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Abstract 

    "This paper presents a study of inclined magnetic field on the unsteady rotating 

flow of a generalized Maxwell fluid with fractional derivative between two inclined 

infinite circular cylinders through a porous medium. The analytic solutions for 

velocity field and shear stress are derived by using the Laplace transform and finite 

Hankel transform in terms of the generalized G functions. The effect of the physical 

parameters of the problem on the velocity field is discussed and illustrated 

graphically. 
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المغناطيسي المائل عمى مائع ماكسهيل ذو المشتقات الكسريه خلال وسط مسامي بين  التأثير
 أسطهانتين دائريه مائمه

 
احمد مهلهد عبد الهادي ،سعاد ناجي كاظم  ، *حبيب سندس بدر  

 قالعرا بغداد، بغداد، جامعة العمهم، كمية قسم الرياضيات ،                                        
 
 

 الخلاصة

في هذا البحث دراسنا الحقل المغناطيسي المائل عمى الجريان الدوراني غير المستقر لمائع ماكسهيل ذو      
المشتقات الكسريه بين أسطهانتين دائريه مستقيمه مائمه لانهائيه خلال وسط مسامي. تم اشتقاق الحل التحميمي 

رسمنا  تأثير .  المعممه G س  و تحهيل هانكل ددلالة الدالةلمجال السرعة وإجهاد القص باستعمال تحهيل لابلا
  .المعممات الكسرية عمى مجال السرعة بيانيا

 

1. Introduction 

      The modeling of the equations governing the non-Newtonian fluids gives rise to a nonlinear 

differential equation .Such nonlinear fluids are considered to play a more important and appropriate 

role in technological applications in comparison with Newtonian fluids. Recently, the most important 

applications in differential equations, integral equations, physics, fluid mechanics, viscoelasticity, 

mathematical biology, and electrochemistry can be described by using the subject of fractional 
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calculus. There is no doubt that the fractional calculus is becoming an interesting spot and an exciting 

new way to solve the diverse problems in mathematics, science and engineering. In fluid mechanics, 

many models have been proposed to describe the response of the fluids, which are classified as fluids 

with a mathematical model of differential type with fractional derivatives. The applications of non-

Newtonian fluids in engineering problems such as magnetohydrodynamic (MHD ) have become the 

focus of an extended number of studies; for example plastics, polymer fluids, exotic lubricant, food 

stuffs and polymers are handled extensively by chemical industries, whereas biological and 

rheological properties of many materials are described by their constitutive equation. 

     In recent years, the fractional derivatives are found to be quite flexible in describing the behaviors 

of the viscoelastic fluid and are studied by many mathematicians considering various motions of such 

fluids . In these studies, the constrictive equation for generalized non-Newtonian fluids are modified 

from the well-known fluid models by replacing the time derivative of an integer order by precisely 

non-integer order integrals or derivatives. The fractional derivative models of the viscoelastic fluids 

are obtained by researchers. Especially, the problems of the motion of a fluid in rotating or translating 

cylinder are of interest to both theoretical and practical domains . The first exact solution for non-

Newtonian fluids which flows in cylindrical problems are those of Srivastava [9] for Maxwell fluids 

and Waters and King [8] for Oldroyd –B fluids in a straight circular tube . Fetecau [2] studied some 

helical flows of Maxwell and Oldroyd -B fluids within an infinite cylinder .The exact solutions of 

generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate were obtained by 

Zheng [4]. Also, Hayat and Asgher [6] studied the exact solution for MHD flow of a generalized 

Oldroyd –B fluid with modified Darcyʼs law. Nazar and Corina Fetecau [7] considered a note on the 

unsteady flow of a generalized second-grade fluid through a circular cylinder subject to a time-

dependent shear stress. Liancun and Zhang [8] studied the unsteady rotating flows of a viscoelastic 

generalized Maxwell fluid with oscillating pressure gradient between coaxial cylinders. Sundos and 

Ahmed [10] studied the effects of MHD on the unsteady rotating flow of a generalized Maxwell fluid 

with oscillating gradient between coaxial cylinders. 

     In this paper, we studied the effects of inclined magnetic field on the unsteady rotating flow of a 

generalized Maxwell fluid with fractional derivative between two inclined infinite straight circular 

cylinders. The velocity field and the shear stress are obtained by means of discrete Laplace transform 

and finite Hankel transform. The exact solutions for the velocity field and the shear stress were 

obtained by integral and series form in terms of the generalized G functions. Graphs were plotted to 

show the effects of the fractional parameter on the fluid dynamic characteristics with MHD on the 

velocity field.  

2. Mathematical Formulation 

     The constitutive equations of an unsteady inclined magnetic hydrodynamic incompressible flow of 

generalized Maxwell fluid with fractional derivative between two inclined coaxial cylinders through a 

porous medium are given by [2,5]  

                          
  

  
                                                                       

     where T is the Cauchy stress tensor, - pI is the indeterminate spherical stress, S is the extra-stress 

tensor ,   is the fluid density ,   is the external body force, A = L + L
T 

is the first Rivlin-Ericksen 

tensor with L=grad V, B is the magnetic field, and   is the current density (or conduction current).   is 

the dynamic viscosity of the fluid,   is the material constant, and  
  

  
  is defined by 

 
  

  
   

                                                                                                                       

where   is gradient operator, α is the fractional calculus parameter such that          and    
   is 

the fractional differential operator based on Riemann-Liouville's, defined as 

   
      

 

      

 

  
∫

    

      
                                                                                 

 

 

 

where        is the Gamma function and  

   
     

    
                                                                                                                                          

     We assume that the velocity and shear stress in cylindrical coordinates          are given by 

                                                                                                                                         

     where       is the unit vector in the  - axis and   is the velocity. Since   is dependent on   and t, we 

also assume that S depends only on    and  . If the fluid is being at rest at t=0, then  
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We can obtain  

          
    (

 

  
 

 

 
)                                                                                                                

According to our problem,  

                                           is the shear stress .  

 

     We consider a generalized Maxwell fluid between two inclined infinite circular cylinders through a 

porous medium .The pressure gradient in the θ axial direction and the balance of the linear momentum 

leads to the relevant and meaningful equation  

  
  

  
  

 

 

  

  
 

 

  

      

  
     

                
  

 
                                                        

where
  
  is the constant density of the fluid ,   is the permeability and   is the porosity of the porous 

medium . 

Now, by eliminating 
),( tr

 between Eqs, (7) and (8), we get the governing equation of motion, as 

follows: 
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Let   
 

 
 be the kinematic viscosity  and   

  

  
                    

  

  
                      

where     is constant, then we get the governing equation 
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and the appropriate initial and boundary conditions are as follows: 

       
       

  
            [      ]                                                                                                

                                                                                                                                
where   f  is constant. 

3.Calculation of the velocity field 

   In this section ,the velocity field will be calculated for different cases of pressure gradient. 

3.1. Case one    

    To find the solution for Eq(10) subject to boundary condition and  
  

  
              , we frist 

take the Laplace transformation to Eqs. (10)-(12) and, using the Laplace transform of the sequential 

fractional derivatives [6], we find that 
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Next, we denote the finite Hankel transform of  ̅ [7] , defined as follows 

 

  ̅  ∫  

  

  

 ̅                                                                                                              

where     are the positive roots of equation                and 
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     where       and       are Baseel functions of the first and second kind of order n, respectively.  

Now, by multiplying both sides of Eq. (13) by             and then integrating with respect to r 

from       to     and taking into account   the conditions (14) and (15) as well as the identity 

∫  (
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we find that 
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where    ̅                                            [1]. 

 

By taking inverse Hankel transformation of Eq.(19), we get 
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Now, by taking discrete Laplace transformation of Eq.(20) and using the following property of inverse 

Laplace transformation 
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    ,
  

       
-                                                                                                                          

where [11] 

             ∑
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is the generalized G  function and jc)(  is Pochhammer polynomial [3] . 

Finally, we get the expressions for the velocity field as follows: 
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        3.2. Case two 

    By a similar method and using  
  

  
             , we can obtain the solution in the following 
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4. Calculation of the shear stress 

   In this section, the shear stress is calculated for different types of pressure gradient.   

4.1 Case one  

    The shear stress can be calculated from Eq(7) and  
  

   
             , by taking Laplace  

transform 

     of Eq(7), we get 
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By applying discrete inverse Laplace transform for Eq(28), we obtain the shear stress in the following 

form  
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4.2 Case two 

    By proceeding in the same approach as before and using  
  

  
              , we can find the 

solution in the following form 
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5. Numerical Results and Conclusions 

     In this paper, we have established the influence of inclined magnetic field on the unsteady rotating 

flow of a generalized Maxwell through two inclined infinite straight circular cylinders. The analytical 

solutions for velocity field and shear stress are obtained using Hankel and Laplace transforms of 

sequential fractional. The solution was determinedand written under integral and series from in terms 

of generalized G-function. Diagrams are plotted to show the behavior of different parameters involved 

in the expressions of the velocity field  . 

     The velocity and shear stresses are plotted about the case   
  

  
                 using the 

Mathematica package. Figure-1 is sketched to show the velocity field of Maxwell model with 

fractional derivative at different values of time. From this figure, it is obvious that velocity is 

decreasing as the time increases. Figure-2 displays the impact of the parameter    on the velocity 

field. It can be seen that the velocity becomes similar with increasing the value of    . Fig (3) is 

depicted to show the changes in the velocity with the parameter   and magnetic field. The velocity 

decreases with increasing the parameter  . Figure-4 displays the behavior of the parameter   with  the 

magnetic field. It is observed that the velocity is increasing in the interval           but it 

maintains the same value when          It can be also seen that the velocity is decreasing in the 

interval           . Figure-5 provides the graphical illustrations for the effects of the non- integer 

fractional parameter   on the velocity fields. The velocity is increasing with the increase of the 

parameter  . Figure-6 displays the behavior of parameter   with the magnetic field. It is observed that 

the velocity keeps similar values with the increase of the parameter  . Figure-7 is prepared to show the 

effect of the kinematic viscosity on the velocity field with the magnetic field. The velocity decreases 

with the increase of . Figure-8) is prepared to show the effect of the parameter  on the velocity field 

with the magnetic field. The velocity decreases with the increase of the parameter . Figure-9 is 

established to show the behavior of different values of time with  =8,    1 and magnetic field. The 

velocity field decreases with the increase of time. Figure-10 provides the graphical illustration for the 

effects of different values of r with the magnetic field. The velocity field is increasing with the 

increase of r.  Figures-(11, 12) provide the graphical illustration for the effects of different values of 

and  respectively with the magnetic field. The velocity field decreases with the increase in the 

values of  and  respectively. Figure-13) provides the graphical illustration for the relationship of 

velocity field with parameter  . The velocity field is increasing with the increase of  . Figure-14 is 

established to show the effects of different value of g with the magnetic field on the velocity field. The 

velocity field is decreasing with the increase of g. 

 
Figure 1- The velocity for different values of  

time   t : { 10, 0.2,a-0.2,   =4    =0.1, 

σ=0.1,0.1,   =7.8999 ,R1=0.5 

,R2=1t=6,0.02,= /2

,   =2, σ = 0.1,1,  1,  1, g1} 

 
Figure 2- The velocity for different values of  

time      : { 10, 0.2,a-0.2,   

=4,   =0.1, σ=0.1,0.1,   =7.8999 

,R1=0.5 ,R2=1t=6,0.02,= /2

, σ = 0.1,1,  1,  1, g1} 
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Figure 3- The velocity for different values of      

: { 10, 0.2,a-0.2    =0.1, 

σ=0.1,0.1,         =7.8999, ,R1=0.5 

,R2=1t=6,0.02,=/2,   =2, σ = 

0.1,1,  1,  1, g1} 

 

 
Figure 4- The velocity for different values of     

σ : { 10, 0.2,a-

0.2, =4,   =0.1,0.1,   =7.8999 ,R1=0.5 

,R2=1t=6,0.02,= /2      

,   =2,1,  1,  1,g1} 

 

 
Figure 5- The velocity for different values of     

  : { 10, 0.2,a-0.2,   

=4,   =0.1,0.1,   =7.8999 ,R1=0.5 

,R2=1t=6,0.02,= /2  =2,1,

  1,  1,g1} 

 

 
Figure 6- The velocity for different values of  

  : { 0.2,a-0.2,   =4,   =0.1, 

σ=0.1,0.1,         =7.8999 ,R1=0.5 

,R2=1t=6,0.02,= /2

,   =2,1,  1,  1, g1}

 

 
Figure 7- The velocity for different values of     

  : { 10,a-0.2,   =4,   =0.1,0.1, 

  =7.8999 ,R1=0.5 ,R2=1t=6,0.02,= 

/2      

,   =2, σ = 0.1,1,  1,  1,g1} 

 
Figure 8-. The velocity for different values of  

 : { 10, 0.2,a-0.2,   =4,   =0.1, 

σ=0.1,0.1,   =7.8999 ,R1=0.5 

,R2=1t=6,0.02      

,   =2,1,  1,  1,g1} 

 

 
Figure 9- The velocity for different values of  

time            σ   :{ 0.2,a-

0.2,  =4,   =0.1,0.1,       

  =7.8999,R1=0.5,   =2,  1,  1,R2=1,

1 0.02,= /2,g1} 

 
Figure 10- The velocity for different values of  

r { 10, 0.2,a-0.2,   

=4,   =0.1,0.1,   =7.8999 ,R1=0.5 

,R2=1t=6,0.02,= /2      

,   =2, σ = 0.1,1,  1,  1,g1} 
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Figure 11- The velocity for different values of   

{ 10, 0.2,a-0.2,   =4,   =0.1,0.1, 

  =7.8999 ,R1=0.5 ,R2=1t=6,0.02,= 

/2      

,   =2, σ = 0.1,  1,  1,g1} 

 

 
Figure 12- The velocity for different values of  

  { 10, 0.2,a-0.2,   =4,   =0.1, 

σ=0.1,0.1,   =7.8999 ,R1=0.5 

,R2=1t=6,0.02,= /2

,   =2, σ = 0.1,1,  1,g1,       
} 

 

 
Figure 13- The velocity for different values of  

  { 10, 0.2,a-0.2,  =4,   =0.1,0.1, 

  =7.8999 ,R1=0.5 ,R2=1t=6,0.02,= 

/2      

,   =2, σ = 0.1,1,  1,g1} 

 

 

 
 

Figure 14- The velocity for different values of  

q{ 10, 0.2,a-0.2,  =4,  =0.1,0.1, 

  =7.8999 ,R1=0.5 ,R2=1t=6,0.02,= 

/2      

,   =2, σ = 0.1,1,  1,  1} 
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