ON STRONGLY PRIME SUBMODULES

A. G. Naoum, I. M. A. Hadi^{*}

department of mathematics, college of Science, university of Baghdad. Baghdad- Iraq *department of mathematics, Ibn al-Haitham college of Education, university of Baghdad. Baghdad- Iraq

Abstract

Let R be an integral domain with quotient field K. A prime ideal P of R is called a strongly prime ideal of R if for each $x, y \in K, x y \in P$ implies $x \in P$ or $y \in P$. In this paper, we generalize this concept to submodules, thus we define strongly prime submodules and give some of their properties.

Introduction

Let R be an integral domain with quotient field K. Following $\$, we say that an ideal P of R is strongly prime if P is a prime ideal and $x, y \in P$ for $x, y \in K$, implies $x \in P$ or $y \in P$. Note that primeness follows from second condition.

In this paper, we give a generalization of this concept to modules, and we study the basic properties. Among other things we study strongly prime submodules in multiplication modules. We also use two known constructions IN $, \tau$ to construct examples of strongly prime submodules. In , an integral domain is called a pseudo valuation domain (PVD) if every prime ideal of R is strongly prime. It is shown in ξ , that every valuation domain is a PVD.

In the last section of our paper we study the relation between strongly prime submodules and PVD.

Finally, we remark that R in this paper stands for an integral domain with quotient field. And M stands for a (left) unitary R module.

S.¹ Strongly Prime Submodules (Basic Results)

Let R be an integral domain with quotient field K.

Recall that a prime ideal P of R called a strongly prime ideal (briefly S-prime ideal) if, whenever x, $y \in K$ and x, $y \in P$, then $x \in P$ or $y \in P$, 1. Houston in 1 proved the following.

Proposition 1.1

Let R be an integral domain with quotient field K and P ia a prime ideal of R. Then P is an S-prime ideal iff $r - r p \subseteq p$ whenever $r \in K \setminus R$. As an extension of the concept of an S-prime ideal to submodules. We proceed as following: Let R be an integral domain with quotient field K and let M be an R-module. Let N an R-submodule of M. Foe each $t = \frac{a}{b} \in K \setminus \mathbb{R}$, we

say that tN \subseteq N if for each x \in N, there exists y \in N such that a x = b y, \circ . In this case we write $y = \frac{a}{b}x$. Note that if N is torsion free,

then y is unique. Recall that a submodule P of an R-module M is prime if P is proper and $r x \in P$ implies $x \in P$ or $r \in (P:M)$ when $x \in M$, $r \in R$, (γ, γ) , (Λ) .

Definition \.Y

Let R be an integral domain with quotient field K. A submodule P of the R-module M is called strongly prime (briefly s-prime submodule) if whenever $r \in K$, $x \in M$ implies $x \in P$ or $r \in (P:M)$.

The following is a characterization of s-prime submodules.

Proposition 1.^w

Let P be a prime submodule of the R-module M. Then the following are equivalent:

P is an s-prime submodule

 $r - p \subseteq p, \forall r \in K \setminus R.$

 $r x \in P$ implies $x \in P$, when $x \in M$ and $r \in K \setminus R$.

- **proof:** $\flat \Rightarrow \forall$: Assume P is an s-prime submodule of M. Let $y=r-\flat x$ where $r \in K \setminus R$, $x \in P$. To prove $y \in P$. Now $r y=r (r- \flat x)=x \in P$. Hence $y \in P$ by definition $\flat \cdot \checkmark$.
 - ^{*}⇒^{*}:Let y= r x∈P, where r∈K\R, x∈M. Then x=r-'y; that is x∈r-'P. But r - ' p⊆p, by ('). Thus x∈P.
 - "⇒ ':Let $y = r x \in P$, where $r \in K$, $x \in M$. Assume $y \in P$. If $r \in P$, then there is nothing to prove since P is prime. If $r \notin R$, then $r \in K \setminus R$, and hence $x \in P$, by ("). Thus p is an s-primesubmodule.

Corollary 1.4

Let P be a prime ideal in R, then p is an s-prime-ideal iff p is an s-prime R-submodule of R.

- **proof:** It follows directly by proposition 1.1 and proposition 1.7.
- **Note:** Niether statement (^{\(\mathbf{Y})}) nor statement (^{\(\mathbf{Y})}) of proposition ^{\(\)}.^{\(\mathbf{Y})} implies the primeness, as the following example shows.
- **Example:** The submodule P = (0) of the Z-module Z^{γ} satisfies statements (^{γ})

and
$$(r)$$
 of proposition r . But P is not a prime Z-submodule of Z^{γ} .

Recall that an R-module M is called prime if annRN = annRM for each non-zero submodule N of M, $^{\circ}$. Equivalently, M is a prime R-module iff ($^{\circ}$) is a prime submodule in M, $^{\circ}$.

Now the following consequences are immediate.

Remark 1.º

- **`**. The zero submodule of any prime R-module is an s-prime-submodule.
- Y. Since K is the total quotient field of R, then K, as an R-module, has (•) as the only prime submodule. Thus K has (•) as the only s-prime-submodule.

Proposition 1.7

Let M be an R-module. Then T(M) is an s-prime-submodule, where

T(M)={ $x:x \in M$ such that $\exists r \in R, r \neq \cdot$ and $rx = \cdot$ }.

proof: T(M) is a prime submodule of M by $\cdot \cdot$, remark $\cdot \cdot \cdot$ (d), chapter \cdot . To prove $r^{-}T(M) \subseteq T(M)$ for each $r \in K \setminus R$. Assume $m \in T(M)$, then there exists $a \in R, a \neq \cdot$ such that $a m = \cdot \cdot$. Hence r^{-1} $a m = \cdot$ and so $a (r^{-1}m) = \cdot \cdot$. Thus $r^{-1}m$ $\in T(M)$; that is $r^{-1}T(M) \subseteq T(M)$.

Remark **\.**V

Any prime submodule pZ of the Z-module Z is not an s-prime submodule, where p is a prime number.

proof: for any prime number
$$p, \frac{p}{p+1} \in \mathbb{Q}\backslash\mathbb{Z}$$
,

where Q is the total quotient field of Z.

$$\frac{p}{p+1}(p+1) = p \in pZ \text{ and } p+1 \notin pZ.$$

Thus pZ is not an s-prime submodule, for any prime number p.

Now we shall give a condition under which a prime submodule is an s-prime submodule

Proposition 1.A

If P is a prime divisible submodule of an R-module M, then P is an s-prime submodule.

proof: Let $\frac{a}{b} \in K \setminus R$, $x \in P$. To prove $\frac{a}{b} x \in P$. Since $b \in R$, $b \neq \cdot$ and P is divisible, bP=P. Then there exists $x' \in P$ such that x=b x'. Hence $\frac{a}{b} x = \frac{a}{b} b x' \in P$. Thus P is an s-prime submodule by proposition \cdot .^m. Now, we can give the following example.

Example '.4: Let M be the Z-module $Q \oplus Z$. Let $P = Q \oplus (\cdot)$. It is clear that P is prime and divisible. Hence P is an s-prime submodule by proposition '.^A.

Proposition 1.1.

If N is an s-prime submodule of an R-module M, then (N:M) is an s-prime ideal of R, where (N:M) = { $r \in \mathbb{R} \mid rM \subseteq \mathbb{N}$ }.

proof: Since N is an s-prime submodule, then N is a prime submodule of M. Hence (N:M) is a prime ideal of R by \cdot , proposition \cdot , chapter \cdot . Now for any $x \in (N:M)$, $xm \in N$ for each $m \in M$. Hence for each $r \in K \setminus R$, $r^{-1}(xm) \in N$ by proposition \cdot . Thus $(r^{-1}x)m \in N$; that is $r^{-1}x \in (N:M)$ and so (N:M) is an sprime ideal of R, by proposition \cdot .

Remark 1.11

The converse of proposition $1.1 \cdot$ is not true in general as the following example shows.

Example: Let M be the Z-module $Z \oplus Z$ and $N = O \oplus {}^{\Upsilon}Z$. (N:M) = (\cdot) which is an s-prime ideal of Z. However, N is not an S-prime submodule of M because it is not prime.

Recall that an R-module M is called a multiplication module if for each submodule N of M, there exists an ideal I of R such that N=IM, 12.

The following is a characterization of s-prime submodules in multiplication modules.

Theorem 1.17

Let M be a multiplication R-module, and N is submodule of M. Then N is an s-prime submodule of M iff (N:M) is an s-prime ideal of R.

proof: The (if) part holds by proposition $1.1 \cdot .$ To prove the (only if) part. (N:M) is an s-prime ideal of R, so (N;M) is a prime ideal of R. Hence N is a prime submodule of M by $1 \cdot .$, corollary 1.17,

chapter). Let
$$\frac{a}{b} \in K \setminus \mathbb{R}, x \in \mathbb{N}$$
, to prove

 $\frac{a}{b} x \in \mathbb{N}$. Since M is a multiplication R-

module, N = (N:M) M,
$$x = \sum_{i=1}^{n} r_i x_i$$
; r_i

$$\in$$
 (N:M), $x_i \in$ M, $i = 1, ..., n$. Thus $\frac{a}{b}x =$
 $\frac{a}{b} \sum_{i=1}^{n} r_i x_i = (\sum_{i=1}^{n} \frac{a}{b} r_i) x_i$ But (N:M) is

an s-prime ideal of R, so
$$\frac{a}{b}r_i \in (N:M)$$
 \forall

$$i = 1, ..., n$$
. Therefore $\frac{a}{b}x \in (N:M) = N;$

that is N is an s-prime submodule.

Now, we give some cases in which P is an sprime ideal in R, implies that PM is

Remark 1.1"

Let M be an R-module, let P an s-prime ideal in R. If PM is a prime submodule, then PM is an s-prime submodule of M.

proof: Let
$$\frac{a}{b} \in K \setminus \mathbb{R}$$
, $x \in \mathbb{PM}$. To prove $\frac{a}{b}x \in \mathbb{PM}$. Since $x \in \mathbb{PM}$, $x = \sum_{n=1}^{n} a_n m_n$ for

$$\frac{d}{b}x \in PM$$
. Since $x \in PM$, $x = \sum_{i=1}^{n} a_i m_i$ for

some $a_i \in P$, $m_i \in M$, i = 1, ..., n. Then

$$\frac{a}{b}x = \frac{a}{b} \sum_{i=1}^{n} a_i m_i = \sum_{i=1}^{n} (\frac{a}{b}a_i)m_i \text{ . But}$$

 $\frac{a}{b}a_i \in \mathbb{P}$. $\forall i = 1, ..., n$ by proposition 1.1, hence

 $\frac{a}{b}x \in PM$ and PM is an s-prime submodule.

Proposition 1.15

Let M be an R-module, and let P be an sprime ideal of R. Then,

- •. If M is a multiplication R-module, P⊇ann_RM and PM \neq M, then PM is an sprime submodule of M.
- **Y.** If P is a maximal submodule of M, then PM is an s-prime submodule of M, provided $PM \neq M$.
- **♥.** If M is a flat R-module, then PM is an sprime submodule of M, provided PM \neq M.

Proof:

- Since P is an s-prime-ideal, P is a prime ideal of R. But M is a multiplication module, P ⊇ ann_RM and PM ≠ M implies PM is a prime submodule of M and (PM:M) = P by `., proposition £.7, chapter `. Then PM is an s-prime submodule of M by remark `.`T.
- Y. Since P is a maximal ideal of R and PM≠M, PM is a prime submodule of M and (PM:M)=P, by `, corollary Y.7,

chapter 1. Then PM is an s-prime submodule of M by remark 1.1° .

^w. Since P is an s-prime-ideal of R, P is a prime ideal of R. But M is flat and PM≠M, hence PM is a prime submodule of M by ^w, proposition [€].^A chapter ¹. Then (PM:M) =P by remark ¹.¹^w. Next we have the following:

Proposition 1.10

Let P be an s-prime R-submodule of an Rmodule M. Then P is an s-prime \overline{R} -submodule of M, where $\overline{R} = R \setminus \operatorname{ann}_R M$ and $\operatorname{ann}_R M$ is a prime ideal of R.

Proof: P is an s-prime R-submodule of M, hence P is a prime R-submodule of M and then P is a prime \overline{R} -submodule of M by \vee , Rresult $\vee.\Upsilon$. Assume \overline{K} is the total quotient field of \overline{R} . Let $\frac{\overline{b}}{\overline{a}} \in \overline{K} \setminus \overline{R}$, we prove $\frac{\overline{a}}{\overline{b}} p \subseteq P$. Since $\frac{\overline{b}}{\overline{a}} \in \overline{K} \setminus \overline{R}$, then $\overline{a}, \overline{b} \in \overline{R}$; that is $\overline{a} = a + \operatorname{ann} M$, $\overline{b} = b + \operatorname{ann} M$ for some $a, b \in \mathbb{R}, b \neq \cdot$. Moreover $\frac{b}{a} \in K \setminus \mathbb{R}$ which implies $\frac{a}{b} x \in P$, $\forall x \in P$ since P an s-prime R submodule of M. Hence ax = by for some $y \in P$, which implies $\overline{a} x = \overline{b} y$ and hence $\frac{\overline{a}}{\overline{b}} x \in P$. Thus the result follows from proposition $\vee.\Upsilon$.

Remark 1.17

The converse of the previous proposition is not true in general, as the following example shows.

Let M be the Z-module Z_{\circ} [$\sqrt{3}$], let $N = \{\overline{b} \ \sqrt{3} : \overline{b} \in Z_{\circ}\}$. It follows that N is not an sprime submodule of the z-module Z_{\circ} [$\sqrt{3}$]. On the other hand, ann_ZM= $^{\circ}z$. Hence Z/ann_ZM= Z_{\circ} . We claim that N is an s-prime submodule of the Z_{\circ} module M. We can see easily that N is prime and divisible Z_{\circ} -submodule. Hence N is an sprime submodule of the Z_{\circ} -module M by proposition $^{\circ}A$.

S.^Y Construction of s-Prime Submodules

In this section we give constructions that lead to s-prime submodules.

Recall that if M is an R-module and P is a prime ideal of R, then set $\{m: m \in M, Am \subseteq PM \text{ for some ideal } A \not\subset P\}$ is denoted by M(P), \S .

It is clear that M(P) is a submodule of M and $PM \subseteq M(P)$.

In the following remark, we consider R as R-module.

Remark 7.1

Let P be an s-prime-ideal of R such that $R(P) \neq R$. Then R(P) = P.

Proof: It is easy, so it is omitted.

Now, we rais the question: when is M(P) an sprime submodule of M.

First we prove the following lemma:

Lemma ^v.^v

Let M be an R-module, and let P be a prime ideal of R. If N = M(P), then either N = M or N is a prime submodule of M and P = (N:M).

Proof: Suppose N \neq M. $r \in \mathbb{R}$, $m \in M$ such that $rm \in \mathbb{N}$. If $r \in \mathbb{P}$, then $r \in (\mathbb{N}:M)$ since otherwise, $\exists m' \in M$ such that $rm' \notin \mathbb{N}$. But $rm' \in \mathbb{PM} \subseteq M(\mathbb{P}) = \mathbb{N}$, so we get a contradiction.

If $r \notin P$, then $r m \in N = M(P)$ implies there exists an ideal A, A $\not\subset$ P and $A(rm) \subseteq PM$. Hence $(Ar)m \subseteq PM$. If (Ar) $\subseteq P$, then P is prime and $r \notin P$, implies A $\subseteq P$ which is a contradiction. Thus $(Ar) \not\subset$ P and $m \in PM \subseteq M(P)=N$. Hence N is a prime submodule of M.

To prove P = (N:M). Let $r \in P$, then $rM \subseteq PM \subseteq M(P) = N$, hence $r \in (N:M)$ and $P \subseteq (N:M)$. Now assume that $\exists r \in (N:M)$ and $r \in P$. Then $r m \in N$ for every $m \in M$, which implies $m \in N$ since N is prime. Thus M = N which is a contradiction. Therefore $(N:M) \subseteq P$ and (N:M) = P.

Theorem ۲.۳

Let M be an R-module satisfying $tM \subseteq M$, $\forall t \in K$. Let P be an s-prime ideal of R. If $M(P) \neq M$, then M(P) is an s-prime submodule of M.

Proof: Since P is an s-prime ideal, P is a prime ideal and hence M(P) is a prime submodule of M and P = (M(P):M) by lemma ^Y.^Y.

Let
$$\frac{b}{a} \in K \setminus \mathbb{R}$$
, $m \in M(\mathbb{P})$. To prove

 $\frac{a}{b}m \in M(P)$. $m \in M(P)$ implies there

exists an ideal A of R such that A $\not\subset$ P,

Am \subseteq PM. Hence there exists $r \in A$, $r \notin$ P and $r m \in$ PM. It follows that $r m = \sum_{i=1}^{n} p_i m_i$, $p_i \in$ P, $m_i \in$ M, i = 1, 1,

...,m. Thus
$$\frac{a}{b}$$
 r $m = \sum_{i=1}^{n} \left(\frac{a}{b}p_i\right)m_i \in PM$

since P is an s-prime-ideal of R. This

implies (r)
$$\frac{a}{b}$$
 $m \in PM$. But (r) $\not\subset P$ and

$$\frac{a}{b}$$
 $m \in M$, so that $\frac{a}{b}$ $m \in M(P)$. Hence

M(P) is an s-prime submodule of M.

The following example shows that there exists an R-module M such that $tm \subseteq M$, $\forall t \in K$.

Example ۲. ٤

Let M be the Z-module Z_{\circ}. Then K = Q and QZ_{\circ} \subseteq Z_{\circ}.

Recall that if N a submodule of an Rmodule M, S is a multiplicative subset in R, then the set $\{x: x \in M \text{ such that } t \ x \in M \text{ for some } t \in S\}$ is denoted by N(S), \mathcal{V} .

Note that N(S) is a submodule of M and $N \subseteq N(S)$.

If we consider R as R-module, we have the following:

Remark **7.**°

Let P be an s-prime ideal of R. Then P(S)=P.

Proof: It is straightforward, hence is omitted.

Proposition 7.7

Let N be an s-prime submodule of the Rmodule M. If $rM \subseteq M$, $\forall r \in K$ and N(S) $\neq M$, then N(S) is an s-prime submodule of M, where S=R-{·}.

Proof: N is an s-prime submodule, so N is prime. Then it is easy to check that N(S) is prime. Thus it is enough to show that

$$r^{-}$$
'N(S) \subseteq N(S), $\forall r \in K/R$. Let $r = \frac{b}{a} \in$

K\R, $x \in N(S)$, to prove $\frac{a}{b} x \in N(S)$. But

$$x \in N(S)$$
 implies $tx \in N$ for some $t \in S$.

Hence
$$\frac{a}{b}(tx) \in \mathbb{N}$$
 since N is an s-prime

submodule of M. Thus $t \left(\frac{a}{b}x\right) \in \mathbb{N}$. On

the other hand, $\frac{a}{b} x \in M$, so that $\frac{a}{b} x \in$

N(S) and N(S) is an s-prime submodule of M.

Theorem ^v.^v

Let M be an R-module such that $rM \subseteq M$, $\forall r \in K$. Let P be an s-prime ideal of R. Then PM(S) is an s-prime submodule of M with (PM(S):M) = P or PM(S) = M.

Proof: Suppose $PM(S) \neq M$. Since P is an sprime ideal of R, P is prime and hence PM(S) is a prime submodule of M with (PM(S):M) = (PM:M) = P by \mathcal{V} , proposition \mathcal{V} .

Let
$$\frac{b}{a} \in K \setminus \mathbb{R}, x \in PM(S)$$
. To prove

$$\frac{a}{b} x \in PM(S).Since \ x \in PM(S), \ t \ x \in PM$$

for some $t \in S$. It follows that $t \frac{a}{b} x \in$ PM, since P is an s-prime ideal of R. On the other hand, $\frac{a}{b} x \in M$, so $\frac{a}{b} x \in$ PM(S). Thus PM(S) is an s-prime submodule of M.

S.[#] s-Prime Submodule and Pseudo Valuation Domains

Recall that an integral domain R is called a pseudo valuation domain (briefly PVD) if every prime of R is an s-prime ideal (see 1, 17).

Every valuation domain R is a pseudo valuation domain (1, proposition 1), where an integral domain R is called a valuation domain if the ideals of are ordered by inclusion.

Recall that an R-module M is called a faithfully flat if M is a flat and PM $\subseteq_{=}^{=}$ M for each maximal ideal P of R, 7, page Υ 7.

**Proposition ". **

Let M be a faithfully flat R-module. If every prime submodule of M is an s-prime submodule, then R is a PVD.

Proof: Let I be a prime ideal of R. Then IM is a prime submodule of M and (IM:M) = I by (\cdot , corollary ϵ .⁴, chapter \cdot). Hence IM is an s-prime submodule of M. It follows that (IM:M) is an s-prime ideal of R by proposition \cdot . \cdot . Thus I is an s-prime ideal and R is a PVD.

Note that every free module is faithfully flat module and every faithful finitely generated multiplication module is faithfully flat module by ($^{\Lambda}$, page $^{\gamma}$) and ($^{\Lambda}$, theorem $^{\mu}$. $^{\Lambda}$, chapter $^{\gamma}$). Hence we have the following consequence.

Corollary "."

Let M be a free R-module or faithful finitely generated multiplication R-module. If every prime submodule of M is an s-prime submodule, then R is a PVD.

Now we consider the converse of proposition r., we have the following:

Proposition "."

Let M be a multiplication R-module. If R is a PVD, then every prime submodule of M is a sprime submodule.

Proof: Let N be a prime submodule of M. Then (N:M) is a prime ideal of R (^r, proposition ^r.^A, chapter ¹). But R is a PVD, so (N:M) is an s-prime ideal of R. Hence N is an s-prime submodule of M by theorem ^r.^Y.

Recall that an R-module M is called a chained module if the submodules of M are ordered by inclusion. A ring R is a chained ring if it is chained as R-module. For references see $(\xi, \gamma r)$. Note that when R is an integral domain, R is a chained ring iff R is a valuation ring $(\xi,$ proposition r. Λ , chapter γ). It follows that every chained integral domain is a PVD by $(\Lambda,$ proposition γ . γ ; that is every prime ideal of a chained domain is an s-prime-ideal. However we notice that not every prime submodule of a chained module is an s-prime submodule, as the following example shows.

Example: The Z-module Z_{A} is a chained module. However the submodule $N = \langle Y \rangle$ of Z_{A} is a prime submodule but it is not an s-prime submodule.

However we have the following:

Proposition *^w***.***[£]*

Let M be a finitely generated faithful multiplication R-module. If M is a chained R-module, then every prime submodule of M is an s-prime submodule of M.

Proof: By (1), theorem (1), it follows that R is a chained domain. Hence R is a PVD, and so the result follows by proposition (1, 7).

Remark ".º

The condition M is faithful cannot be dropped from proposition \mathcal{T} . \mathfrak{t} , as is seen by the last example.

References

- I. Hedstrom J. R. and Houston E.G., IAVA, Pseudo Valuation Domains, Pac J. of Math., Vo(1):17V-15V.
- Y. Ms Casland R.L. and Smith P.F., YAAT, Prime Submodules in Noetherian Modules, Rocky Mountan, J. of Math. $YT(T):Y \cdot \xi Y - Y \cdot T Y$.
- ^r. Saymeh S.A., 1979, On Prime Submodules, Univ. Nac. *Tucuman Rev.* Ser. A(^{rq}), 1^{rred}.</sup>
- Abu-Ayyash M., 1997, Chained Modules, M.Sc. thesis, University of Baghdad.
- •. Alwan F.H.Al., 1997, Dedekind Modules and the Problem of Embeddability, Ph.D.thesis, University of Baghdad.
- ⁷. Kinght J.T., 1991, *Commutative Algebra*, Cambridge Univ., Press.
- V. Ms. Casland R.L. and Moor M.E., 1997, Prime Submodules, comm. in Algebra, Y.(1):14.7-141Y.
- A. Migbas A.S., 1997, On Cancelation Modules, M.Sc. thesis, University of Baghdad.
- Desale G., Nicholson, 1911, W.K., Endoprimitive Rings, J. Algebra, V.:othol.
- 1. Athab E.A., 1997, Prime Submodules and Semi-Prime Submodules, M.Sc. thesis, University of Baghdad.
- 11. Bast Z.A. and Smith P.F., 14AA, Multiplication Modules, comm. In Algebra, 13, Yoo-YY9.
- Y. Cho Y.H., YII, Pesudo Valuation Domains, comm. Korean Math. Soc. (Y):YA1-YAE.
- ۱۳. Froeshi P.A., ۱۹۷۶, Chained Rings, pac. J. of Math., ۲۰: ٤٧-٥٣.