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Abstract
Let R be a commutative ring with ), and let Aut(R) denote the group of ring
automorphisms of R. We will usually consider a group Gc Aut(R).
In this paper we will study the relation between G- invariant ideals and their traces.
Also we study C.P modules and C.F modules.
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Introduction

Let R be a commutative ring with Y, and let
Aut(R) denote the group of ring automorphisms
of R. We shall usually consider a group
GcAut(R). The identity automorphism will be
denoted by e. The fixed subring of G on R is
R®={reR; g(r)=r, for all geG}. An ideal | of the
ring R is called a G-invariant ideal if g(l)=I, for
all geG.
In this paper we study the relation between G-
invariant ideals and their traces. On the other
hand one can consider R as a module over R® in
the obvious way. In this paper we will study C.P
modules and C.F modules. In fact we prove That
if R is a Goldie ring that has no non-zero
nilpotent elements and if R is a hereditary (flat)
then R is a C.P (C.F ) R® -module.
We note finally that G in this paper is a finite
group of order |G |=n.

.C.F Laill a5 C.P Laail

V. The trace of R as R® -module

Let R be a ring, and let G be a group of
automorphisms of R. Let R® denotes the fixed
ring of R, we consider R as an R® -module in the
obvious way. Note that R%%+. Moreover since
VR, then R is a faithful R® -module.

Proposition V.): Let R be any ring, and let G be
a group of automorphisms of R. If R is a cyclic
R® -module, then R= R®, and G = {e}. The
converse is clear.

Proof: Since R is cyclic, then 30xeR, such that
R= R®X. But YeR Then 30#ye R® such that
Y=yx. Thus vy is invertible in R, and hence is
Invertible in R®.

Thus 30#ze RS, such that Y=yz. Then x=xyz =z,
which implies that R= R®zcR®, and hence
R=R°.

Next we give the following definitions:
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Definition L.Y: Let G be a group of
automorphisms of R, and let |G|=n, be the order
of G. Assume |G| is invertible in R, hence is
invertible in R®. We define the trace of R to be

the function T (x):%zn:gi (x), for each xeR,
i=l

where G={g =€, gr,...Qn}.

Remark \.¥:

\.Note that T(x)eR®. Moreover, if one
considers R as an R® -module, then T is an
R®module, homomorphism. Observe that

1:izn“gi (1), and hence T(R)=R®, and T())=).
n
Y. T () is an ideal in R®; for each ideal | in R.
For any ring S, recall that for an S-module M,
trace(M )=T; (M )=>f (M), where the sum is
f

taken overall f eM ™ = Hom (M.,S), []. And the
S-module M is
Ts(M)=s,[%].
map T:R—R® is an RS-
T < Hom (R.R®)

called a generator, if

Since  the
homomorphism, then

Moreover, by remark V.Y, if |G| eR, then
T(R)=R®. Thus traceR= T(R)=R®. Hence we
RG

have:

Proposition V.£: Let R be any ring, and let G be
a finite group of automorphisms of R. If |G| eR,
then R is a generator as an R® -module.

An R -module M is called a self-generator, if for

every cyclic submodule Rg: Ra=Yo(M)
@

where the sum is taken over all ¢:M—Ra. This
implies that for each submodule N of M;
N = > (M) where the sum is taken over all

oM >N
@:M—>N, [3]. And a special self-generator, if for
each cyclic submodule N of M , there exists
@»:M—N such that @M)=N. Thus every special
self-generator is a self-generator, [4].
Hence we have the following:

Proposition Y.°: Let R be any ring, with
IG|"'eR, then R is a special self-generator R® -
module.

Proof: Let T: R — R® be defined by
T(x)=|G|'lZn:gi(x); vx eR, and let
i=1

¢a: R°5R®, be defined by ¢, (r)=ra, VreR®.
@.0T is an  R®-homomorphism, and
(¢20T)(R%)=R%
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An R -module M is called a cancellation module,
if whenever AM=BM for some ideals A and B in
R, then A = B, ['Y]. It is known that every
faithful generator module is a cancellation
module, [YY], hence by proposition Y.°, we
have:

Corollary .1: R is a cancellation R®-module,
provided |G| eR.

Recall that an R-module M is called a
multiplication module, if for each submodule N
of M, N=IM for some ideal | of R, [Y].

Proposition V.V: Let R be any ring, and let G
be a finite group of automorphisms of R. If R is
a multi R plication R® -module, With |G| eR
then R is a finitely generated R®-module, and
hence Eerd (R)=R®. Thus Eerd (R) s

commutative.

Proof: R is a faithful R® -module. Moreover, by
corollary 1.1, R is a cancellation R® -module.
Thus by ['Y], R is finitely generated. The last
assertion follows from [A].

Y. G-invariant ideals

In this section we study G-invariant ideals in
R. In fact we study the relation between G-
invariant ideals and their traces. First we start by
the following definition.

Definition Y.): Let | be an ideal in a ring R,
and let G be a group of automorphisms of R. |
is said to be G-invariant ideal of R or G-ideal. if
g(hcl, VYgeG. Equivalently g(l)=I, for each
geG, where g(1)={g(a); acl}.

Examples and remarks Y.Y:
V. If | is a G-invariant ideal, then T(l)cl. In fact,

if xeT(l) then x =%

igk (a), for some acl,
k=1

hence xel.

Y. For any set I={a;, a; eR®, ieA }, the ideal RI
in R generated by the set | in a G-invariant
ideal. In fact, if x el, then
x=Yra.reR,ael.

Lety T (RI), then y =%igk (x), for some
k=1

X €RI. Hence
1L 1 .
y =;29k [ZriaiJ:szgk (ri )ai ’ thus
k=1 i i k=l
y € RIl. Therefore T (RI) < RI.
Y.If | is any subset of RS, then ann (1) is a G-

invariant ideal. In particular for each
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xeR®, ann (a) in G-invariant ideal. In fact,
vr eargn(l ), and Vxel, rx=+. Thus *=g(rx)=
g(NgX)=g(rx, i.e. g(r) ear;n(l ).

¢. Note that every ideal of R® is G-invariant
ideal, but there are ideals not in as R®, that are
G-invariant as is seen by the following
example. This example shows also that the
trace of a G-invariant ideal may be {*}.

©.Let F be a field of characteristics #Y, and let
R=F[x), Xr, ...] be the ring of polynomials in
an infinite countable set of indetermines
X1, X1, ..., Xm, With the relation X; .x=" Vi, j, in
particular x'=+, V;. Define g : R—>R by
g(x)=-x;,Vi and g(a)=a,vaeF, and then
extend this action to all the elements of R in
the obvious way to make g an automorphism
of g. It is clear that g =e, and if G={e, g} then
Re=F.

Now let A={ax, aeF}, then A is an ideal

im R, A is a G-invariant ideal, since

g(ax)=g(a)g(xH)=-ax,., However A is not

contained in R®. Note that T(A)=+. Moreover,

it is easily seen that every ideal in R is

G-invariant, moreover, if Ay=id(x,), Av=id(Xv),

then T(A\)=+, T(Av)="* but A\ Ax.

The following theorem shows that under certain

conditions, T (I) is not zero, but first we make

the following simple remarks.

Remark Y.¥: If | is a G-invariant ideal in R,
then T (1)=IN R®,

Remark Y.¢: Let | be a subset of R®. And let RI.
R®l be the ideals generated by | in R and R®
respectively, then T (RI)= RCl.

We observed in Y.Y (example ©) that T (I) may
be zero even if | is G-invariant. The following
theorem shows that under certain conditions,
T (1) is not zero.

Theorem (Bergman-Issacs) Y.°. [V]

Let R be any ring with no non zero nilpotent
elements, and let | be a non zero G-invariant
ideal of R, with |G| €R, then T(I)={"}.

We need the following stronger result:

Proposition Y.%. [Y]: Let R be any ring which
has no non-zero nilpotent elements, and |G| €R,
then T(I) does not vanish for any non-zero ideal
I of R.

Proof: Suppose T(l)=", then T(a)=", for all ael.
Let

J :ggk(l ):{ggk(a),ael}
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Then it is easily checked that J is a G-invariant
non-zero ideal of R. with T(J)={+}. Thus by
theorem Y., J={+}, which is a contradiction.
Observe that example Y.Y (°) shows that
theorem Y.° is false if the ring R has nilpotent
elements.

Note: We will assume in what follows, that R is
a ring with G a subgroup of Aut(R), and |G| €R,
unless otherwise stated.

Proposition ¥.V: Let | be a G-invariant ideal of
R. if | is a prime ideal in R. then T(l) is a prime
ideal in R®.

Proof: Let a, beR®, such that a-be T(I). Since |
is G-invariant, then a-be |, hence either ae | or
bel. Assume ae | then ae INR®. And by
remark Y.Y, aeT(l).

Corollary Y.A, [VV]: Let | be a subset of R®, and
let RI, R®I be the ideals, generated by | in R and
R® respectively. if Rl is a prime ideal in R then
R®l is a prime ideal in R®.

Proof: By remark Y.£, T (Rl )=R®l , and hence
by proposition Y.V R¢I Is Prime.

Proposition Y.9: Let | be a maximal ideal in
R, then T (1) is a maximal ideal in R® .

Proof: Let yeR®, and vyeT(l), then
y=T(y), and hence yel. Since 1 is
maximal in R, then R=Ry+I|. Hence

I=ry +m ,where reR, mel .
Now 1=T (1)=T (ry )+T (m)=T (r)y +T (m),
and thus R® =R®y +T (1) which implies that

T (1) is a maximal ideal in R® .

Corollary Y.V :: Let | be a subset of R®, and
let RI, R®1 be the ideals generated by | in R
and R® respectively. If Rl is maximal in R,
then R®l is maximal in R®.

The converse of proposition Y.4 is not true even
if I is G-invariant as example (°) in remark Y.¥
shows.

¥. small ideals and essential ideals

In this section we study the relation between
small (essential) ideals in R and small
(essential) ideals in R® respectively.
Recall that an ideal | of a ring R is small, if
whenever | +J =R, where J is ideal in R,
then J=R, [']. We have the following
result.
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Proposition ¥.): Let | be a G-invariant ideal in
R.if I is small in R, then T (1) is small in R®.

The converse is true if every ideal in R Is G-
invariant.

Proof: Let | be a small ideal in R, to prove
T (1) is small in R®. LetT (1)+J =R®, where
J is an ideal in R®. Hence 1=T (a)+b, where
ael and beJ. Since | is G-invariant, then
T(I)c!, hence Wx eR, x =x (T (a)+h), and
thus R=1+RJ. But | is small in R, then
RJ=R. Now, J=R®J=T(RJ)=T (R)=R".
Thus T (1) is small in RC.

To prove the converse, let | +K =R, where K
is an ideal in R . Then T(I)+ T(K)= T(R)=RS,
thus T (1)+K NR® =R®. But T (1) is small in
R€, then KNR® =R®, hence K oR®. But
1eR®, then 1eK ,and K =R .

Corollary ¥.¥: Let | be a subset of R®, and let
Rl . R®I be the ideals generated by | in R and
R® respectively. If Rl is small in R, then R®I
is small in R®. The converse is true if every ideal
in R is G-invariant.

Let us say that a ring R satisfies (A.C.C.) on
small ideals if every ascending chain of small
ideals is stationary.

Corollary Y.Y: Let R be a ring that satisfies
A.C.C. on small ideals. If ever ideal in R is G-
invariant, then R satisfies A.C.C. on small
ideals.

Proof: Let |, cl,c..cl, ... be an ascending

chain of small ideals in R, and let
RI,RI,,...RI,... be the ideals in R generated by

IELE RTINS ReS

respectively. Hence

Rl,cRIl, c..cRIl, c... is an ascending chain

of small ideals in R (by proposition Y.Y). Then
Jk eN, such that RI, =Rl =..., hence

T(RI,)=T (Rl,)=.., and by remark Y.£,
R, =R®l,, =....

The converse of corollary .Y is false. In remark
.Y example () vneN , let
I, =id {x,,x,,...x,}. Then I, cl,c..cl, c...
Each of the ideals |
I,+J =R, where J

is small. In fact, if

n

is an ideal in R, then
l=ax,+a,Xx,+..+a,x, +b where bel, and

aeF, I<i<n. Thus b=1->ax,. It is
i=l

easily seen that b is invertible in R, in fact
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b™=1+)ax,, thus J=R. This shows that R
i=1

does not satisfy A.C.C. on small ideals.
However R®=F satisfies this condition.

Recall that an ideal | of a ring R is said to be
essential, if whenever INJ=-+, where J is an ideal
in R implies that J=+. Equivalently, | is essential
if and only if V+#reR, 3teR, such that +zrtel,
€],

We have the following result:

Proposition Y.¢: Let R be any ring which has
no non-zero nilpotent elements. If | is an
essential ideal in R, then T (I) is an essential
ideal in R® The converse is true if 1 is G-
invariant.

Proof: Let | be an essential ideal in R, and let
+#xeR®, then xeR, hence JyeR, such that
+#xy el. Let A=id(xy) in R, then by

proposition Y.l 3JaeA, such that T (a)=0.
dreR, such that
0T (xy )=xT (ry)eT ().

Now let T (1) be an essential ideal in R, and let
0#x=R. Let B=id(x) in R, then by
proposition Y.%, 3beB , such that 0T (b) in
R®.But T (1) is essential in R, thus 30#y eR
such that 0=yT (b)eT (1). Hence 0T (yrx),
thus yrx el

Hence a=mny, thus

since if ymxegl, then

T (yx)eT (1), and yrx #0, for if yrx =0, then
0=T (yrx)=yT (rx), a contradiction, hence |
is essential in R.

Corollary ¥.0: Let R be any ring which has no
non-zero nilpotent elements. Let | be a subset
of R®, and let Rl , R®I be the ideals generated
by | in R and R® respectively, then R®I is
essential in R® iff Rl is essential in R.

£. Annihilator ideals
In this section we study annihilator ideals.
First we recall the following definition.

Definition £.1: An ideal | of a ring R is called
an annihilator ideal, if | is the annihilator of
some subset of R .

Note that if | =amn (S), for some subset of R .

then | :argn(RS).

It is well known, and is easy to check, that I is
an annihilator ideal in R if and only if
I =argna|gn(l ), [VE]L
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We prove the following theorem:

Theorem £.%: Let | be a subset of R®. and let
Rl , R®l be the ideals generated by | in R
and R® respectively. If R®l is an annihilator
ideal in R®, then RI is an annihilator ideal in R.
The converse is true if R has no non-zero
nilpotent elements.

Proof: Let Rl =ann (S ), where S is a subset of
R

R®. We claim that RI :ar;n(RS), where RS is
the ideal in R generated by S. Let ael , then
aeR®l, thus a(RS)=(aS)R=0, hence
RI gagn(RS).

Now let x eaan(RS), then xRS =0, and
xS =0. Thus T(x)S=0 and T (x)eaFElGn(S).
Therefore, T (x)eR®l , hence x eRl, that is
ann(RS )< RI . Thus RI =ann(RS).

R
To prove the converse, let RI :ajgn(s ), where

S is an ideal in R. We claim that
R°l =ann(T (S)), where T:R—>R® is the
RG

trace map. Let aeR®l, then aeann(S), and
RG

asS =0. Therefore, 0=aT (S), hence

acann(T (S))and R°I cann(T (S)).
Now let beaQGn(T(S)), then DbT (S)=0,

Vs eS . Hence T (bs)=0,vseS, thus

T (bS)=0. But R has no non-zero nilpotent

elements, then by proposition Y.1, bS =0, and
beagcn(s)gargn(s),hence beRI NR® =R®I .

A ring R is said to satisfy the ascending chain
condition (A.C.C) on annihilator ideals, if every
ascending chain of annihilator ideals I,c < ...
terminates after a finite number of steps, that is
there exists ke N, such that: L= Iy, [£].

A ring R is said to have no infinite direct sum of
non-zero ideals if every direct sum of non-zero
ideals in R has a finite number of terms, [£].
Recall that a ring R is said to be Goldie ring, if R
satisfies the (A.C.C.) on annihilator ideals and R
has no infinite direct sum of ideals, [ ¢].

We prove the following:

Proposition £.¥: If R satisfies the (A.C.C.) on
annihilator ideals, then R satisfies the (A.C.C.)
on annihilator ideals.

Proof: Let I,.c Iv\c ...c l,c be an ascending
chain of annihilator ideals in R®. Let RI i be the
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ideal generated by I;, j=V, ¥, ... Then by theorem

£Y, Rl;, j=1,.,n,.., is an annihilator ideal in
R. Moreover Rl , cRl,c..cRIl, c.. is an
ascending chain, thus 3k eN such that:
RI, =Rl =.., hence
RI, NR® =RI,,NR® =.... ie.
R®I, =R®l,, =....

Proposition £.£: Let R be any ring which has
no non-zero nilpotent elements. If R has no
infinite direct sum of non-zero ideals, then R®
has no infinite direct sum non-zero ideals.

Proof: Let R°l1, ®R®1, ®... be a direct sum of
ideals in R® where I, <R®, vn. Let RI, be

the ideal in R generated by 1,, Vvn. Let

RJ,=®>'RI,, R®J, =®> R°l,,  then
k#n k #n

RJ, NR®l, ={0}.

Now,

T (RJ,NRI,)=T (RI,)NT (RJ,)=R®J NR®I ={0}
. Thus by proposition Y.% RJ, NRI, =0, hence

DRI, is a direct sum in R, hence is finite.
Thus @) R®I is finite.

Propositions £.¥ and £.¢ give the following:

Theorem £.°: If Ris a Goldie ring which has no
non-zero nilpotent elements, then R® is a Goldie
ring.

The converse of theorem £.° is true, [V]
Proposition £.%: Let R be any ring which has

no non-zero nilpotent elements. If R® is a Goldie
ring then R is a Goldie ring.

o, The R® -module as a submodule of a

free R® -module

In this section we state a theorem of
Montgomery, [Y], which shows that under
certain condition on R, R may be considered as a
submodule of a free R® -module of finite rank,
and we will use this theorem to prove that under
extra conditions on RI, Rl is a C.P(C.F) module.

Theorem °.) [V]: Let R be a Goldie ring which
has no non-zero nilpotent elements. Then R can

be embedded in EHEBI >'R® as R® -module of finite

rank.
It is known that if R is Noetherian (Artinian)

ring, with [G|' €R , then R® is a Noetherian (an

Artinian) ring. Moreover, it was proved by
Farkas and Sinder in [¥], that if R® is a
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Noetherian ring which has no non-zero nilpotent
elements, then R is a Noetherian ring. We give a
similar result for Artinian rings.

Proposition °.Y: Let R® be an Artinian ring
which has no non-zero nilpotent elements, then
R is a finitely generated R® -module. In fact R is
an Artinian R® -module in particular, R is an
Artinian ring.

Proof: Since R® is Artinian, then R® is Goldie,
then by, [Y], R is a Goldie ring, and by theorem
°.), R is isomorphic to a submodule of the free

R® -module (@1 ZRG) since R® is Artinian
7

m
hence Noetherian, @]ZRG is Artinian R® -
iz

module, and _(T?IZRG is Noetherian R® -module.

And thus R is finitely generated R® -module.
And since every finitely generated module over
an Artinian ring is Artinian, [], then R is an
Artinian R® -module.

Recall that an R -module M is called a C.P
module, if every cyclic submodule of M is
projective, and M is a C.F module, if every
cyclic submodule of M is flat. The following
results are well known, [ *].

Proposition °.Y: If R is a P.P. ring, and M is a
projective R -module, then M is a C.P module.
And if R is a hereditary (semi-hereditary) ring,
and M is a projective R -module, then every
submodule (finitely generated submodule) of
M is projective.

Proposition ¢.£, [°]: [f R is a P.F. ring and M
is a flat R -module, then M is a C.F module.
And if R is an F.F. ring and M is a flat R -
module, then every submodule of M is flat.
Hence we have:

Theorem ©.°, [°]: Let R be a Goldie ring which
has no non-nilpotent elements. If R® is a
hereditary ring, then R is projective R® -module
and every submodule of R is projective. In
particular R is a C.P. R® -module.

Theorem °.%, [°]: let R be a Noetherian ring
which has no non-zero nilpotent elements. If R®
is a hereditary ring, then R is a finitely generated
projective R® -module, and every submodule of
R is projective. In particular R is a C.P. R® -
module.

Next we give similar results for flat rings.

Theorem °.V: Let R be a Goldie ring which has
non-zero nilpotent elements. If R is a flat ring,
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then R is a flat R® -module, and every R® -
submodule of R is flat, hence R is a C.F. R® -
module.

Proof: By theorem °.) R is isomorphic to a

submodule of the free R® -module (Ené Z R® ) of

finite rank, hence flat, [1]. And by proposition
°.¢; every R® -submodule of R is flat, and hence
Ris a C.F. R® -module.

Recall that an R -module M is faithfully flat, if
and only if M is a flat cancellation module,
[YY]. Thus we have:

Corollary °.A: Let R be a flat Goldie ring, then
R is a faithfully flat R® -module.

Proof: By Corollary .7, R is a cancellation R® -
module. Now since R is isomorphic to a

submodule of the free R® -module ((—TBI ZRG),

and R is flat, then by ['¥], R® is a flat ring. But
_m@l >R® is a flat R® -module, hence by

proposition ©.¢ R is a flat R® -module, then R is
a faithfully flat R® -module.
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