THE COMPOSITION OPERATOR $\mathbf{C}_{\alpha_{p}}$ on hardy space $H^{\frac{1}{2}}$

Eiman H.Abood

Department of Mathematics, College of Science, University of Baghdad .Baghdad-Iraq.

Abstract

In this paper, we characterize the unitary composition operator C_{a_p} on the Hardy space H^2 where α_n is a special automorphism of a unit open disk U such that $p \in U$. In addition to we study the compactness and essential normality of C_{α_p} and give some other partial results.

المؤثر التركيبي

ايمان حسن عبود قسم الرياضيات، كلية العلوم، . جامعة بغداد بغداد العراق

الخلاصة

في هذه البحث أعظمينا وصف المؤثر التركيبي الوحدوي
$$
C
$$
م $_{p}$ على فضاء هاردي H2 عنما يكون
$$
\Omega
$$
 التحويل الخطي الخاص لكرة الوحدة) جيث إن $p \in U$. بالزضافة إلى نلك درسنا تراص المؤثر لانكيبي C م $_{p}$ لغري.

Introduction

 Let *U* denote the unite ball in the complex plane, the Hardy space H^2 is the collection of holomorphic (analytic) functions.

$$
f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n
$$
 with $\hat{f}(n)$ denoting the n-

th Taylor coefficient of *f* such that $\sum_{n=1}^{\infty} \left| \hat{f}(n) \right|^2 < \infty$.

$$
\sum_{n=0} |J(n)| < \infty
$$

More precisely,

$$
f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n \in H^2 \Leftrightarrow
$$

$$
||f||^2 = \sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty.
$$

The inner product inducing the H^2 norm is given by

$$
\langle f, g \rangle = \sum_{n=0}^{\infty} \widehat{f}(n) \overline{\widehat{g}(n)}
$$
 $(f, g \in H^2)$.

The particular importance of H^2 is due to the fact that it is a Hilbert space. Let ψ be a homomorphic function that take the unit ball *U* into itself (which is called homomrphic self-map of U). To each holomorphic self-map ψ of U , we associate the composition operator C_w defined for all $f \in H^2$ by $C_w f = f \circ \psi$.

In this paper, we are going to discuss some links between the function theory and the operator theory. We investigate the relationship between the properties of the symbol α_n and the

operator C_{α_p} . Composition operators have been studied in many different contexts. A good source of references on the properties of composition operators on H^2 can found in [1] and [2].

We state very loosely some basic facts on composition operator on H^2 .

Theorem 1 **[1]:** Every composition operator C_w is bounded.

 $\psi(z) = \lambda z, \ |\lambda| \leq 1$. **Theorem 2 [2]:** C_{ψ} is normal if and only if

Theorem 3 [2]*:* $C_{\sigma} C_{\psi} = C_{\psi \sigma}$ **Theorem 4 [2]:** C_w is an identity operator if and only if ψ is the identity self-map.

For each $\alpha \in U$, the reproducing kernel at α , denoted by k_{α} is defined by

$$
k_{\alpha}(z) = \frac{1}{1 - \overline{\alpha}z} \quad .
$$

It is easily seen for each $\alpha \in U$ and $f \in H^2$, $f(z) =$

$$
\sum_{n=0}^{\infty} \hat{f}(n) z^{n} \text{ that}
$$

$$
\langle f, k_{\alpha} \rangle = \sum_{n=0}^{\infty} \hat{f}(n) \alpha^{n} = f(\alpha).
$$

The reproducing kernels for H^2 will play an important role in this paper. Shapiro gave the following formula for the adjoint C_{ψ}^* of a composition operator C_ψ on the family $\frac{1}{k_a}$ $\int \alpha \in U$.

Theorem 5 **[1]:** Let ψ be a homomorphic self map of *U*, then for all $\alpha \in U$ $C^*_{\psi} k_{\alpha} = k_{\psi(\alpha)}$.

For $p \in U$, Shapiro [1] defined $p(z) = \frac{p-z}{1-\overline{pz}}$ 1 $\alpha_{n}(z)$

(Where p is the complex conjugate of p). In fact α_p is called special automorphism of

U. He proved that α_p maps *U* into itself, and ∂U into itself. Since $\alpha_p(\alpha_p(z))=z$, then α_p is called have self-inverse property.

This paper consists of two sections. In section one, we are going to characterize the unitary composition operator C_{α_p} on H² see (1.1). In section tow, we characterize the compactness and essential normality of C_{α} see (2.1) and

(2.11). These results are new to the best of our knowledge.

1. The necessary and sufficient condition for normality of C_{α_p} .

 Recall that an operator *T* on a Hilbert space *H* is called unitary if $T^*T = I$ where T^* is the adjoint of *T* and *I* is the identity operator on *H* [3] *.* We start this section by the following result.

Theorem 1.1: C_{α_p} is a unitary operator on H^2 if and only if $p=0$.

Proof:

Assume that C_{α_p} is unitary. Assume that $p \neq 0$. Then α_p (0)= $p \neq 0$.

By assumption
$$
C_{\alpha_p}
$$
 is normal, then
\n
$$
C_{\alpha_p} C_{\alpha_p}^* = C_{\alpha_p} C_{\alpha_p}.
$$
 It follows that
\n
$$
C_{\alpha_p} C_{\alpha_p}^* k_0(z) = C_{\alpha_p} C_{\alpha_p} k_0(z).
$$

\nBut $C_{\alpha_p} k_0 = k_0$ and by theorem (5)
\n
$$
C_{\alpha_p}^* k_0 = k_{\alpha_p(0)}.
$$
 Thus
\n
$$
C_{\alpha_p} k_{\alpha_p(0)}(z) = C_{\alpha_p}^* k_0(z).
$$
 Thus from
\ndefinition of the composition operator and

 $k_{\alpha_p(0)}(a_p(z)) = k_{\alpha_p(0)}(z)$. Hence, theorem (5) we have

$$
\frac{1}{1-\overline{\alpha_p(0)}\ \alpha_p(z)} = \frac{1}{1-\overline{\alpha_p(0)}\ z}.
$$
 It follows
that $\overline{\alpha_p(0)}\ \alpha_p(z) = \overline{\alpha_p(0)}\ z$. But $\alpha_p(0)$
 $\neq 0$, then $\alpha_p(z) = z$, which a contradiction (since
 α_p can not be identity map). Therefore $p=0$
Conversely, suppose that $p=0$, then clearly
 $\alpha_p(z)=z$. To prove that C_{α_p} is unitary, it is
enough to show that

$$
C_{\alpha_p}C_{\alpha_p}^* = C_{\alpha_p}^* C_{\alpha_p} = I
$$

But it is well known that the span of the family $\{k_{\alpha}\}_{\alpha \in U}$ is dense subset in H^2 , then we can prove this equation on this family. Let $\beta \in U$, $C^*_{\alpha_n}C_{\alpha_n}k_{\beta}(z) = C^*_{\alpha_n}k_{\beta}(\alpha_{\beta}(z))$

$$
(\alpha_p C \alpha_p K \beta C^2) = \frac{C_{\alpha_p K \beta} (\alpha_p (z))}{C_{\alpha_p (z)} (\alpha_p (z))}
$$

$$
= \frac{1}{1 - \frac{1}{\alpha_p (\beta)} \frac{1}{\alpha_p (z)}}
$$

$$
= \frac{1}{1 - (-\overline{\beta}) (-z)}
$$

$$
= \frac{1}{1 - \overline{\beta z}}
$$

$$
= k_{\beta}(z).
$$

Hence $C_{\alpha_p}^* C_{\alpha_p} k_{\beta}(z) = k_{\beta}(z)$ for each $\beta \in U$. This implies that $C^*_{\alpha_p} C_{\alpha_p} = I$. On the other hand,

$$
C_{\alpha_p} C_{\alpha_p}^* k_{\beta}(z) = C_{\alpha_p} k_{\alpha_p(\beta)}(z)
$$

= $k_{\alpha_p(\beta)}(\alpha_p(z))$
= $\frac{1}{1 - \overline{\alpha_p(\beta)}} \frac{1}{\alpha_p(z)}$
= $\frac{1}{1 - \overline{\beta}z}$

$$
=k_{\beta}(z) .
$$

 $C_{\alpha_p} C_{\alpha_p}^* k_{\beta}(z) = k_{\beta}(z)$ for each $\beta \in U$. This implies that $C_{\alpha_p}^{\qquad \ *} C_{\alpha_p}^{\dagger} = I$. So $C_{\alpha_p}C_{\alpha_p}^*$ = $C_{\alpha_p}^*C_{\alpha_p}$ = *I* . Therefore C_{α_p} is a unitary operator on H^2

Notation: Let φ be a holomorphic self-map of *U* and *n* is a non-negative integer, the nth-iterate of *φ* is

$$
\varphi_n = \underbrace{\varphi \circ \varphi \circ \cdots \circ \varphi}_{n \text{-times}}.
$$

 Now we give the following result of nthiterate of C_{α_p} .

Corollary (1.2):

1) If *n* is even, then C_{α}^{n} is a unitary operator on H^2 for each $p \in U$. α_p

2) If *n* is odd, then C_{α}^{n} is a unitary operator on H^2 if and only if $p=0$. α_p

Proof:

 It is easily seen that by theorem (3) $\frac{\alpha_p \circ \alpha_p \circ \dots \circ \alpha_p}{n - times}$. $C_{\alpha_p}^{\prime\prime} = C_{\alpha_p \circ \alpha_p \circ \dots \circ \circ \alpha_p}$ *n* $\overline{}$ $\alpha_{\alpha_{p}}^{\prime_{n}}=C_{\alpha_{p}\circ\alpha_{p}\circ.....\circ\alpha}$

1) If *n* is even, then it is clear by the selfinverse property of α_p that $C_{\alpha_p}^n = I$. Therefore it is easily seen that $C_{\alpha_p}^n$ is a unitary operator on H^2 .

2) If *n* is odd, then by the self-inverse property of α_p , we have $C_{\alpha_p}^n = C_{\alpha_p}$. Thus $C_{\alpha_p}^n$ is operator a unitary on H^2 if and only if C_{α_p} is a unitary operator on H^2 . Hence we get the conclusion by (1.2)

2. The characterization of compactness and essential normality of C_{α} .

 Recall that an operator *T* on a Hilbert space *H* is said to be compact if it maps every bounded set into a relatively compact one (The set is called relatively compact if its closure in *H* is a compact set). Moreover, *T* is called essentially normal if $\overline{T}^*T - T T^*$ is compact [4].

Proposition 2.1: C_{α_p} and $C_{\alpha_p}^*$ are not compact operators on H^2 . α^*

Proof:

By self-inverse property of α_p we have *p* $\alpha_p^{-1} = \alpha_p$. It is easily seen that $C_{\alpha_p}^{-1} = C_{\alpha_p}^{-1}$ and $C_{\alpha_p} C_{\alpha_p} = I$. Since it is well known then C_{α_p} is not compact. Now to prove the that every invertible operator is not compact, compactness of $C^*_{\alpha_p}$. Since *

 $C_{\alpha_p} C_{\alpha_p} = I$ then $(C_{\alpha_p} C_{\alpha_p})^* = I^*$. This implies that $C^*_{\alpha_p} C^*_{\alpha_p} = I$.

Therefore $\begin{pmatrix} C^*_{\alpha_p} \end{pmatrix} = \dot{C}_{\alpha_p} = \dot{C}_{\alpha_p}$. Since * $\int_{0}^{1} = C^{*} = C^{*}$ $(C_{\alpha_p}^*)^{-1} = C_{\alpha_p}^* = C_{\alpha_p}^*$ $\left(C_{\alpha}^*\right)^{-1}$ =

 $C^*_{\alpha_p}$ is invertible operator, then it is not compact■ α^*

Corollary 2.2: $C_{\alpha_p}^n$ is not compact operator for each non-negative integer *n*.

Proof:

If *n* is even, then $C_{\alpha_p}^n = I$. Thus *n* $C_{\alpha_p}^n = C_{\alpha_p}$. Hence by (2.1) $C_{\alpha_p}^n$ is not $C_{\alpha_p}^n$ is not compact (since the identity operator is not compact). Moreover, if *n* is odd then compact■

To study of the essential normality of C_{α_p} we need some preliminaries.

Recall that if *T* is a bounded operator on a Hilbert space *H*. The norm of *T* is defined as follows $\|T\| = \sup \{ \|Tf\| \mid f \in H, \|f\| = 1 \}.$

A holomorphic self-map *ψ* is called an inner function if $|\psi(z)| = 1$ a.e. on ∂U .

Calculating the exact value of the norm of a composition operator is difficult. Nordgren gave an exact value of the norm of a composition operators induced by inner functions in the next theorem.

Theorem 2.3 [5]: A holomorphic self-map ψ is an inner function if and only if (0) $\left(0\right)$ 0 1 ² 1 lΨ $\| \psi \|$ 1 $\ddot{}$ C_{ψ} = $\frac{1 - |\psi(c)|}{1 - |\psi(c)|}$.

lΨ

Proposition 2.4: α *n* is an inner function. **Proof:**

Since α_p maps ∂U into itself, then by the definition of inner function we have α_p is inner function■

Therefore by (2.3) and (2.4) we can give an exact value of the composition operator induced by α_p .

Corollary 2.5:
$$
\left\|C_{\alpha p}\right\|^2 = \frac{1+|p|}{1-|p|}
$$
.

Corollary 2.6:

1)
$$
\left\|C_{\alpha p}\right\| = 1
$$
 if and only if $p=0$.
2) $\left\|C_{\alpha p}\right\| > 1$ if and only if $p \neq 0$.

Proof:

1) Follows immediately from (2.5).

2) From (2.5)
$$
\left\|C_{\alpha p}\right\|^2 = \frac{1+|p|}{1-|p|}.
$$

Since
$$
p\neq 0
$$
, then $1-|p| < 1 + |p|$.
Therefore $||C_{\alpha_p}|| > 1$

Recall that [3] the spectrum of an operator T on a Hilbert space H, denoted by $\sigma(T)$ is the set of all complex numbers λ for which T- λ I is not invertible. The

spectral radius of T , denoted by $r(T)$ is defined as

$$
r(T) = \sup \{ |\lambda| : \lambda \in \sigma(T) \}.
$$

Cowen gave an easy estimate of the spectral radius of composition operator.

Theorem 2.7 [6]: Suppose that ψ is a holomorphic self-map of *U* and suppose that *ψ* has a fixed point *c*, then $r(C_w) = 1$ when $|c|$ < 1 and

$$
r(C_{\psi}) = |\psi'(c)|^{-1/2}
$$
 when $|c| = 1$.

By (2.7) we can compute the spectral radius of composition operator C_{α_p} by determining the position of fixed points of α_p .

Proposition 2.8: If $p \neq 0$, then *p* $\frac{1 - \sqrt{1 - |p|^2}}{2}$ is an interior fixed point and *p* $\frac{1 + \sqrt{1 - |p|^2}}{p}$ is an exterior fixed point of α_n .

Proof:

Put $\alpha_p(z) = z$ then $\frac{p-z}{1-\overline{pz}} = z$. Therefore

 $\overline{p}z^2 - 2z + p = 0$. Hence α_p has two fixed points

$$
z_1 = \frac{1 + \sqrt{1 - |p|^2}}{\overline{p}}
$$
 and $z_2 = \frac{1 - \sqrt{1 - |p|^2}}{\overline{p}}$.

Since p is an interior point, then ,-111 ² *p p* therefore

 $\left| \frac{1 + \sqrt{1 - |p|^2}}{n} \right| > 1$ $|z_1| = \left| \frac{1 + \sqrt{1 - |p|^2}}{\overline{p}} \right| > 1$. This implies that z_1 is an

exterior fixed point of α_p . Now we must prove 2

that $|z_2| = \frac{|1 - \sqrt{1 - |P|}}{|P|} < 1$ \prec $1-\sqrt{1}$ $|z_2| = \left| \frac{1 - \sqrt{1 - |p|^2}}{\overline{p}} \right| < 1$

Let $r = |p|$, then $0 \le r \le 1$ ($p \ne 0$). Suppose that $|z_2| \ge 1$ so that $|1 - \sqrt{1 - r^2}| \ge r$. This implies that $\sqrt{1-r^2}$ < 1.

Therefore $1 - \sqrt{1 - r^2} = \left| 1 - \sqrt{1 - r^2} \right|$. Hence $1-r-\sqrt{1-r^2} \ge 0$. This inequality implies that $1 \le r \le 0$, this contradicts that $0 \le r \le 1$. Thus z_2 is an interior fixed point of α_p .

Now we are ready to compute the spectral radius of composition operator C_{α_p} on Hardy space H^2 .

Corollary 2.9:
$$
r(C_{\alpha_p})=1
$$
.
Proof:

The proof follows directly by (2.8) and (2.7) .

Definition 2.10 [7]: Let *B(H)* be a Banach space of all bounded operators on a Hilbert space *H*, and *B(H)* be the ideal of all compact operators on *H*, then the Calkin algebra is the quotient space $B(H)/B(H)$. If $T \in B(H)$, then the canonical projection $\prod(T)$ onto $B(H)/B(H)$ will be denoted by \overline{T} . The essential norm of T is $\|T\|_e = \|\widetilde{T}\|$. The essential spectral radius of *T* is $r_e(T) = r(\tilde{T})$. The essential spectrum of *T* is $\sigma_e(T) = \sigma(\widetilde{T})$.

So, one can show that if *T* is an essential normal operator on a Hilbert space *H* then $T^*T - T T^* = 0$ in Calkin algebra. It follows easily from the definition of the essentially normal operator that every normal operator and compact operator is essentially normal.

Shapiro proved the following result.

Theorem 2.11 [5]: A holomorphic self-map ψ is inner if and only if $\left\|C_{\psi}\right\|_{e} = \left\|C_{\psi}\right\|$ and

$$
r_e(C_{\psi}) = r(C_{\psi}).
$$

Now we give the following result.

Theorem 2.12: C_{α_p} is an essential normal operator on H^2 if and only if $p=0$.

Proof:

Assume that C_{α_p} is an essential normal operator on H^2 . Thus by [8] we have that

. *^C ^p ^C ^p ^e r e* …………….(1)

Suppose that $p \neq 0$, this follows by (2.6)(2) that $\left\|C_{\alpha_p}\right\| > 1$ and by (2.9) $r\left(C_{\alpha_p}\right) = 1$. Thus by (2.10) we have that $r\Bigl(C_{{\cal C}_{\bm{\rho}_p}}$ $|C_{\alpha_n}| = |C_{\alpha_n}| > 1$ $\left\| \alpha_p \right\|_e = \left\| C_{\alpha_p} \right\| > 1$. But by (2.4) α_p is inner. Therefore by (2.11) $\Bigl) = r \Bigl(C_{\alpha_p} \Bigr)$ $\big)$ (c_{α}) \setminus *C C p p rr ^e* ……………..(2)

Hence from (1) and (2) we get

$$
1 < \left\|C_{\alpha_p}\right\|_e = r_e\left(C_{\alpha_p}\right) = r\left(C_{\alpha_p}\right) = 1,
$$

which is a contradiction. Thus *p=0*. Conversely, if $p=0$, then by (1.1) we have C_{α_p} is a normal

operator on *H*. Thus C_{α_p} is essentially

normal■

Thus by (1.1) and (2.12) we get the following consequence.

Corollary 1.13: The following statements are equivalent:

- 1) C_{α_p} is a unitary operator on H².
- 2) C_{α_p} is an essentially normal operator on H^2 .

References

- 1. Shapiro, J. H. **1993**. *Composition operators and classical function theory*, Springer-Verlage, New York, p.p. 1-94.
- 2. Al-janabi E. H. **2003**. Composition operators on Hardy space H^2 , Ph.D Thesis, Univ. of Baghdad, p.p. 1-35.
- 3. Halmos, P.R. **1982**. *A Hilbert space problem Book*, Springer-Verlag, New York, 41-81.
- 4. Bourdon P. S., Shapiro J. H. and Narayan L, **2003**. Which linear-fractional composition operators are essentially normal?, *J. Math. Anal. Appl.* **280**: 30-53.
- 5. Shapiro, J. H. **2000**. What do composition operators know about inner function?, *Monatsh. Math*., **130**(1): 57-70.
- 6. Cowen, C. C. **1983**. Composition operators on H2 , *J. Operator Theory*, **9**: 77- 106.
- 7. Fernando Le_On-Saavedra & Alfonso Montes-Roder_Iguez. **2000**. Spectral theory and hypercyclic subspaces*, Trans.Amer.Soc*. **353**(1): 247-267