i

b a x−

=

= + ∑ , thus J=R. This shows that R 

does not satisfy A.C.C. on small ideals. 
However RG=F satisfies this condition. 
Recall that an ideal I of a ring R is said to be 
essential, if whenever I∩J=٠, where J is an ideal 
in R implies that J=٠. Equivalently, I is essential 
if and only if ∀٠≠r∈R, ∃t∈R, such that ٠≠rt∈I, 
[١٤]. 
We have the following result: 

Proposition ٣.٤: Let R be any ring which has 
no non-zero nilpotent elements. If I is an 
essential ideal in R, then T (I) is an essential 
ideal in RG. The converse is true if I  is G-
invariant. 

Proof: Let I be an essential ideal in R, and let 
٠≠x∈RG, then x∈R, hence ∃y∈R, such that 
٠≠xy ∈I. Let ( )A id xy=  in R, then by 
proposition ٢.٦ a A∃ ∈ , such that ( ) 0T a ≠ . 
Hence r R∃ ∈ , such that a rxy= , thus 

( ) ( ) ( )0 T rxy xT ry T I≠ = ∈ .  
Now let ( )T I  be an essential ideal in R, and let 
0 x R≠ = . Let ( )B id x=  in R , then by 
proposition ٢.٦, b B∃ ∈ , such that ( )0 T b≠  in 

GR . But ( )T I  is essential in R, thus 0 y R∃ ≠ ∈  
such that ( ) ( )0 yT b T I≠ ∈ . Hence ( )0 T yrx≠ , 
thus yrx I∈ , since if yrx I∉ , then 

( ) ( )T yrx T I∉ , and 0yrx ≠ , for if 0yrx = , then 
( ) ( )0 T yrx yT rx= = , a contradiction, hence I  

is essential in R. 

Corollary ٣.٥: Let R be any ring which has no 
non-zero nilpotent elements. Let I  be a subset 
of GR , and let RI , GR I  be the ideals generated 
by I  in R and RG respectively, then GR I  is 
essential in RG iff RI  is essential in R. 

٤. Annihilator ideals 
     In this section we study annihilator ideals. 
First we recall the following definition. 

Definition ٤.l: An ideal I  of a ring R is called 
an annihilator ideal, if I  is the annihilator of 
some subset of R . 
Note that if ( )

R
I ann S= , for some subset of R . 

then ( )
R

I ann RS= . 

It is well known, and is easy to check, that I is 
an annihilator ideal in R  if and only if 

( )
R R

I ann ann I= , [١٤]. 
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We prove the following theorem: 

Theorem ٤.٢: Let I  be a subset of RG. and let 
RI , GR I  be the ideals generated by I  in R  
and RG respectively. If GR I  is an annihilator 
ideal in RG, then RI  is an annihilator ideal in R. 
The converse is true if R has no non-zero 
nilpotent elements. 

Proof: Let ( )
G

G

R
R I ann S= , where S is a subset of 

RG. We claim that ( )
R

RI ann RS= , where RS  is 

the ideal in R generated by S. Let a I∈ , then 
Ga R I∈ , thus ( ) ( ) 0a RS aS R= = , hence 

( )
R

RI ann RS⊆ . 

Now let ( )
R

x ann RS∈ , then 0xRS = , and 

0xS = . Thus ( ) 0T x S =  and ( ) ( )
GR

T x ann S∈ . 

Therefore, ( ) GT x R I∈ , hence x RI∈ , that is 
( )ann RS RI⊆ . Thus ( )

R
RI ann RS= . 

To prove the converse, let ( )
R

RI ann S= , where 

S is an ideal in R. We claim that 
( )( )

G

G

R
R I ann T S= , where : GT R R→  is the 

trace map. Let Ga R I∈ , then ( )
GR

a ann S∈ , and 

0aS = . Therefore, ( )0 aT S= , hence 

( )( )
GR

a ann T S∈ and ( )( )
G

G

R
R I ann T S⊆ . 

Now let ( )( )
GR

b ann T S∈ , then ( ) 0bT S = , 

s S∀ ∈ . Hence ( ) 0,T bs s S= ∀ ∈ , thus 
( ) 0T bS = . But R has no non-zero nilpotent 

elements, then by proposition ٢.٦, 0bS = , and 
( ) ( )

G RR
b ann S ann S∈ ⊆ , hence G Gb RI R R I∈ =I .  

A ring R is said to satisfy the ascending chain 
condition (A.C.C) on annihilator ideals, if every 
ascending chain of annihilator ideals I١⊆ I٢⊆ … 
terminates after a finite number of steps, that is 
there exists k∈ N, such that: Ik= Ik-[٤] ,١. 
A ring R is said to have no infinite direct sum of 
non-zero ideals if every direct sum of non-zero 
ideals in R has a finite number of terms, [٤]. 
Recall that a ring R is said to be Goldie ring, if R 
satisfies the (A.C.C.) on annihilator ideals and R 
has no infinite direct sum of ideals, [٤]. 
We prove the following: 

Proposition ٤.٣: If R satisfies the (A.C.C.) on 
annihilator ideals, then R satisfies the (A.C.C.) 
on annihilator ideals. 

Proof: Let I١⊆ I٢⊆ …⊆ In⊆ be an ascending 
chain of annihilator ideals in RG. Let jRI  be the 

ideal generated by Ij, j=٢ ,١, … Then by theorem 
٤.٢, jRI , ,..., ,...,j I n=  is an annihilator ideal in 
R. Moreover 1 2 ... ...nRI RI RI⊆ ⊆ ⊆ ⊆  is an 
ascending chain, thus k N∃ ∈  such that: 

1 ...k kRI RI += = , hence 

1 ...G G
k kRI R RI R+= =I I . i.e. 

1 ...G G
k kR I R I += = . 

Proposition ٤.٤: Let R be any ring which has 
no non-zero nilpotent elements. If R has no 
infinite direct sum of non-zero ideals, then RG 
has no infinite direct sum non-zero ideals. 

Proof: Let 1 2 ...G GR I R I⊕ ⊕  be a direct sum of 
ideals in RG where G

nI R⊆ , n∀ . Let nRI  be 
the ideal in R generated by nI , n∀ . Let 

n k
k n

RJ RI
≠

= ⊕∑ , G G
n k

k n

R J R I
≠

= ⊕∑ , then 

{ }0G G
n nR J R I =I . 

Now, 
( ) ( ) ( ) { }0G G

n n n n n nT RJ RI T RI T RJ R J R I= = =I I I

. Thus by proposition ٢.٦ 0n nRJ RI =I , hence 

n
n

RI∑  is a direct sum in R , hence is finite. 

Thus G

n
R I⊕∑  is finite. 

Propositions ٤.٣ and ٤.٤ give the following: 

Theorem ٤.٥: If R is a Goldie ring which has no 
non-zero nilpotent elements, then RG is a Goldie 
ring. 
The converse of theorem ٤.٥ is true, [٧] 

Proposition ٤.٦: Let R be any ring which has 
no non-zero nilpotent elements. If RG is a Goldie 
ring then R is a Goldie ring. 

٥. The RG -module as a submodule of a 
free RG -module 

     In this section we state a theorem of 
Montgomery, [٧], which shows that under 
certain condition on R, R may be considered as a 
submodule of a free RG -module of finite rank, 
and we will use this theorem to prove that under 
extra conditions on RI, RI  is a C.P(C.F) module. 

Theorem [٧] ٥.١: Let R be a Goldie ring which 
has no non-zero nilpotent elements. Then R can 

be embedded in 
1

m
G

i
R

=
⊕∑  as RG -module of finite 

rank. 
It is known that if R is Noetherian (Artinian) 
ring, with 1G R− ∈ , then RG is a Noetherian (an 
Artinian) ring. Moreover, it was proved by 
Farkas and Sinder in [٣], that if RG is a 
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Noetherian ring which has no non-zero nilpotent 
elements, then R is a Noetherian ring. We give a 
similar result for Artinian rings. 

Proposition ٥.٢: Let RG be an Artinian ring 
which has no non-zero nilpotent elements, then 
R is a finitely generated RG -module. In fact R is 
an Artinian RG -module in particular, R is an 
Artinian ring. 

Proof: Since RG is Artinian, then RG is Goldie, 
then by, [٧], R is a Goldie ring, and by theorem 
٥.١, R  is isomorphic to a submodule of the free 

GR -module 
1

m
G

i
R

=

⎛ ⎞⊕⎜ ⎟
⎝ ⎠

∑  since RG is Artinian 

hence Noetherian, 
1

m
G

i
R

=
⊕∑  is Artinian RG -

module, and 
1

m
G

i
R

=
⊕∑  is Noetherian RG -module. 

And thus R is finitely generated RG -module. 
And since every finitely generated module over 
an Artinian ring is Artinian, [١], then R is an 
Artinian RG -module. 
Recall that an R -module M  is called a C.P 
module, if every cyclic submodule of M  is 
projective, and M  is a C.F module, if every 
cyclic submodule of M  is flat. The following 
results are well known, [١٠]. 

Proposition ٥.٣: If R is a P.P. ring, and M  is a 
projective R -module, then M  is a C.P module. 
And if R is a hereditary (semi-hereditary) ring, 
and M  is a projective R -module, then every 
submodule (finitely generated submodule) of 
M  is projective.  

Proposition [٥] ,٥.٤: If R is a P.F. ring and M  
is a flat R -module, then M  is a C.F module. 
And if R is an F.F. ring and M  is a flat R -
module, then every submodule of M  is flat. 
Hence we have: 

Theorem [٥] ,٥.٥: Let R be a Goldie ring which 
has no non-nilpotent elements. If RG is a 
hereditary ring, then R is projective RG -module 
and every submodule of R is projective. In 
particular R is a C.P. RG -module. 

Theorem [٥] ,٥.٦: let R be a Noetherian ring 
which has no non-zero nilpotent elements. If RG 
is a hereditary ring, then R is a finitely generated 
projective RG -module, and every submodule of 
R is projective. In particular R is a C.P. RG -
module. 
Next we give similar results for flat rings. 

Theorem ٥.٧: Let R be a Goldie ring which has 
non-zero nilpotent elements. If R is a flat ring, 

then R is a flat RG -module, and every RG -
submodule of R is flat, hence R is a C.F. RG -
module. 

Proof: By theorem ٥.١ R is isomorphic to a 

submodule of the free RG -module 
1

m
G

i
R

=

⎛ ⎞⊕⎜ ⎟
⎝ ⎠

∑  of 

finite rank, hence flat, [٦]. And by proposition 
٥.٤; every RG -submodule of R is flat, and hence 
R is a C.F. RG -module. 
Recall that an R -module M  is faithfully flat, if 
and only if M  is a flat cancellation module, 
[١٢]. Thus we have: 

Corollary ٥.٨: Let R be a flat Goldie ring, then 
R is a faithfully flat RG -module.  

Proof: By Corollary ١.٦, R is a cancellation RG -
module. Now since R is isomorphic to a 

submodule of the free RG -module 
1

m
G

i
R

=

⎛ ⎞⊕⎜ ⎟
⎝ ⎠

∑ , 

and R is flat, then by [١٣], RG is a flat ring. But 

1

m
G

i
R

=
⊕∑  is a flat RG -module, hence by 

proposition ٥.٤ R  is a flat RG -module, then R is 
a faithfully flat RG -module. 
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