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Abstract 
An algorithm to recognize distorted Machine and handwritten characters is 

proposed. It uses a feature point extraction-based recognition approach. A new 
verification scheme, which deals with this problem, is presented. A new feature 
extractor set is introduced. This research explores best sets of feature extraction 
techniques and studies the accuracy and speed of the suggested procedures. Finally, 
experimental results on one database are presented, their results showing the 
robustness of the algorithm using small database. 
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 الخلاصة

حيـــث تـــستخدم طريقـــة تعتمـــد . تـــم اقتـــراح خوارزميـــة لتمييـــز الأحـــرف المطبـــوع المـــشوهة والمطبوعـــة يـــدوياً 
مجموعـة خـواص جديـدة تـم . أسلوب تحقق جديد ليتعامل مع هذه المـشكلة تـم تحـضيره. استخراج خواص النقطة

هــــذا البحــــث يــــستغل افــــضل مجموعــــات اســــتخراج الخــــواص ويــــدرس الدقــــة والــــسرعة فــــي . ها فــــي البحــــثتقـــديم
وأخيــرا، نتــائج عمليــة علــى قاعــدة بيانــات تــم اعــدادها، والتــي تــشير الــى قــوة الخوارزميــة .  المقترحــةتالإجــراءا

  . المقترحة باستخدام قاعدة بيانات صغيرة
  

Introduction 
Optical character recognition (OCR) has 

been a topic of interest since possibly the late 
1940's when Jacob Rabinow started his work in 
the field [1]. The earliest OCR machines were 
primitive mechanical devices with fairly high 
failure rates. Due to increasing in amount of new 
written material increased, the need to process it 
all in a fast and reliable manner. They quickly 
gave way to computer-based OCR devices that 
could outperform them both in terms of speed 
and reliability.  

Today there are many OCR devices in use based 
on a plethora of different algorithms. All of the 
popular algorithm sport high accuracy and most 
high speed, but still many suffer from a fairly 
simple flaw: when they do make mistakes (and 
they all do), the mistakes are often very 
unnatural to the human point of view. That is, 
mistaking a "5" for an "S" is not too surprising 
because most people are willing to agree that 
these two characters are similar, but mistaking a 
"5" for an "M" is counter-intuitive and 
unexpected. Algorithms make such mistakes 
because they generally operate on a different set 
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of features than humans for computational 
reasons. Humans observe strokes and the 
relations between them, while algorithms 
measure anything from Transformation Ring 
Projections of a character to the Fourier 
Transform of the Horizontal-Vertical 
Projections of a character [2]. These methods do 
work and are often computationally efficient, 
but they make the computer see letters through a 
decidedly non-human set of eyes [3]. 
The importance of making the same sorts of 
mistakes as a human may not be immediately 
obvious, but it is important to realize that the 
main purpose of OCR is to facilitate 
communication between humans. Mistakes 
typical of humans can be more readily corrected 
by humans (i.e. "5ave" is easier to connect with 
"Save" than "Mave"). 
This paper describes an algorithm that attempts 
to work with a subset of the features in a 
character that a human would typically see for 
the identification of machine-printed or 
handwritten characters. Its recognition rate is 
currently not as high as the recognition rates of 
the other algorithms, more developed character 
recognition algorithms, but it is expected that if 
it were expanded to work with a larger set of 
features this problem would be removed. If it 
were expanded to use more features, it would be 
made correspondingly slower; with the advent 
of faster microprocessors this fact is not viewed 
as a crippling problem.  
Extracting feature points thus reduced to 
calculating a number between zero and one to 
describe a pixel's neighborhood and then 
comparing that number against a database of 
known feature points. Missing feature points is 
certainly not a limiting factor in the algorithm's 
accuracy. It also does not suffer from labeling 
too many uninteresting points as being feature 
points. The feature point extractor is thus fast 
and reliable [4].  
OCR system consists of four major stages: 
1) Pre-processing,        2) Binarization,               
3) Feature Extraction,  4) Recognition. 
In the Pre-processing, the raw data is subjected 
to a number of preliminary processing steps to 
make it usable in the descriptive stages of 
character analysis. Pre-processing aims to 
produce data that are easy for the OCR systems 
to operate accurately. The main objectives of 
pre-processing are [5]: 
• Binarization 
• Noise reduction 
• Stroke width normalization 

• Skew correction 
• Slant removal 
The presently proposed scheme in Pre-
processing step focus on binarization then 
feature extraction and recognition (verification) 
implemented by assuming that the input ten by 
ten data is not particularly aberrant -- lines in an 
ten by ten grid should not normally be thicker 
than one pixels. With this assumption, it then 
proceeds to look for feature points. 
 
Method description 

The ability to identify handwritten or 
machine printed characters in an automated or a 
semi-automated manner has obvious 
applications in numerous fields. Since creating 
an algorithm with a one hundred percent correct 
recognition rate is quite probably impossible in 
our world of noise and different font styles, it is 
important to design character recognition 
algorithms with these failures in mind so that 
when mistakes are inevitably made, they will at 
least be understandable and predictable to the 
person working with the program [4]. The 
current work explores one such algorithm and 
tests it on same font. The results are discussed 
and several improvements are suggested.  
The procedure for extracting feature points 
utilized by current algorithm is fairly 
straightforward. Fig.3 shows character in its 
array 0 and 1 for each pixel. Since an eight by 
eight character consists of only sixty-four pixels, 
it is viable to simply loop through the entire 
character and examine each pixel in turn.  
Characters cannot be identified by the extraction 
of feature points alone. Without a database of 
characters and their associated feature points, 
the ultimate feature point extractor would be 
useless. Only with such a database can the 
feature point extraction results from an unknown 
character be compared against what is expected 
for real-world characters and a judgment of the 
unknown's identity made. Thus a "gold-
standard" dictionary of characters and their 
associated features must be defined. Ideally this 
dictionary should contain details for the average 
appearance of every character manifestation 
(many English characters have multiple different 
accepted manifestations -- note "Z" versus "Z"). 
If poor representative’s appearances for 
characters are chosen valid characters at the 
extremes will not be identified as readily. If 
some manifestations of characters are missed, 
the program will certainly not be able to identify 
characters belonging to these groups at all.  
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With both methods for extracting feature points 
and a dictionary of characters and associated 
feature point data for reference, identifying 
characters becomes a problem of measuring the 
degree of similarity between two sets of 
features. The method employed by this 
algorithm is just a slight matching of set of eight 
strings each time. All the string sets each of the 
feature points in the unknown character and 
their closest corresponding feature points in the 
reference character are summed and missing or 
extra feature points are penalized. Identification 
is then a matter of finding the character in the 
dictionary that is within a certain threshold 
matching of the unknown character. In practice, 
the algorithm currently checks every character 
in the reference set to first locate the maximum 
matching, and then verify that the maximum 
matching is less than the threshold. 
Additionally, the algorithm assumption no 
noises present. 
 
Suggested Algorithm 

The algorithm of the method demonstrated in 
details in the following flow chart diagram (for 
more details see a pseudo code listed in 
appendix A. 
Fig. 1 show general block diagram recognition, 
while Fig 2 show learning block diagram.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: general character recognition block 
diagram 

 
 
 
 
 Input character 
 
 
 

Raw Data Extraction  
 
 

Raw Data Saving 

End 

Start 

 
 
 
 
 
 

Figure 2: Learning block diagram 
 
The following lines demonstrate ambiguous 
variables of the pseudo code showed in the next 
pages: 
Wid is image width, Hgt is image height,  
Xb is X coordinates beginning of the character 
Xe is X coordinates beginning of the character 
Yb is Y coordinates beginning of the character 
Yb is Y coordinates beginning of the character 
strText is character/symbol type,  Bool1stScan 
is character image scanning flag, strData is 
character string (i.e., 0 or 1 for each pixel 
represent character). Start 
The variables in Fig 2 showed in the following:  
StrRecognized is recognized character, 
intMatch is matching percentage, 
intMaxMatch is threshold/maximum allowed 
matching parentage,  C is counter of saved 
character string within data base file, 
arrRawData is charcter string saved in data  
base file, arrTagData is character 
type/definition, d is counter dedicated to 
elements for each character string to do 
matching. 

Input character 

Raw Data Extraction 

Recognition and Verification 

 
Algorithm Begin: 
 
Step 1:  

(Pre-Processing and character Feature 
extraction process) 

The following list code shows our method of 
extracting data (Character features extraction):- 
Step 1-1: 
Read Image pixels and put it in an array (Zero 
value for black pixel and one value for white 
pixel),  
let be Ax,y denote original character array: 

 
No 

 

 Matching < Threshold 

Yes 

Learning  

End 

 392



Amer                                                               Iraqi Journal of Science, Vol.50, No.3, 2009, PP.390-395  
 

where Wid is character image width,  and 
          Hgt is character image Height 
Step 1-2: 
Variable: scan = True 
Let Yb=0: Ye=0: Xb=0: Xe=0 ,  
Where: Yb, Xb denote to Y and X beginning of 
character coordinate, and  
Xb, Xe denotes X and Y ending of character 
coordinate. 
For X=0 to Wid-1 Do begin 
For Y=0 to Hgt-1 Do begin  
        If AX, Y = 0 then begin 
            If scan = False then  
                If Y < Yb Then Yb = Y 
                If Y > Ye Then Ye = Y 
                If X < Xb Then Xb = X 
                If X > Xe Then Xe = X 
            Else 
               Set scan = False 
                Yb = Y  
                Ye = Y 
                Xb = X  
                Xe = X 
            End If 
        End If 
End y, x 
Step 1-3: 
If Xe - Xb <> 0 And Ye - Yb <> 0 Then 
  For X = Xb To Xe   
   For Y = Yb To Ye  
      If AX, Y = 0 then  
            DataString = DataString & 0 
      Else 
            DataString = DataString & 1 
      End If 
End Y, X 
 
Step 2: 

(Character Recognition (Verification)) 
The following list code show our suggested 
method of data matching (Character 
Identification)  
Step 2-1: 
Open Data_Base  File and get Data from first 
Raw 
Set  variable  j =0  : MaxMatch =0 
Do while Not End Of Data_Base File 
   Get first raw data and put it in a string of array 
denoted by:  CharArr  j  
   CharIndexj = Mid(CharArr  j,1,1) 
(Retrieve First character (Character Symbol) in 
CharArr  j  string ) 
Example: CharArr  j,1,1= 
A,1111111111111111111111111111001111100

011110001101100111110111100011011111110
001111111111001111111111 
Then CharIndexj=A 
Where: Mid is a function in VB6 compiler 
extract each element exist in string  j=index, 

1=start position, 1=char length 
CharArrj := CharArrj, 3         
(reminder characters (Character String) in 
CharArr  j string )  
Step 2-2:- 
Do while Not End Of Data_Base File 
Get first raw data and put it in a string of array 
denoted by :  CharArr  j  
CharIndexj = Mid(CharArr  j,1,1)  
(Retrieve First character (Character Symbol) in 
CharArr  j   string ) 
CharArrj := CharArrj, 3         
(Reminder characters (Character String) in 
CharArr  j string)  
Step 2-3:- 
For i = 1 To 10 Do begin 
 For j = 1 To 10 Do begin 
  If Mid(CharArr (c),d+1,1)= 0 Then begin 
   If Mid(DataString,d+1,1)= 0 Then begin 
          Match = Match + 1 
   Else 
           Match = Match - 1 
   End If 
  Else 
 
 If Mid(DataString,d+1,1)<>0 Then begin 
           Match = Match + 1 
Else 
           Match = Match - 1 
End If

 
 
 
 
End If 
d = d + 1 
End j, i 
Step 2-4:- 
If MaxMatch < Match Then begin 
        MaxMatch = Match 
        RecogSt = CharIndex(c)   
       (RecogSt == recognized string) 
        If  MaxMatch > 60 Then 
            GoTo  Step 2-6 
        End If 
End If 
c = c + 1 
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Fig. 3 show array of a symbol "B" character. 
Fig. 4 show results for three type distorted 
character recognition, where 100% mean the 
system was learning on this character. 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                   
  100% C      94% C      91% C     69% C 

Step 2-5:- 
While Not End Of DataBase File Goto Step 2-
2. 

Step 2-6:- 
Data Base File Close 
Print "The highest possible of drawn character 
is recognized as ' " & strRecognised & " ' = " & 
intMaxMatch & "%" 

Algorithm End. 

Width -X 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111110000001111111111111111 
1111111111111111101110111111111111111 
1111111111111111101111011111111111111 
1111111111111111101111011111111111111 
1111111111111111101110111111111111111 
1111111111111111100000111111111111111 
1111111111111111101111011111111111111 
1111111111111111101111101111111111111 
1111111111111111101111101111111111111 
1111111111111111101111011111111111111 

                   
  100% D      88% D      94% D     94% L 

                   
  100% Z      88% Z      94% Z       94% Z 

                   
  100% V      91% V     56% V      56% L 

 

Figure 4: Three type distorted character 
recognition results. 

 
 Conclusions  
The results of matching percents were showed in 
Fig. 5 & 6, but in general they did make 
numerous mistakes. More than half the mistakes 
were understandable considering the difference 
in font styles or general character appearance 
(distinguishing between a "l" and an "I" or a "?" 
and a "Q" sometimes has to be done by context 
even for humans). The remainders were 
understandable when the nature of the features 
was considered. These mistakes provide the 
information needed to improve the algorithm. 

Yb=12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1111111111111110000000111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 
1111111111111111111111111111111111111 

 

Figure h 3: B character image string (i.e., eac
pixel is 0 or 1. 

 

Height-Y 

Ye=22 
 
Xb=16 
Xe=23 

Figure 5: Original Characters/images 
(matching is %100) 
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Several improvements are possible. In the 
current algorithm, the different types of feature 
points ("T" intersections, "Y" intersections, 
ends, etc.) are all treated as generic feature 
points. This approach was taken because not 
every type of feature point can be 
unambiguously defined for a given eight pixel. 
Overall the results of this experiment were 
mixed. On the one hand, the initial results 
certainly are not of commercial quality. When 
only a couple of pixels differed between the 
unknown character and the reference, the results 
were fairly good, but larger differences often 
made the algorithm unable to correctly identify 
the unknown character. On the other hand, the 
low success rate is not indicative of the general 
algorithm, just the current implementation.  
 
Suggestion and feature works 

Suggested future work includes both the 
testing of the algorithm with more character 
data. Of particular interest would be character 
data that is deliberately noisy and character data 
that has been reduced to eight by eight 

resolutions from some greater resolution. Both 
of these cases reflect real-world problems.  

%78 G 

%91 H %72 I %91J %100 K %81 L

%91 P %53 Q

%88 R %88 S 

%97 T 

%90 A 

%78 B 

%94 C %88 D

%84 E

%72 M %91 N %66 O 

%69 Z 

%69 Q

 B 50%ف %62

%81 X

%69 Y %88 Z 

%69 Z %78 I 

%66 A %56 A 

  %75 U  %91 V  %53 W 

%62 F 

 %56 A 

Figure 6: Distorted Characters Recognition 
Results with their matching percent ratio 
(average matching ratio for all above 
characters is %61).

There are many possible changes that could 
vastly improve the algorithm's recognition 
abilities. With a few of these changes 
implemented, the mistakes the algorithm would 
make would indeed be very similar to the types 
of mistakes humans would make. Thus general 
algorithm holds promise as a character 
recognizer that identifies characters in a manner 
similar to the way that humans identify 
characters.  
Another future work could be summarized as 
follow: 
 Creating new hierarchical classification 

schemes based on rules after examining the 
corresponding confusion features. 

 Exploiting new features to improve the 
current performance. 
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