
Amer Iraqi Journal of Science, Vol.50, No.3, 2009, PP.390-395

 390

Iraqi Journal of Science

EFFICIENT AND FAST DISTORTED CHARACTER RECOGNITION

ALGORITHM

Wejdan A. Amer
Department of Computer Science, College of Science, University of Baghdad. Baghdad- Iraq

Abstract
An algorithm to recognize distorted Machine and handwritten characters is

proposed. It uses a feature point extraction-based recognition approach. A new
verification scheme, which deals with this problem, is presented. A new feature
extractor set is introduced. This research explores best sets of feature extraction
techniques and studies the accuracy and speed of the suggested procedures. Finally,
experimental results on one database are presented, their results showing the
robustness of the algorithm using small database.

 خوارزمية كفوءة وسريعة لتمييز الحروف

 وجدان عبد الامير حسن
 العراق - بغداد. كلية العلوم، جامعة بغدادسم علوم الحاسبات،ق

 الخلاصة

حيـــث تـــستخدم طريقـــة تعتمـــد . تـــم اقتـــراح خوارزميـــة لتمييـــز الأحـــرف المطبـــوع المـــشوهة والمطبوعـــة يـــدوياً
مجموعـة خـواص جديـدة تـم . أسلوب تحقق جديد ليتعامل مع هذه المـشكلة تـم تحـضيره. استخراج خواص النقطة

هــــذا البحــــث يــــستغل افــــضل مجموعــــات اســــتخراج الخــــواص ويــــدرس الدقــــة والــــسرعة فــــي . ها فــــي البحــــثتقـــديم
وأخيــرا، نتــائج عمليــة علــى قاعــدة بيانــات تــم اعــدادها، والتــي تــشير الــى قــوة الخوارزميــة . المقترحــةتالإجــراءا

 . المقترحة باستخدام قاعدة بيانات صغيرة

Introduction
Optical character recognition (OCR) has

been a topic of interest since possibly the late
1940's when Jacob Rabinow started his work in
the field [1]. The earliest OCR machines were
primitive mechanical devices with fairly high
failure rates. Due to increasing in amount of new
written material increased, the need to process it
all in a fast and reliable manner. They quickly
gave way to computer-based OCR devices that
could outperform them both in terms of speed
and reliability.

Today there are many OCR devices in use based
on a plethora of different algorithms. All of the
popular algorithm sport high accuracy and most
high speed, but still many suffer from a fairly
simple flaw: when they do make mistakes (and
they all do), the mistakes are often very
unnatural to the human point of view. That is,
mistaking a "5" for an "S" is not too surprising
because most people are willing to agree that
these two characters are similar, but mistaking a
"5" for an "M" is counter-intuitive and
unexpected. Algorithms make such mistakes
because they generally operate on a different set

Amer Iraqi Journal of Science, Vol.50, No.3, 2009, PP.390-395

of features than humans for computational
reasons. Humans observe strokes and the
relations between them, while algorithms
measure anything from Transformation Ring
Projections of a character to the Fourier
Transform of the Horizontal-Vertical
Projections of a character [2]. These methods do
work and are often computationally efficient,
but they make the computer see letters through a
decidedly non-human set of eyes [3].
The importance of making the same sorts of
mistakes as a human may not be immediately
obvious, but it is important to realize that the
main purpose of OCR is to facilitate
communication between humans. Mistakes
typical of humans can be more readily corrected
by humans (i.e. "5ave" is easier to connect with
"Save" than "Mave").
This paper describes an algorithm that attempts
to work with a subset of the features in a
character that a human would typically see for
the identification of machine-printed or
handwritten characters. Its recognition rate is
currently not as high as the recognition rates of
the other algorithms, more developed character
recognition algorithms, but it is expected that if
it were expanded to work with a larger set of
features this problem would be removed. If it
were expanded to use more features, it would be
made correspondingly slower; with the advent
of faster microprocessors this fact is not viewed
as a crippling problem.
Extracting feature points thus reduced to
calculating a number between zero and one to
describe a pixel's neighborhood and then
comparing that number against a database of
known feature points. Missing feature points is
certainly not a limiting factor in the algorithm's
accuracy. It also does not suffer from labeling
too many uninteresting points as being feature
points. The feature point extractor is thus fast
and reliable [4].
OCR system consists of four major stages:
1) Pre-processing, 2) Binarization,
3) Feature Extraction, 4) Recognition.
In the Pre-processing, the raw data is subjected
to a number of preliminary processing steps to
make it usable in the descriptive stages of
character analysis. Pre-processing aims to
produce data that are easy for the OCR systems
to operate accurately. The main objectives of
pre-processing are [5]:
• Binarization
• Noise reduction
• Stroke width normalization

• Skew correction
• Slant removal
The presently proposed scheme in Pre-
processing step focus on binarization then
feature extraction and recognition (verification)
implemented by assuming that the input ten by
ten data is not particularly aberrant -- lines in an
ten by ten grid should not normally be thicker
than one pixels. With this assumption, it then
proceeds to look for feature points.

Method description

The ability to identify handwritten or
machine printed characters in an automated or a
semi-automated manner has obvious
applications in numerous fields. Since creating
an algorithm with a one hundred percent correct
recognition rate is quite probably impossible in
our world of noise and different font styles, it is
important to design character recognition
algorithms with these failures in mind so that
when mistakes are inevitably made, they will at
least be understandable and predictable to the
person working with the program [4]. The
current work explores one such algorithm and
tests it on same font. The results are discussed
and several improvements are suggested.
The procedure for extracting feature points
utilized by current algorithm is fairly
straightforward. Fig.3 shows character in its
array 0 and 1 for each pixel. Since an eight by
eight character consists of only sixty-four pixels,
it is viable to simply loop through the entire
character and examine each pixel in turn.
Characters cannot be identified by the extraction
of feature points alone. Without a database of
characters and their associated feature points,
the ultimate feature point extractor would be
useless. Only with such a database can the
feature point extraction results from an unknown
character be compared against what is expected
for real-world characters and a judgment of the
unknown's identity made. Thus a "gold-
standard" dictionary of characters and their
associated features must be defined. Ideally this
dictionary should contain details for the average
appearance of every character manifestation
(many English characters have multiple different
accepted manifestations -- note "Z" versus "Z").
If poor representative’s appearances for
characters are chosen valid characters at the
extremes will not be identified as readily. If
some manifestations of characters are missed,
the program will certainly not be able to identify
characters belonging to these groups at all.

 391

Amer Iraqi Journal of Science, Vol.50, No.3, 2009, PP.390-395

With both methods for extracting feature points
and a dictionary of characters and associated
feature point data for reference, identifying
characters becomes a problem of measuring the
degree of similarity between two sets of
features. The method employed by this
algorithm is just a slight matching of set of eight
strings each time. All the string sets each of the
feature points in the unknown character and
their closest corresponding feature points in the
reference character are summed and missing or
extra feature points are penalized. Identification
is then a matter of finding the character in the
dictionary that is within a certain threshold
matching of the unknown character. In practice,
the algorithm currently checks every character
in the reference set to first locate the maximum
matching, and then verify that the maximum
matching is less than the threshold.
Additionally, the algorithm assumption no
noises present.

Suggested Algorithm

The algorithm of the method demonstrated in
details in the following flow chart diagram (for
more details see a pseudo code listed in
appendix A.
Fig. 1 show general block diagram recognition,
while Fig 2 show learning block diagram.

Figure 1: general character recognition block
diagram

 Input character

Raw Data Extraction

Raw Data Saving

End

Start

Figure 2: Learning block diagram

The following lines demonstrate ambiguous
variables of the pseudo code showed in the next
pages:
Wid is image width, Hgt is image height,
Xb is X coordinates beginning of the character
Xe is X coordinates beginning of the character
Yb is Y coordinates beginning of the character
Yb is Y coordinates beginning of the character
strText is character/symbol type, Bool1stScan
is character image scanning flag, strData is
character string (i.e., 0 or 1 for each pixel
represent character). Start
The variables in Fig 2 showed in the following:
StrRecognized is recognized character,
intMatch is matching percentage,
intMaxMatch is threshold/maximum allowed
matching parentage, C is counter of saved
character string within data base file,
arrRawData is charcter string saved in data
base file, arrTagData is character
type/definition, d is counter dedicated to
elements for each character string to do
matching.

Input character

Raw Data Extraction

Recognition and Verification

Algorithm Begin:

Step 1:

(Pre-Processing and character Feature
extraction process)

The following list code shows our method of
extracting data (Character features extraction):-
Step 1-1:
Read Image pixels and put it in an array (Zero
value for black pixel and one value for white
pixel),
let be Ax,y denote original character array:

No

 Matching < Threshold

Yes

Learning

End

 392

Amer Iraqi Journal of Science, Vol.50, No.3, 2009, PP.390-395

where Wid is character image width, and
 Hgt is character image Height
Step 1-2:
Variable: scan = True
Let Yb=0: Ye=0: Xb=0: Xe=0 ,
Where: Yb, Xb denote to Y and X beginning of
character coordinate, and
Xb, Xe denotes X and Y ending of character
coordinate.
For X=0 to Wid-1 Do begin
For Y=0 to Hgt-1 Do begin
 If AX, Y = 0 then begin
 If scan = False then
 If Y < Yb Then Yb = Y
 If Y > Ye Then Ye = Y
 If X < Xb Then Xb = X
 If X > Xe Then Xe = X
 Else
 Set scan = False
 Yb = Y
 Ye = Y
 Xb = X
 Xe = X
 End If
 End If
End y, x
Step 1-3:
If Xe - Xb <> 0 And Ye - Yb <> 0 Then
 For X = Xb To Xe
 For Y = Yb To Ye
 If AX, Y = 0 then
 DataString = DataString & 0
 Else
 DataString = DataString & 1
 End If
End Y, X

Step 2:

(Character Recognition (Verification))
The following list code show our suggested
method of data matching (Character
Identification)
Step 2-1:
Open Data_Base File and get Data from first
Raw
Set variable j =0 : MaxMatch =0
Do while Not End Of Data_Base File
 Get first raw data and put it in a string of array
denoted by: CharArr j
 CharIndexj = Mid(CharArr j,1,1)
(Retrieve First character (Character Symbol) in
CharArr j string)
Example: CharArr j,1,1=
A,1111111111111111111111111111001111100

011110001101100111110111100011011111110
001111111111001111111111
Then CharIndexj=A
Where: Mid is a function in VB6 compiler
extract each element exist in string j=index,

1=start position, 1=char length
CharArrj := CharArrj, 3
(reminder characters (Character String) in
CharArr j string)
Step 2-2:-
Do while Not End Of Data_Base File
Get first raw data and put it in a string of array
denoted by : CharArr j
CharIndexj = Mid(CharArr j,1,1)
(Retrieve First character (Character Symbol) in
CharArr j string)
CharArrj := CharArrj, 3
(Reminder characters (Character String) in
CharArr j string)
Step 2-3:-
For i = 1 To 10 Do begin
 For j = 1 To 10 Do begin
 If Mid(CharArr (c),d+1,1)= 0 Then begin
 If Mid(DataString,d+1,1)= 0 Then begin
 Match = Match + 1
 Else
 Match = Match - 1
 End If
 Else

 If Mid(DataString,d+1,1)<>0 Then begin
 Match = Match + 1
Else
 Match = Match - 1
End If

End If
d = d + 1
End j, i
Step 2-4:-
If MaxMatch < Match Then begin
 MaxMatch = Match
 RecogSt = CharIndex(c)
 (RecogSt == recognized string)
 If MaxMatch > 60 Then
 GoTo Step 2-6
 End If
End If
c = c + 1

 393

Amer Iraqi Journal of Science, Vol.50, No.3, 2009, PP.390-395

Fig. 3 show array of a symbol "B" character.
Fig. 4 show results for three type distorted
character recognition, where 100% mean the
system was learning on this character.

 100% C 94% C 91% C 69% C

Step 2-5:-
While Not End Of DataBase File Goto Step 2-
2.

Step 2-6:-
Data Base File Close
Print "The highest possible of drawn character
is recognized as ' " & strRecognised & " ' = " &
intMaxMatch & "%"

Algorithm End.

Width -X
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111110000001111111111111111
1111111111111111101110111111111111111
1111111111111111101111011111111111111
1111111111111111101111011111111111111
1111111111111111101110111111111111111
1111111111111111100000111111111111111
1111111111111111101111011111111111111
1111111111111111101111101111111111111
1111111111111111101111101111111111111
1111111111111111101111011111111111111

 100% D 88% D 94% D 94% L

 100% Z 88% Z 94% Z 94% Z

 100% V 91% V 56% V 56% L

Figure 4: Three type distorted character
recognition results.

 Conclusions
The results of matching percents were showed in
Fig. 5 & 6, but in general they did make
numerous mistakes. More than half the mistakes
were understandable considering the difference
in font styles or general character appearance
(distinguishing between a "l" and an "I" or a "?"
and a "Q" sometimes has to be done by context
even for humans). The remainders were
understandable when the nature of the features
was considered. These mistakes provide the
information needed to improve the algorithm.

Yb=12

1111111111111110000000111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111
1111111111111111111111111111111111111

Figure h 3: B character image string (i.e., eac
pixel is 0 or 1.

Height-Y

Ye=22

Xb=16
Xe=23

Figure 5: Original Characters/images
(matching is %100)

 394

Amer Iraqi Journal of Science, Vol.50, No.3, 2009, PP.390-395

 395

Several improvements are possible. In the
current algorithm, the different types of feature
points ("T" intersections, "Y" intersections,
ends, etc.) are all treated as generic feature
points. This approach was taken because not
every type of feature point can be
unambiguously defined for a given eight pixel.
Overall the results of this experiment were
mixed. On the one hand, the initial results
certainly are not of commercial quality. When
only a couple of pixels differed between the
unknown character and the reference, the results
were fairly good, but larger differences often
made the algorithm unable to correctly identify
the unknown character. On the other hand, the
low success rate is not indicative of the general
algorithm, just the current implementation.

Suggestion and feature works

Suggested future work includes both the
testing of the algorithm with more character
data. Of particular interest would be character
data that is deliberately noisy and character data
that has been reduced to eight by eight

resolutions from some greater resolution. Both
of these cases reflect real-world problems.

%78 G

%91 H %72 I %91J %100 K %81 L

%91 P %53 Q

%88 R %88 S

%97 T

%90 A

%78 B

%94 C %88 D

%84 E

%72 M %91 N %66 O

%69 Z

%69 Q

 B 50%ف %62

%81 X

%69 Y %88 Z

%69 Z %78 I

%66 A %56 A

 %75 U %91 V %53 W

%62 F

 %56 A

Figure 6: Distorted Characters Recognition
Results with their matching percent ratio
(average matching ratio for all above
characters is %61).

There are many possible changes that could
vastly improve the algorithm's recognition
abilities. With a few of these changes
implemented, the mistakes the algorithm would
make would indeed be very similar to the types
of mistakes humans would make. Thus general
algorithm holds promise as a character
recognizer that identifies characters in a manner
similar to the way that humans identify
characters.
Another future work could be summarized as
follow:
 Creating new hierarchical classification

schemes based on rules after examining the
corresponding confusion features.

 Exploiting new features to improve the
current performance.

 References

1. Vamvakas,G.; Stamatopoulos ,N.; Gatos,
B.; Pratikakis, I. and Perantonis,S.J.
Standard Database and Methods for
Handwritten Greek Character Recognition.
2007. The 11th Panhellenic Conference on
Informatics. pp.64-71.

2. Hiroshi Shimodaira, Takashi Sudo and
Mitsuru Nakai. Online Overlaid-
Handwriting Recognition Based on
Substroke HMMs. 2003. Seventh
International Conference on Document
Analysis and Recognition Volume II.
P.102-108.

3. Bourbakis, N. G. and Gumahad II, A. T.
Knowledge-Based Recognition of Typed
Text Characters. 1991. Character &
Handwriting Recognition: Expanding
Frontiers, World Scientific Publishing Co.
pp.12-17.

4. Toscano, K., Sanchez, G., Nakano, M.,
Perez, H., Yasuhara, M. Novel Cursive
Character Recognition System. 2006.
Artificial Intelligence. Fifth Mexican
International Conference on
Volume, pp. 101–110.

5. Vamvakas,G.; Gatos,B.; Pratikakis,I.;
Stamatopoulos,N.; Roniotis, A. and
Perantonis,S.J. Hybrid Off-Line OCR for
Isolated Handwritten Greek Characters.
2007. The Fourth IASTED International
Conference on Signal Processing, Pattern
Recognition, and Applications. pp. 197-202.

	Suggested Algorithm

