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Abstract

This paper presents a study of inclined magnetic field on the unsteady rotating
flow of a generalized Maxwell fluid with fractional derivative between two inclined
infinite circular cylinders through a porous medium. The analytic solutions for
velocity field and shear stress are derived by using the Laplace transform and finite
Hankel transform in terms of the generalized G functions. The effect of the physical
parameters of the problem on the velocity field is discussed and illustrated
graphically.

Keywords: Maxwell fluid, unsteady rotating flow, infinite circular cylinders, porous
medium, (MHD) magnetohydrodynamic field.
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1. Introduction

The modeling of the equations governing the non-Newtonian fluids gives rise to a nonlinear
differential equation .Such nonlinear fluids are considered to play a more important and appropriate
role in technological applications in comparison with Newtonian fluids. Recently, the most important
applications in differential equations, integral equations, physics, fluid mechanics, viscoelasticity,
mathematical biology, and electrochemistry can be described by using the subject of fractional
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calculus. There is no doubt that the fractional calculus is becoming an interesting spot and an exciting
new way to solve the diverse problems in mathematics, science and engineering. In fluid mechanics,
many models have been proposed to describe the response of the fluids, which are classified as fluids
with a mathematical model of differential type with fractional derivatives. The applications of non-
Newtonian fluids in engineering problems such as magnetohydrodynamic (MHD ) have become the
focus of an extended number of studies; for example plastics, polymer fluids, exotic lubricant, food
stuffs and polymers are handled extensively by chemical industries, whereas biological and
rheological properties of many materials are described by their constitutive equation.

In recent years, the fractional derivatives are found to be quite flexible in describing the behaviors
of the viscoelastic fluid and are studied by many mathematicians considering various motions of such
fluids . In these studies, the constrictive equation for generalized non-Newtonian fluids are modified
from the well-known fluid models by replacing the time derivative of an integer order by precisely
non-integer order integrals or derivatives. The fractional derivative models of the viscoelastic fluids
are obtained by researchers. Especially, the problems of the motion of a fluid in rotating or translating
cylinder are of interest to both theoretical and practical domains . The first exact solution for non-
Newtonian fluids which flows in cylindrical problems are those of Srivastava [9] for Maxwell fluids
and Waters and King [8] for Oldroyd —B fluids in a straight circular tube . Fetecau [2] studied some
helical flows of Maxwell and Oldroyd -B fluids within an infinite cylinder .The exact solutions of
generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate were obtained by
Zheng [4]. Also, Hayat and Asgher [6] studied the exact solution for MHD flow of a generalized
Oldroyd —B fluid with modified Darcy’s law. Nazar and Corina Fetecau [7] considered a note on the
unsteady flow of a generalized second-grade fluid through a circular cylinder subject to a time-
dependent shear stress. Liancun and Zhang [8] studied the unsteady rotating flows of a viscoelastic
generalized Maxwell fluid with oscillating pressure gradient between coaxial cylinders. Sundos and
Ahmed [10] studied the effects of MHD on the unsteady rotating flow of a generalized Maxwell fluid
with oscillating gradient between coaxial cylinders.

In this paper, we studied the effects of inclined magnetic field on the unsteady rotating flow of a
generalized Maxwell fluid with fractional derivative between two inclined infinite straight circular
cylinders. The velocity field and the shear stress are obtained by means of discrete Laplace transform
and finite Hankel transform. The exact solutions for the velocity field and the shear stress were
obtained by integral and series form in terms of the generalized G functions. Graphs were plotted to
show the effects of the fractional parameter on the fluid dynamic characteristics with MHD on the
velocity field.

2. Mathematical Formulation

The constitutive equations of an unsteady inclined magnetic hydrodynamic incompressible flow of
generalized Maxwell fluid with fractional derivative between two inclined coaxial cylinders through a
porous medium are given by [2,5]

DS
T=—p1+S+pgsin9+]><B+R,5+7»E=,uA (D

where T is the Cauchy stress tensor, - pl is the indeterminate spherical stress, S is the extra-stress
tensor , p is the fluid density , g is the external body force, A=L + LTis the first Rivlin-Ericksen
tensor with L=grad V, B is the magnetic field, and J is the current density (or conduction current). u is

the dynamic viscosity of the fluid, A is the material constant, and DD—f is defined by

DS
E=Dg‘s+v.vs—Ls—SLT @)

where V is gradient operator, o is the fractional calculus parameter suchthat 0 < a < 1, and D{ is
the fractional differential operator based on Riemann-Liouville's, defined as
1 d (" f@
DEF() = |
[(1-w)dt), (t—1)
where T'(.) isthe Gamma function and

dr, 0<a<1 3)

D¢* = Df(D{'S) C)
We assume that the velocity and shear stress in cylindrical coordinates (r, 6, z) are given by
V=u(rt)eg, S=S(,0) (5)

where eg is the unit vector in the #- axis and u is the velocity. Since V is dependent on r and t, we
also assume that S depends only on v and & . If the fluid is being at rest at t=0, then
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V(r,00)=0 S(,0)=0 (6)

We can obtain
(142 DY) = (6—1) 7
T t)=Mu ar 7 u 7)

According to our problem,
Syr =8, =Sy, =Sg, = Sgg =0 ,7(r,t) = Sp9 (r,t) is the shear stress .

We consider a generalized Maxwell fluid between two inclined infinite circular cylinders through a
porous medium .The pressure gradient in the & axial direction and the balance of the linear momentum
leads to the relevant and meaningful equation

ou_ 1op 1 a(r?1)

P ey M

ot  rad r2 or | _ N _ _

where p is the constant density of the fluid , K is the permeability and ¢ is the porosity of the porous
medium .

— B¢ usinf — pgsinh — %u, (8)

Now, by eliminating 7(r.) between Egs, (7) and (8), we get the governing equation of motion, as
follows:

ou 1 op uf1o0 1 02
oy~ ay _ & - 4 - -
1+ Dt)at (1+k Dt) +p<r6r+r26r2>u
( ﬁo 9+—>(1+x DYu — pg (1 + A DY) sinb 9)
Letv = % be the kinematic viscosity and — a —p po cos(wt) or — op —p Py sin(wt)

where p, is constant, then we get the governing equation

@2 D92 =P 1 4 D) cos(at) +u (b4 10X
Yot T r t) CoStw “\orz Tror 12

- <%s no + —) 1+ X2 DHu—pgsinb (1 + L DY) (10)
and the appropriate initial and boundary conditions are as follows:
du(r,0)
u(r,0) = FrE 0, re[R;,R,] (11)
u(le t) = feat ) u(RZI t) = 0' t>0 (12)

where f is constant.
3.Calculation of the velocity field

In this section ,the velocity field will be calculated for different cases of pressure gradient.
3.1. Case one

To find the solution for Eq(10) subject to boundary condition and Z—z = —p po Cos(wt) , we frist

take the Laplace transformation to Egs. (10)-(12) and, using the Laplace transform of the sequential
fractional derivatives [6], we find that

arlyg = PO — 1 w%sin(E @)=L
(g +rq* Hu [<1+kw cos(2 a)>q2+w2 Aw sm(2 a)q2+w2
92 10 1)\_ Bo ue
+u<ﬁ+;£—r—2>u— <TS 9+? u— pgSlTl@
ﬂ(rl 0) = 0 )] rE[Rl iRZ] (14)

4(Ry,q) =(qf—a) , W(Ryq) =0, t>0 (15)

Next, we denote the finite Hankel transform of @ [7] , defined as follows

(1+2q%,re[R,,R;] (13)

Ry

Uy = J ruB(rrn)dr,n=123...... (16)

Ry
where 1, are the positive roots of equation B;(R,r) =0 and
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Bi(rm) = 1 (rm)Yi(Ry 1) — J1(Ry 1) Y1 (r 13) (17)

where J,,(.) and Y,,(.) are Baseel functions of the first and second kind of order n, respectively.
Now, by multiplying both sides of Eq. (13) by r B;(r r,) and then integrating with respect to r
from R, to R, and taking into account the conditions (14) and (15) as well as the identity
R
f <az 10 1) 2 f LhRem) -

r W+;§ uB(rn)dr=——

m(q—a) Ji(Ry ) ~ Tt (18)

Ry

we find that

_ T Bl(R1 rn) - EI(RZ T'n) q
_ a —
Uy = po (1 + A w®cos ( O‘)) 1,(q% + w?)(1 + Aq®) oB? U
q+ U(rr% +Tosin9 +T)

2
T ) 51(R1 Tn) — E1(R2 T) w 2 f

% w%sin (= -
@ sin(3 @) @ 0 +749 o2 N TR@-a
q+u(rnz+ 5 sm9+K)

Ji(Ry 1) [%j? ﬁ%g—i::g(q + U( ﬁo sinf + 'ul;p)) — pgsinel

ACED) (19

q+u(rn +ﬁ5m9+:“12p)

where Pl (T Tn) = ]0 (T Tn)yl (RZ rn) _]1 (RZ rn)YO (T rn) [1]
By taking inverse Hankel transformation of Eq.(19), we get

Ri(RE—r2)f  m2po (142w cos( i J2 (Ry 1) By (r 1)
(R —R)r(q — ) z<1+xqa)<q2+w2> LR )~ 2Ry 1))

(El(Rl ) — El (R Tn)) m? Po X w®sin (TZT oc) ™ ]12 (Ry 1By (r13,)
)) 20+ 49 + @) £ (2 Ry 1) — 2Ry 1)}

u=

2
5, OBy . ue
(q +v (rn + ' sinf + X

(Bl (Ri1) — Bl (R, Tn)) +nf Z 1(Ry 1)J1 (R, 1)B1(r 1)
O',B U {]1 (R1 1) — JT (R 1)3(q — a)
q+u<rn +— 0 sinf + K)

BO 2] M
(q”( e K)) S SRR 5B )

>> 2 ] J2(R 1) — J?(Ry 1)

X

o
<q+o(r§+ g Sln9+“120

pgsinf

(20)
<CI +0(rn +ﬁsm€ +HI?)>

X

where

_ T 7'1% ]12 (Ry1)B1(rm) _
u= 5 Uy (21)
2 ]1 (Rl rn) ]1 (RZ Tn)
Now, by taking dlscrete Laplace transformation of Eq.(20) and using the following property of inverse
Laplace transformation
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L —_ Gabc d, 22

® (C) ,djt(j+c)a—b—1
Ga,b,c(d: T) = 4
j

_Oj! I'[(j + c)a — b]
is the generalized G function and (C)j is Pochhammer polynomial [3] .
Finally, we get the expressions for the velocity field as follows:

t

0 k s
_ Ry(RF - rz)feat B Z (—1)*n?p, (1 + A w® cos (7 a)) Cos(w(t - 1)
- (RZ _ RZ)T k+1
2 — g pr B2 e ,
21 U(Tnz +T°sin9 +?>

» 1 J3(Ry 1)By (7 1) (By(Ry 1) — By (Ry 1)
X Gogea (=2 ‘T)dtz JER; 1) — J2(Ry 1)

n=1
t w k2 acin (T
(—D*rpy A w sm(2 a)

- j Sin(w(t - T)) Ga‘k'l(—k_l, ‘c)dr Z i
0 k=02k<o(rnz+ g sm9+“120)>

i 1 R (R ) By (r 73) By (R 7)) = By Ry 1) i fJ1(Ry )J1 (Ry 1) By (r )
]12 (Rl 7”n) - ]12(R2 rn) ]12(R1 Tn) - ]12(R2 rn)
1)KEk! rz(k_m)

i (_U<rn +%S o +_>) f{(k_ Drettoe 1}dT+Z Z = m! (m — k)!

k=0

(23)

n=1

k+1 t

ﬁ = _ a(t—1) k- _r N 17 JE (Ry 1) By (r 1)
(U(Tn‘l‘ P sinf + )) j{(k 1) e*t=Dgk=1 gr 2;]12(1?11%)_]12(}?27%)

X pgsinf z < <rn + —S inf + %) t> k! (24)

3.2. Case two
By a similar method and using % = —p po Sin(wt), we can obtain the solution in the following

form
t

_ R, (RZ — rz)feat B 2, (—1kn2p, (1 + A w¥ cos (% “)) f Sin(w(t — 1))

(RS - RDr
ﬁo ue 0
27»( ( o sin@ + K)

0 2 — B t
Gapa (5371, Y (Ry 1) By (r 1) (By(Ry 1) = By(Ry 1) ] Cos(w(t — D)

~ JERy 1) — JE(R2 1) 5

) . (T )

1 (—=1)*n?po A w® sin (7 a) f]1(Ry 1)]1(Ry 1) B1(r 1)

Guga (~17%,7)dr Y - TR

=0 0.[3 ~= Ji(Ri1) — Ji(Ry 1)
2) o(r,f+ 5 sm9+#lép>

e B2 © K 1\kpy -2(k-m)
3 (<o oo +22)) [l mesconnans 5 SRR

0 k=0 m=0

k+1 t 0

ﬂ Ho _ a(t—1) _r 17 J{(Ry 1,)By1 (1 13,)
(U (Tn ¥ mo+ >) f{(k 1)' “ Tk 1}d 2 ]12(R1 rn) - ]12(R2 rn)

n=1
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k
pgsinf Z <—U <rn + —s inf + %) t> k! (25)

4. Calculation of the shear stress
In this section, the shear stress is calculated for different types of pressure gradient.

4.1 Case one
The shear stress can be calculated from Eq(7) and %= —p po cos(wt), by taking Laplace

transform
of Eq(7), we get
(1+2q%)7 = ( 0 1)
TIr=H or r
_ 1 (8 1)
te 1+ Xq“)” ar r
T
—2uR,R2f +u7‘[2p0 (1+7\.(l)acos (7 a))
(R = RP)r(q — a)(1 + 1q%) 2

Xz{rnh(Rl 1) By (Ry 1) — By (Ry 1))} (B (Ry 1) — (3) By (r 1)

(26)

|

(27)

<

T =

" JRR 1) = SRRy )} + 0) (1 o (r2 + D sing + %))

3 ur?py A w® sin (% 0-’) y i T J2(Ry 1) (B1(Ry 1) — B1 (R, 13,)) w )
2 Z {J2(Ry 1) — JE(Ry 1)} @+ 0D

By Ry 1) = (3) By (r ) infh(Rl 1)1 (R 1) (5 By (Ry 1) — ()Bl(rrn))x

Ry 1) — 2Ry 1)}(q —
<1+U(Trf+ gsm9+K> TRy 1) — JE(R2 1)} g — @)

2
A+2g9(1+v (%sine + %)
P pgsinf
<1+U<T‘2+ by Sln9+“¢>) (1+u(r2+ abs sm9+’u(p)>
n ) K n ) K

By applying discrete inverse Laplace transform for Eq(28), we obtain the shear stress in the following
form

(28)

um?p, (1 + A w% cos (% a))
2

t
—2uR,R2 ~ _
NCECT l ) f (e Gaga(- 7 D)} dr

3 T JE(Ry 1) (B (Ry 1) — ( )Bl (r Tn))(Bl (R 1) — By (R, rn)) i ( + ;
ol 24200
{J2(Ry 1) — JE(Ry 1)} L vl % sin

_|_

M

o

t 20 % w0 Sin (T
%» J {Cos(w(t — D)tk — Dt} — — 2 wz in(3 )

0
i W SRRy 1) (5By Ry 1) — (3) By i) (By (Ry 7) — By (R; 1)
{]1 (Rl Tn) ]1 (RZ rn)}

[ee)

g

2
o
(—U (rnz + %sine

t
“—)) x f {Sin(w(t — )™k — Di}dr
0
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o T JT(Ry 1) (1B (Ry 1) — ( )31 (r Tn))(B1(R1 ) — Bi(R; Tn)) ) aBé
" Z {/1 (Ry ) = J{(Rz 1)} 2. <‘” (rn tp sl

n=1 k=0

+ —)) f{Sln(w(t — )Rk — D!}d + pnfr

_ 1 (
IRCENACES (rnBlml w—(7) B m)) 4 : 1%

JE(Ry 1) — J2(Ry 1) Z 5 K+1
PR (o + Lot - 22)

.
. o8 ) |
N Z (- 1)kx< % 5infd + #Iép) ? % f{ea(t_r)Ga,k,—1(7L_1,T)} dr — pgsind

ﬁ k+1
k=1 2 mo)
6
(D(Tn+ ) —-=sinf + K ) )

o0 k
X z <—0 <rn + —sm@ + M}f)) tk(k — 1)! (29)

k=0

>

n=1

4.2 Case two
By proceeding in the same approach as before and using Z—Z = —p p, Sin(wt) , we can find the
solution in the following form

(ST

t
— _Zu—}?l}?% at __ f a(t-T) _ -1 a))
" R3-RDr [e {e® G0 (—271 1)} do

™ ]1 (Rl T'n)(rnBl(R1 Tn) ( )B1 (r Tn))(Bl(Rl rn) B1 (RZ Tn)) o0 ;
{]1 (Ry ) — ]1 (Ry )} Z —V (rn +_Sln

Kk t 2 o sin (T
) Xf{Sin(w(t—T))Tk(k—1)!}d-[ _IJ7T Po wz ln(2 a)

umpg (1 + L w% cos (

" 2

X
s

k=

o

+

)

X

T J (Ry 1) (1, B (Ry 13) — ( )Bl(T 1))(B1(Ry 1) — B1(R2 1)) i B ( oBE
{ZRy 1) = JE(R2 1)} v

+

) feotor o

r JE Ry 1) (B Ry ) — (2) By (r 1) (By (Ry 1) — By (Ry 7)) & L op?
2Ry 1) = J2 Ry )} 2, _”<r”+

X

M8 =5 iDVs =I3

S
1]
=

kK ot
+ %)) X f{Cos(w(t — ‘L'))Tk(k — 1)!}d + urft
0

(
Ji(Ry 1)J1(Ry 1) <Tn§1(R1 ) — (%) By (r Tn)) l i (—1)ka
JE Ry 1) = JE(Ry 1)

K+l
lk=1< (r,f + G’f sinf + If))

>

n=1
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2 )
% (—1)%(%555] +j—Kj> u
+Z X I{D[(D_[)]L_L__I(K_U,D)} 00 - 000000

k+1
- 2
D‘l<u<Di+—DDD°D[D[+—jKj>) ) 0

k

N , 003 SR
xz —vo| 0 +—0000 +— (0 = D! (30)
[] K
k=0
5. Numerical Results and Conclusions
In this paper, we have established the influence of inclined magnetic field on the unsteady rotating
flow of a generalized Maxwell through two inclined infinite straight circular cylinders. The analytical
solutions for velocity field and shear stress are obtained using Hankel and Laplace transforms of
sequential fractional. The solution was determinedand written under integral and series from in terms
of generalized G-function. Diagrams are plotted to show the behavior of different parameters involved
in the expressions of the velocity field [ 1.

The velocity and shear stresses are plotted about the case g—g= —p po cos(wt) using the

Mathematica package. Figure-1 is sketched to show the velocity field of Maxwell model with
fractional derivative at different values of time. From this figure, it is obvious that velocity is
decreasing as the time increases. Figure-2 displays the impact of the parameter p, on the velocity
field. It can be seen that the velocity becomes similar with increasing the value of p,. Fig (3) is
depicted to show the changes in the velocity with the parameter f and magnetic field. The velocity
decreases with increasing the parameter f. Figure-4 displays the behavior of the parameter o with the
magnetic field. It is observed that the velocity is increasing in the interval (0 < ¢ < 0.6) but it
maintains the same value when ¢ = 0.6. It can be also seen that the velocity is decreasing in the
interval (0.6 < o < 1). Figure-5 provides the graphical illustrations for the effects of the non- integer
fractional parameter « on the velocity fields. The velocity is increasing with the increase of the
parameter . Figure-6 displays the behavior of parameter A with the magnetic field. It is observed that
the velocity keeps similar values with the increase of the parameter A. Figure-7 is prepared to show the
effect of the kinematic viscosity on the velocity field with the magnetic field. The velocity decreases
with the increase of 0. Figure-8) is prepared to show the effect of the parameter 6 on the velocity field
with the magnetic field. The velocity decreases with the increase of the parameterd6. Figure-9 is
established to show the behavior of different values of time with A=8, « — 1 and magnetic field. The
velocity field decreases with the increase of time. Figure-10 provides the graphical illustration for the
effects of different values of r with the magnetic field. The velocity field is increasing with the
increase of r. Figures-(11, 12) provide the graphical illustration for the effects of different values of O
and [10 Orespectively with the magnetic field. The velocity field decreases with the increase in the
values of O and [1] CJrespectively. Figure-13) provides the graphical illustration for the relationship of
velocity field with parameter K. The velocity field is increasing with the increase of K. Figure-14 is
established to show the effects of different value of g with the magnetic field on the velocity field. The

velocity field is decreasing with the increase of g.

w

30f - -

- ~ 22
_ e~

~
25 :/(_%/ — ~ N t=4 ok \
sof T TTTTEeeell ~ N -
DTN \\ t=5 18 [
15[ -\"~ N - —
Trel ] t=6 16 [
10 F S~.L

~< 14

L L L L
0.7 0.8 0.9 1.0 11

12
0.0 F

Figure 1- The velocity for different values of - = o
time t: {A=10,v=0.2,a=-0.2, f =4,B,=0.1, | Figure 2- The velocity for different values of
0=0.1, ®=0.1, r,,=7.8999 , R;=0.5 time py: {A=10,v=0.2,a=-0.2, f
,R,=1,£=6,p=0.02, 6 = n/2 =4, B»=0.1, 0=0.1, ®=0.1, r,,=7.8999

, Po=2,06=0.1,u=1, =1, K=1, g=1} ,R1=0.5 ,R,=1,t=6, p=0.02, 6= w/2
,0=0.1,p=1, ¢=1, K=1, g=1}
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: {A=10,0v=0.2, a=-0.2, 3,=0.1,
0=0.1, ®=0.1, « = 0.51r,=7.8999, , R;=0.5
, R=1,t=6, p=0.02,0 =n/2, py=2, 0 =

Figure 4- The velocity for different values of
o:{A=10,v=0.2, a=-

0.2, f=4, B,=0.1, ®=0.1, 1,,=7.8999 , R,;=0.5
,R,=1,£=6, p=0.02, 0 = n/2,a = 0.5

0.1,pu=1, =1, K=1, g=1} , Po=2,u=1, ¢=1, K=1,g=1}
- — T - zzw\
T s a=03 N -
\\~?:\ \\\ a=0.5 18 - =4
] - a=0.8 . A=8
~o — B S 2=12

Figure 5- The velocity for different values of
a: {A=10,0v=0.2,a=-0.2, f

=4, By=0.1, ®=0.1, 1,,=7.8999 ,R;=0.5
,R=1,t=6,p=0.02, 6 = ©n/2,py=2, u=1,
p=1,K=1,g=1}

Figure 6- The velocity for different values of
A {v=0.2,a=-02, f =4, B,=0.1,

0=0.1, ®»=0.1, a = 0.57,=7.8999 , R,;=0.5
,R=1,t=6,p=0.02, 6= n/2

s Po=2,p=1, ¢=1, K=1, g=1}
T~ - o v=0.2 /////,7F\\\\\ ~ N e=ﬂ:/6
— ~ 20 . < 0=mn/3
T~ S o ___v=0.4 peemT T - i
-------------- T ~| T —a e sE .. —---- 0=m/2
‘_‘-‘-“‘-_ \\"—x 10 ~
Figure 7- The velocity for different values of oo )

v: {A=10,a=-0.2, f=4, $,=0.1,0=0.1,
1,=7.8999 ,R;=0.5 ,R,=1,t=6,p=0.02, 6 =
n/2,a=0.5

,Po=2,06=0.1,u=1, ¢=1,K=1,g=1}

Figure 8-. The velocity for different values of
0: {A=10,0=0.2, a=-0.2, f =4, B,=0.1,
0=0.1, ®=0.1, ,,=7.8999 , R,=0.5

, R=1,£=6, p=0.02, ¢ = 0.5

» Po=2,p=1, ¢ =1, K=1,g=1}
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Figure 9- The velocity for different values of
time twithA=8,0 = 1:{v=0.2, a=-
0.2, f=4, Bo=0.1,®=0.1, « = 0.5

1,,=7.8999, R;=0.5, py=2, ¢ =1, K=1,R,=1, n
=1,0=0.02, 6= nn/2,g=1}
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Figure 10- The velocity for different values of
r {A=10,v=0.2,a=-0.2, f

=4, B,=0.1, »=0.1, r,,=7.8999 , R;=0.5
,R=1,£=6,p=0.02, 6= n/2,a = 0.5

, Po=2,06=0.1,u=1, ¢ =1, K=1,g=1}
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Figure 11- The velocity for different values of p

{A=10,0v=0.2, a=-0.2, f =4, B,=0.1, ®=0.1,
1,=7.8999 , R;=0.5 , R,=1,t=6, p=0.02, 6 =
n/2,a =0.5

, Po=2,0=0.1, =1, K=1,g=1}

Figure 12- The velocity for different values of
@ {A=10,0v=0.2,2=-0.2, f =4, B,=0.1,
0=0.1, ®=0.1, 1,=7.8999 , R;=0.5
,R=1,£=6, p=0.02, 6 = nn/2

, Po=2,0=0.1,u=1, K=1,g=1, a=0.5

Figure 13- The velocity for different values of
K {A=10,v=0.2, a=-0.2, f=4, $,=0.1, ®=0.1,
7,=7.8999 , R;=0.5 , R,=1,t=6, p=0.02, 0 =
n/2,a =0.5

e R I
cemmmTTeee \\ g =2
\\‘~~\\\ ----- g =3

Figure 14- The velocity for different values of
g {A=10,v=0.2, a=-0.2, f=4,5,=0.1, »=0.1,
1,=7.8999 , R;=0.5 , R,=1,t=6, p=0.02, 0 =

, Po=2,0=0.1,u=1, @=1,g=1}

n/2,a =0.5
,y Po=2,0=0.1,pu=1, ¢=1, K=1}
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