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Abstract 

     Let R be an integral domain with quotient field K. A prime ideal P of R is called 
a strongly prime ideal of R if for each x, y ∈ K, x y ∈ P implies x ∈ P or y ∈ P. In 
this paper, we generalize this concept to submodules, thus we define strongly prime 
submodules and give some of their properties. 
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  الخلاصة

 ∋ x, yمثالي أولي بقوة اذا كان لكل  Pيقال ان المثالي الاولي . حقل القسمة لها Kساحة و  Rتكن ل     

K و  x y ∈ P يؤدي الىx ∈ P  أوy ∈ P . ،في هذا البحث نعمم هذا المفهوم الى المقاسات الجزئية
 .ونعرف المقاسات الجزئية الاولية بقوة ونعطي بعض خواصها

 
Introduction 
     Let R be an integral domain with quotient 
field K. Following ١, we say that an ideal P of R 
is strongly prime if P is a prime ideal and x, y∈P 
for x, y ∈ K, implies x ∈ P or y ∈ P. Note that 
primeness follows from second condition. 
In this paper, we give a generalization of this 
concept to modules, and we study the basic 
properties. Among other things we study 
strongly prime submodules in multiplication 
modules. We also use two known constructions 
IN ٣ ,٢ to construct examples of strongly prime 
submodules. In ١, an integral domain is called a 
pseudo valuation domain (PVD) if every prime 
ideal of R is strongly prime. It is shown in ٤, 
that every valuation domain is a PVD. 
In the last section of our paper we study the 
relation between strongly prime submodules and 
PVD. 

Finally, we remark that R in this paper stands 
for an integral domain with quotient field. And 
M stands for a (left) unitary R module.      

S.١ Strongly Prime Submodules (Basic 
Results) 
     Let R be an integral domain with quotient 
field K.  
Recall that a prime ideal P of R called a strongly 
prime ideal (briefly S-prime ideal) if, whenever 
x, y ∈ K and x, y ∈ P, then x ∈ P or y ∈ P, ١. 
Houston in ١ proved the following. 

Proposition ١.١ 
     Let R be an integral domain with quotient 
field K and P ia a prime ideal of R. Then P is an 
S-prime ideal iff r – ١ p ⊆ p whenever r ∈ K\R. 
As an extension of the concept of an S-prime 
ideal to submodules. We proceed as following: 
Let R be an integral domain with quotient 
field K and let M be an R-module. Let N an 
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R-submodule of M. Foe each
b
at = ∈ K\R, we 

say that tN ⊆ N if for each x ∈ N, there exists y 
∈ N such that a x = b y, ٥. In this case we 

write x
b
ay = . Note that if N is torsion free, 

then y is unique. 
Recall that a submodule P of an R-module M is 
prime if P is proper and r x ∈ P implies x ∈ P or 
r ∈ (P:M) when x ∈ M, r ∈ R, ٨ ,٧ ,٦. 

Definition ١.٢ 
     Let R be an integral domain with quotient 
field K. A submodule P of the R-module 
M is called strongly prime (briefly s-prime 
submodule) if whenever r∈K, x∈M implies x∈P 
or r∈(P:M). 
The following is a characterization of s-prime 
submodules. 

Proposition ١.٣ 
     Let P be a prime submodule of the R-module 
M. Then the following are equivalent: 

P is an s-prime submodule 
r – ١ p ⊆ p, ∀ r ∈ K\R. 

r x∈P implies x∈ P, when x∈M and r∈K\R. 
proof: ٢⇒١:Assume P is an s-prime submodule 

of M. Let y=r–١x where r∈K\R, 
x∈P. To prove y∈P. Now r y=r (r–
١x)=x∈P. Hence y∈P by definition 
١.٢. 

٣⇒٢:Let  y= r x∈P, where r∈K\R, 
x∈M. Then x=r–١y; that is x∈r–١P. 
But r – ١ p⊆p, by (٢). Thus x∈P. 

١⇒٣:Let  y = r x∈P, where r∈K, x∈M. 
Assume y∈P. If r∈P, then there is 
nothing to prove since P is prime. If 
r∉R, then r∈K\R, and hence x∈ P, 
by (٣). Thus p is an s-prime-
submodule. 

Corollary ١.٤ 
     Let P be a prime ideal in R, then p is an 
s-prime-ideal iff p is an s-prime R-submodule of 
R. 
proof: It follows directly by proposition ١.١ and 

proposition ١.٣. 
Note: Niether statement (٢) nor statement (٣) of 

proposition ١.٣ implies the primeness, as 
the following example shows. 

Example: The submodule )0(
−

=P of the Z-
module Z٦ satisfies statements (٢) 

and (٣) of proposition ١.٣. But P is 
not a prime Z-submodule of Z٦. 

Recall that an R-module M is called prime if 
annRN = annRM for each non-zero submodule 
N of M, ٩. Equivalently, M is a prime R-module 
iff (٠) is a prime submodule in M, ٩. 
Now the following consequences are immediate. 

Remark ١.٥ 
١. The zero submodule of any prime R-

module is an s-prime-submodule. 
٢. Since K is the total quotient field of R, then 

K, as an R-module, has (٠) as the only 
prime submodule. Thus K has (٠) as the 
only s-prime-submodule. 

Proposition ١.٦ 
      Let M be an R-module. Then T(M) is an s-
prime-submodule, where  
T(M)={x:x∈M such that ∃ r∈R,r≠٠ and rx=٠}. 
proof: T(M) is a prime submodule of M by ١٠, 

remark ١.٢ (d), chapter ١. To prove 
r–١T(M) ⊆ T(M) for each r ∈ K\R. 
Assume m ∈ T(M), then there exists 
a∈R, a ≠ ٠ such that a m = ٠. Hence r –١ 
a m = ٠ and so a (r –١ m) = ٠. Thus r –١ m 
∈ T(M); that is r –١T(M) ⊆ T(M). 

Remark ١.٧ 
      Any prime submodule pZ of the Z-module Z 
is not an s-prime submodule, where p is a prime 
number. 

proof: for any prime number p, 
1+

p
p

 ∈ Q\Z, 

where Q is the total quotient field of Z. 

1+
p

p
(p+ ١) = p ∈ pZ and p + ١ ∉ pZ. 

Thus pZ is not an s-prime submodule, 
for any prime number p. 

Now we shall give a condition under which a 
prime submodule is an s-prime submodule 

Proposition ١.٨ 
     If P is a prime divisible submodule of an R-
module M, then P is an s-prime submodule. 

proof: Let 
a
b

 ∈ K\R, x ∈ P. To prove 
a
b

 x∈P. 

Since b∈R, b≠٠ and P is divisible, 
bP=P. Then there exists x′∈P such that 

x=b x′. Hence  
a
b

 x =  
a
b

 b x′ ∈ P. 

Thus P is an s-prime submodule by 
proposition ١.٣. 
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Now, we can give the following example. 
Example١.٩: Let M be the Z-module Q ⊕ Z. 

Let P = Q ⊕ (٠). It is clear that P 
is prime and divisible. Hence P is 
an s-prime submodule by 
proposition ١.٨. 

Proposition ١.١٠ 
     If N is an s-prime submodule of an R-
module M, then (N:M) is an s-prime ideal of R, 
where (N:M) = {r ∈ R⎥ rM ⊆ N}. 
proof: Since N is an s-prime submodule, then N 

is a prime submodule of M. Hence 
(N:M) is a prime ideal of R by ١٠, 
proposition ٢.٨, chapter ١. Now for any x 
∈ (N:M), xm ∈ N for each m ∈ M. 
Hence for each r ∈ K\R, r – ١(xm)∈ N by 
proposition ١.٣. Thus (r – ١x)m ∈ N; that 
is r – ١x ∈ (N:M) and so (N:M) is an s-
prime ideal of R, by proposition ١.١. 

Remark ١.١١ 
     The converse of proposition ١.١٠ is not true 
in general as the following example shows. 
Example: Let M be the Z-module Z ⊕ Z and 

N = O ⊕ ٢Z. (N:M) = (٠) which is an 
s-prime ideal of Z. However, N is not 
an S-prime submodule of M because 
it is not prime. 

Recall that an R-module M is called a 
multiplication module if for each submodule N 
of M, there exists an ideal I of R such that 
N=IM, ١١. 
The following is a characterization of s-prime 
submodules in multiplication modules. 

Theorem ١.١٢ 
     Let M be a multiplication R-module, and N is 
submodule of M. Then N is an s-prime 
submodule of M iff (N:M) is an s-prime ideal of 
R. 
proof: The (if) part holds by proposition ١.١٠. 

To prove the (only if) part. (N:M) is an 
s-prime ideal of R, so (N;M) is a prime 
ideal of R. Hence N is a prime 
submodule of M by ١٠, corollary ٢.١٦, 

chapter ١. Let 
a
b

 ∈ K\R, x ∈ N, to prove 

a
b

 x ∈ N. Since M is a multiplication R-

module, N = (N:M) M, 
n

i i
i =1

x = r x∑ ; ri 

∈ (N:M), xi ∈ M, i = ١, …,n. Thus 
a
b

x = 

a
b

 
=1

n
i i

i
r x∑ =

=1
( )

n
i i

i

a r x
b

∑ . But (N:M) is 

an s-prime ideal of R, so i
a r
b

∈(N:M) ∀ 

i = ١,…,n. Therefore 
a
b

x ∈ (N:M) = N; 

that is N is an s-prime submodule. 
Now, we give some cases in which P is an s-
prime ideal in R, implies that PM is 

Remark ١.١٣ 
    Let M be an R-module, let P an s-prime ideal 
in R. If PM is a prime submodule, then PM is an 
s-prime submodule of M. 

proof: Let 
a
b

 ∈ K\R, x ∈ PM. To prove 

a
b

x∈PM. Since x ∈ PM, 
=1

n
i i

i
x = a m∑  for 

some ai ∈ P, mi ∈ M, i = ١, …, n. Then  
a
b

x = 
a
b

 
=1

n
i i

i
a m∑ =

=1
(

n
i i

i

a a )m
b

∑ . But 

i
a a
b

∈P. ∀ i = ١, …,n by proposition ١.١, hence               

a
b

x∈ PM and PM is an s-prime submodule. 

Proposition ١.١٤ 
     Let M be an R-module, and let P be an s-
prime ideal of R. Then, 
١. If M is a multiplication R-module, 

P⊇annRM and PM ≠ M, then PM is an s-
prime submodule of M. 

٢. If P is a maximal submodule of M, then 
PM is an s-prime submodule of M, 
provided PM ≠ M. 

٣. If M is a flat R-module, then PM is an s-
prime submodule of M, provided PM ≠M. 

Proof: 
١. Since P is an s-prime-ideal, P is a prime 

ideal of R. But M is a multiplication 
module, P ⊇ annRM and PM ≠ M implies 
PM is a prime submodule of M and 
(PM:M) = P by ١٠, proposition ٤.٦, 
chapter ١. Then PM is an s-prime 
submodule of M by remark ١.١٣. 

٢. Since P is a maximal ideal of R and 
PM≠M, PM is a prime submodule of M 
and (PM:M)=P, by ١٠, corollary ٢.٦, 
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chapter ١. Then PM is an s-prime 
submodule of M by remark ١.١٣. 

٣. Since P is an s-prime-ideal of R, P is a 
prime ideal of R. But M is flat and 
PM≠M, hence PM is a prime submodule 
of M by ٣, proposition ٤.٨ chapter ١. 
Then (PM:M) =P by remark ١.١٣. 

Next we have the following: 

Proposition ١.١٥ 
     Let P be an s-prime R-submodule of an R-
module M. Then P is an s-prime R -submodule 
of M, where R =R\annRM and annRM is a prime 
ideal of R. 

Proof: P is an s-prime R-submodule of M, 
hence P is a prime R-submodule of M and 
then P is a prime R -submodule of M by 
٧, Rresult ١.٢. Assume K is the total 

quotient field of R . Let 
b
a
∈K \ R , we 

prove 
a
b

p ⊆ P. Since 
b
a
∈K \ R , then 

, Ra b ∈ ; that is a = a +ann M, b =b + 
ann M for some a, b ∈ R, b ≠ ٠. Moreover 
b
a

 ∈ K\R which implies 
a
b

 x ∈ P, ∀x∈ P 

since P an s-prime R submodule of M. 
Hence ax = by for some y∈P, which 

implies a x = b y and hence 
a
b

x∈ P. Thus 

the result follows from proposition ١.٣. 

Remark ١.١٦ 
     The converse of the previous proposition is 
not true in general, as the following example 
shows. 
Let M be the Z-module Z٥ [ 3 ], let 

N={b 3 :b ∈ Z٥}. It follows that N is not an s-
prime submodule of the z-module Z٥ [ 3 ]. On 
the other hand, annZM=٥z. Hence Z/annZM= Z٥. 
We claim that N is an s-prime submodule of the 
Z٥ module M. We can see easily that N is prime 
and divisible Z٥-submodule. Hence N is an s-
prime submodule of the Z٥-module M by 
proposition ١.٨. 

S.٢ Construction of s-Prime Submodules  
     In this section we give constructions that lead 
to s-prime submodules. 

Recall that if M is an R-module and P is a prime 
ideal of R, then set {m: m ∈ M, Am⊆PM for 
some ideal A ⊄ P} is denoted by M(P), ٢. 
It is clear that M(P) is a submodule of M and 
PM ⊆ M(P). 
In the following remark, we consider R as R-
module. 

Remark ٢.١ 
     Let P be an s-prime-ideal of R such that R(P) 
≠ R. Then R(P) = P. 
Proof: It is easy, so it is omitted. 
Now, we rais the question: when is M(P) an s-
prime submodule of M. 
First we prove the following lemma: 

Lemma ٢.٢ 
     Let M be an R-module, and let P be a prime 
ideal of R. If N= M(P), then either N = M or N 
is a prime submodule of M and P=(N:M). 

Proof: Suppose N≠M. r ∈ R, m ∈ M such that 
rm ∈ N. If r ∈ P, then r ∈ (N:M) since 
otherwise, ∃ m′∈ M such that r m′ ∉N. 
But r m′ ∈ PM ⊆ M(P) = N, so we get a 
contradiction. 
If r ∉ P, then r m ∈ N = M(P) implies 
there exists an ideal A, A ⊄ P and 
A(rm)⊆PM. Hence (Ar)m ⊆ PM. If (Ar) 
⊆ P, then P is prime and r ∉ P,implies A 
⊆ P which is a contradiction. Thus (Ar) ⊄ 
P and m ∈ PM ⊆ M(P)=N. Hence N is a 
prime submodule of M. 

        To prove P = (N:M). Let r ∈ P, then           
rM ⊆ PM ⊆ M(P) = N, hence r∈(N:M) and           
P ⊆ (N:M). Now assume that ∃ r ∈ (N:M) and r 
∈ P. Then r m ∈ N for every m ∈ M, which 
implies m ∈ N since N is prime. Thus M = N 
which is a contradiction. Therefore (N:M) ⊆ P 
and (N:M) = P. 

Theorem ٢.٣ 
     Let M be an R-module satisfying tM⊆ M, 
∀t∈ K. Let P be an s-prime ideal of R. If M(P) ≠ 
M, then M(P) is an s-prime submodule of M. 

Proof: Since P is an s-prime ideal, P is a prime 
ideal and hence M(P) is a prime 
submodule of M and P = (M(P):M) by 
lemma ٢.٢. 

Let 
b
a

 ∈ K\R, m ∈ M(P). To prove 

a
b

m∈M(P). m ∈ M(P) implies there 

exists an ideal A of R such that A ⊄ P, 
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Am ⊆ PM. Hence there exists r ∈ A, r ∉ 
P and r m ∈ PM. It follows that 

=1

n
i i

i
r  m p m∑= , pi ∈ P, mi ∈M, i = ٢ ,١, 

…,m. Thus 
a
b

 r m=
=1

( )
n

i i
i

a p m
b

∑ ∈PM 

since P is an s-prime-ideal of R. This 

implies (r) 
a
b

 m ∈ PM. But (r) ⊄ P and 

a
b

 m ∈ M, so that 
a
b

 m ∈ M(P). Hence 

M(P) is an s-prime submodule of M. 
The following example shows that there exists 
an R-module M such that tm⊆M, ∀t∈K. 

Example ٢.٤ 
Let M be the Z-module Z٥. Then K = 
Q and QZ٥ ⊆ Z٥. 
Recall that if N a submodule of an R-
module M, S is a multiplicative subset 
in R, then the set {x: x ∈ M such that t 
x ∈ M for some t ∈ S} is denoted by 
N(S), ٣. 
Note that N(S) is a submodule of M 
and N ⊆ N(S). 

If we consider R as R-module, we have the 
following: 

Remark ٢.٥ 
     Let P be an s-prime ideal of R. Then P(S)=P. 

Proof: It is straightforward, hence is omitted. 

Proposition ٢.٦ 
     Let N be an s-prime submodule of the R-
module M. If rM ⊆ M, ∀ r ∈ K and N(S) ≠M, 
then N(S) is an s-prime submodule of M, where 
S=R-{٠}. 

Proof: N is an s-prime submodule, so N is 
prime. Then it is easy to check that N(S) 
is prime. Thus it is enough to show that  

r – ١N(S) ⊆ N(S), ∀ r ∈ K/R. Let r = 
b
a
∈ 

K\R, x ∈ N(S), to prove 
a
b

 x ∈N(S). But 

x ∈ N(S) implies tx ∈ N for some t ∈ S. 

Hence 
a
b

 (tx) ∈N since N is an s-prime 

submodule of M. Thus t (
a
b

x) ∈N. On 

the other hand, 
a
b

 x ∈ M, so that  
a
b

 x ∈ 

N(S) and N(S) is an s-prime submodule 
of M. 

Theorem ٢.٧ 
     Let M be an R-module such that rM⊆ M, ∀ r 
∈ K. Let P be an s-prime ideal of R. Then 
PM(S) is an s-prime submodule of M with 
(PM(S):M) = P or PM(S) = M. 

Proof: Suppose PM(S)≠M. Since P is an s-
prime ideal of R, P is prime and hence 
PM(S) is a prime submodule of M with 
(PM(S):M) = (PM:M) = P by ٣, 
proposition ٣.١١. 

Let  
b
a
∈ K\R, x ∈ PM(S). To prove 

a
b

x∈ PM(S).Since x ∈ PM(S), t x ∈ PM 

for some t ∈ S. It follows that t 
a
b

 x ∈ 

PM, since P is an s-prime ideal of R. On 

the other hand, 
a
b

 x ∈ M, so 
a
b

 x ∈ 

PM(S). Thus PM(S) is an s-prime 
submodule of M. 

S.٣ s-Prime Submodule and Pseudo 
Valuation Domains  
     Recall that an integral domain R is called a 
pseudo valuation domain (briefly PVD) if every 
prime of R is an s-prime ideal (see ١٢ ,١). 
Every valuation domain R is a pseudo valuation 
domain (١, proposition ١١), where an integral 
domain R is called a valuation domain if the 
ideals of are ordered by inclusion. 
Recall that an R-module M is called a faithfully 
flat if M is a flat and PM 

=
⊂  M for each 

maximal ideal P of R, ٦, page ٢٦. 

Proposition ٣.١ 
     Let M be a faithfully flat R-module. If every 
prime submodule of M is an s-prime submodule, 
then R is a PVD. 

Proof: Let I be a prime ideal of R. Then IM is a 
prime submodule of M and (IM:M) = I 
by (١٠, corollary ٤.٩, chapter ١). Hence 
IM is an s-prime submodule of M. It 
follows that (IM:M) is an s-prime ideal 
of R by proposition ١.١٠. Thus I is an s-
prime ideal and R is a PVD. 

Note that every free module is faithfully flat 
module and every faithful finitely generated 
multiplication module is faithfully flat module 
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by (٨, page ٢٩) and (٨, theorem ٣.٨, chapter ٢). 
Hence we have the following consequence. 
 
Corollary ٣.٢ 
     Let M be a free R-module or faithful finitely 
generated multiplication R-module. If every 
prime submodule of M is an s-prime submodule, 
then R is a PVD. 
Now we consider the converse of proposition 
٣.١, we have the following: 

Proposition ٣.٣ 
     Let M be a multiplication R-module. If R is a 
PVD, then every prime submodule of M is a s-
prime submodule. 

Proof: Let N be a prime submodule of M. Then 
(N:M) is a prime ideal of R (٣, 
proposition ٢.٨, chapter ١). But R is a 
PVD, so (N:M) is an s-prime ideal of R. 
Hence N is an s-prime submodule of M 
by theorem ١.١٢. 

Recall that an R-module M is called a chained 
module if the submodules of M are ordered by 
inclusion. A ring R is a chained ring if it is 
chained as R-module. For references see (١٣ ,٤). 
Note that when R is an integral domain, R is a 
chained ring iff R is a valuation ring (٤, 
proposition ٣.٨, chapter ١). It follows that every 
chained integral domain is a PVD by (٨, 
proposition ١.١); that is every prime ideal of a 
chained domain is an s-prime-ideal. However 
we notice that not every prime submodule of a 
chained module is an s-prime submodule, as the 
following example shows. 

Example: The Z-module Z٨ is a chained mod-
ule. However the submodule N= <٢> 
of Z٨ is a prime submodule but it is 
not an s-prime submodule. 

However we have the following: 

Proposition ٣.٤ 
     Let M be a finitely generated faithful 
multiplication R-module. If M is a chained R-
module, then every prime submodule of M is an 
s-prime submodule of M. 

Proof: By (١١, theorem ٣.١), it follows that R is 
a chained domain. Hence R is a PVD, 
and so the result follows by proposition 
٣.٣. 

Remark ٣.٥ 
     The condition M is faithful cannot be 
dropped from proposition ٣.٤, as is seen by the 
last example. 
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