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Abstract 

The mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system with different 
anisotropies has been investigated using the mean field approximation (MFA) .The 
phase diagram of the system has also been discussed in the anisotropy dependence 
of transition temperature. It is found that a reentrant ferrimagnetic phenomenon in 
the ordered system depends strongly on the anisotropy of the mixture. 

 
)5/2 وبرم3/2برم( نظام فيري مغناطيسي خليط من نوعين من المواددراسة  

  باستخدام نموذج أيزنك
  

   هادي قاسم محمد،علي حسن خضر،  إبراهيمطارق فؤاد
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  الخلاصة
استخدام ب مغناطيسي مزيج من نوعين من المواد يختلفان في البرم  فيري تم في هذا البحث دراسة نظام لقد
 3/2  يتكون من مادتين مختلفتين في البرم الأولىالمغناطيسيالنظام  . المجال لنموذج أيزنكمتوسط تقريب

 )الطوريةالحالة ( الحالة الأرضية مخطط ووضع (Anisotropy)  تباين مغناطيسي مختلفولهما 5/2 والثانية
 ferrimagnetic(                         التذبذب الفيري مغناطيسي للنظامةهر ا ظتلوحظ لقد .للنظام

Reentrant ( يسي للخليطفي المناطق الفعالة والتي تعتمد بقوة على التباين المغناط.  
  

Introduction 
     Several theoretical investigations have been 
reported concerning the extension of efforts to a 
more general mixed spin Ising model with one 
constituent having spin-1 and another having 
spin-3/2 . The mean-field approximation (MFA), 
in spite of its limitations, is an adequate starting 
point [1]. The theoretical work may be classified 
into two types. In the first type, the spin 
compensation temperature of the system can be 
obtained by requiring the total magnetization as 
being equal to zero for various values of 
anisotropies; though the reduced magnetization 
of the sublattices forming the system is not 
equal to zero [1, 2, 3, 4, 5]. 
In the second class of work, the first and second 
order phase transitions demand Landau 
expansion of the free energy in the order 

parameter [1, 5]. In this work we are concerned 
with the second type. It has been suggested that 
the resulting system behavior with the mixed 
spin-3/2 and spin-5/2 could be due to various 
values of the single-ion anisotropies. 

  

Theory 
     We start by summarizing analytical results 
obtained for the mean field approximation 
(MFA).  
The central idea of the mean-field theory is very 

simple: 
We treat the nearest neighbour Ising model in 
zero fields on a lattice containing two sublattices  

A ,B having N sites, each site having Z nearest 

neighbours.                                                                            
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The Hamiltonian of the system in the Ising 

model, with Ho=0, can be written as [1]: 
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Where the sites of sublattices A are occupied by 

spins A
is  taking the values of  1/2,  3/2 , and 

the sites of sublattices B occupied by spins 
B
js

 
taking the values of   1/2, 3/2,  5/2 
. BA DD ,  are the anisotropies acting on the spin  
-3/2 and spin -5/2 respectively.  

ijJ  is the exchange interaction between spins at 

sites i and j .The expectation value of the spin 

variable at the sites i or j is given by:  
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With, 

HTrez                                          (3) 
 
Where Tr means the sum over allowed states of 

the system .Here, 

       
TK B

1
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Thus, substituting the Hamiltonian of the system 

in equation (2) ,one has: 
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With BJZmk 1 , where Z is the nearest-
neighbour coordination number of the lattice, 
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and AJZmk 2 . 
 
A systematic way of deriving the mean-field 
theory for a given microscopic Hamiltonian is to 
start from the Bogoliubov inequality [6]: 

ooo HHFF                             (6)                                                                              

where F is the free energy of the system, oH is a 

trial Hamiltonian depending on variational 
parameters, Fo is the corresponding free energy, 

and 
o

K  denotes an average taken in the 

ensemble defined by oH  . The mean-field free 

energy is then defined by minimizing   with 
respect to the variational parameters BA / , such 

that: 
}{min

/


BAmfF                                   (7)                         

This gives the best possible approximation to the 
true free energy for a given choice of oH  , since 

the inequality (eq.6) insists that the mean-field 
free energy cannot fall below the true free 
energy. In this work we consider one of the 
simplest possible choices of oH [1] : 
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Where A  and B  are the two variational 
parameters related to the two different spins 
respectively. Then the approximated free energy 
can be obtained by minimizing the right hand 
side of equation (6) with respect to the 
variational parameters mentioned above. Thus, 
equation (6) can be expressed as: 
 
 
 
 
 

 
 
 
 

 
 
 

 

Where N is the total number of  sites of lattice  .
Minimizing this expression with respect 
to A and B  gives self-consistent expressions 
for the mean-field (eqs. (4),(5)): 
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Since the present model is related to the spin-3/2 
and spin-5/2 Ising systems for any value of 
parameters, it undergoes a second-order 
transition and some features of the phase 
diagram may be obtained analytically. To 
determine the second-order transition lines, we 
need to expand eqs.((9),(11),(12)),thus : 
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Where the coefficients of and a are given by: 
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The second-order phase transition line is then 
determined by a=0 and b>0. It is worth 
mentioning that eq. (15) could be evaluated for 
both the ferromagnetic phase stability limit 
(J>0) and the ferromagnetic one (J<0) [1, 7]. 
 
 
Results and Discussion 

We first consider the ground-state of the 
system which can easily be determined from 
Hamiltonian (1) by comparing the energies of 
the corresponding configurations as shown in 
Fig. (1). 
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Figure 1: Ground state phase diagram of the 
mixed spin-3/2 and spin-5/2 Ising ferrimagnetic 

system with the coordination number Z and 
different single-ion anisotropies DA and DB . The 
six ordered phases: O1,O2,O3,O4,O5, and O6 are 

separated by thin lines . 
 
It is worth noting that, at zero temperature, one 
can find six phases with different values of 
{ BABA KKmm ,,, } , namely , the ferrimagnetic 
phases ordered as: 
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There are no disordered phases where the 
parameters AK  and BK  are defined by: 

22 )(,)( B
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Let us consider the case when 

5.2/4  JZDB  .Fig.(2) shows the 

phase diagrams in the ( TDA , ) plane for various 

values of JZDB /  . We see that a certain type 

of phase diagram is achieved with second-order 
transitions at different values of transition 
temperature ; that is to say , phase transitions 
related to anisotropy continuity showing second-
order behavior.  
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Figure 2: Phase diagram in the (DA, T) plane for 
the mixed-spin Ising ferrimagnetic system with 

the coordination number Z , when the value of DB 
is changed . The solid lines indicate second-order 
phase transitions. P is the paramagnetic phase. 

      
Our results could be compared with those of 
spin-1/2 and spin-3/2 systems using the effective 
field theory [8]. Furthermore, one can see that 

for the values of 4/ JZDB , the transition 

temperature can never be increased ; and for 

5.2/ JZDB , the transition temperature 

can never be lowered. Figure (3) shows the low-
temperature phase diagram in the ( TDB , ) plane 
for the mixed-spin Ising ferrimagnetic system 
with the coordination number Z using various 

values of JZDA / . 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 3: Phase diagram in the (DB,T) plane for 

the mixed-spin Ising ferrimagnet with the 
coordination number Z , when the value of DA is 
changed. The solid lines indicate second-order 
phase transitions. P is the paramagnetic phase. 

 

Taking a small region from the phase diagram 
under consideration one can observe a behaviour 
of jump. It is seen from Fig.(4) that within  the 

region  joining the values of 7.0/ JZDB  

and 875.0/ JZDB  certain curves of jump 

are clearly shown. This is indicated in Fig.(4). 
Typical sublattice magnetization curves  
referring to the phase diagram given in Fig.(4) 

are shown in Figure (5) , for 7.0/ JZDA . 

The curves labeled –0.3475 in Figure (5) 

correspond to the values of JZDB /  where a 

jump behavior occurs. The sublattice 
magnetization curves labeled –0.35025,–0.345 

are for the value of JZDB /  corresponding to 

the isolated critical points. 
 
 
 

 

 

 
 
 
 
 
 
 
Figure 4: Phase diagrams in the (DB,T) plane for 

the mixed- spin Ising ferrimagnetic with the 
coordination number Z , when the value of DA is 
changed. The solid lines indicate second-order 

transitions, while the heavy dashed line represents 
the jumps in magnetization . The stars correspond 

to the isolated points .O1, O4,and O6 are distinct 
ordered ferrimagnetic phases ,and P is the 

paramagnetic phase . 
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Figure 5: Thermal variations of the sublattice 
magnetization mA ,mB for the mixed –spin Ising 

ferrimagnet with the coordination number Z 
,when the value of JZDB /  is changed , for fixed 

7.0/ JZDA
. The curves with values of 

3475.0,345.0/ JZDB
 indicate the jump and 

reentrant behaviors respectively at low 
temperature. 

 
     Figure (6) shows the sublattice magnetization 
curves at low temperatures for anisotropy 

JZDB / corresponding to the reentrant 

behavior given in Figure (4). It is also 
interesting to indicate that the mixed-spin 
system exhibits a reentrant behavior at low 
temperature. 
 
 

 

 

 

 

 

 

 

 

Figure 6: A close view low- temperature phase 

diagram in the ( BD , T ) plane for the mixed-spin 

Ising Ferrimagnet with the coordination number 

Z , in the region of BD  at  7.0/ JZDA , 

indicates the reentrant behavior. 
 

Now we may discuss the scale of Fig.(3)which 
is too small to see. However, this can be shown 
in Figure (4). In Figure (4) the critical line for 

7.0AD  shows reentrant behavior in the 
phase diagram, i.e., two phase transitions [3], 
within the range 3505.035.0  BD .It is 
possible within this system, as we noticed, to 
have many critical temperatures for a fixed 
value of BD . Furthermore, the system 
considered here doesn’t exhibit compensation 
phenomena since the behavior of the curves in 
Figure (2) indicate second-order phase transition 
only . Now, let us discuss the temperature 
dependence of the sublattice magnetizations Am  

and Bm  by solving the coupled eqs.(10)-(12) 
numerically. As shown in Fig.(7) , when 

1/ JZDB  for fixed ,125.0AD  the 
sublattice magnetizations of mixture show 
normal thermal variation behaviour [8]. Fig.(8) 
refers to the thermal variations of the sublattice 

magnetizations BA mm ,  for the same system 

with varying value of JZDB /   for fixed  

5.1/ JZDA . 

 For 375.0075.0  BD  the temperature 
dependence of may exhibit a rather rapid 

decrease from its saturation value at oKT 0 . 
The phenomenon is further enhanced when the 
value of BD  approaches the critical value .At 

the critical value of BD  ,in particular and for 
oKT 0  , the saturation value of  m  is  0.5  

indicating that in the ground state the spin 
configuration of the system consists of the 

mixed phases 
2

3
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js   with 

equal probability. 
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Figure 7: The temperature dependences of the 
sublattice magnetizations mA ,mB for the mixed –

spin Ising ferrimagnetic with the coordination 

number Z ,when the value of JZDB /  is 

changed , for fixed 125.0/ JZDA  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8:  The temperature dependences of the 
sublattice magnetizations  mA ,mB for the mixed –

spin Ising ferrimagnet with the coordination 

number Z ,when the value of JZDB /  is 

changed , for fixed 5.1/ JZDA  . 

 
Conclusions 

We have determined the global phase 
diagram of the mixed spin – 3/2 and spin – 5/2 
Ising ferrimagnetic system with different single 
– ion anisotropies acting on the spin – 3/2 and 
spin – 5/2 using the mean – field approximation. 
It is found that single-ion anisotropy has strong 
effect on the mixture. Therefore, the whole 
phase diagram ordered (magnetic material) 

comparison to the system (1, 3/2). This phase 
diagram exhibited two compensation points, in 
agreement with the system (1, 3/2). This 
outstanding result has been discovered 
experimentally [9].   
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