THE COMPOSITION OPERATOR C_{α_n} on hardy space H^2

Eiman H.Abood

Department of Mathematics, College of Science, University of Baghdad .Baghdad-Iraq.

Abstract

In this paper, we characterize the unitary composition operator C_{α_p} on the Hardy space H^2 where α_p is a special automorphism of a unit open disk U such that $p \in U$. In addition to we study the compactness and essential normality of C_{α_p} and give some other partial results.

في هذا البحث أعطينا وصف للمؤثر التركيبي الوحدوي
$${}_{lpha \ p}$$
على فضاء هاردي H2 عندما يكون ${}_{lpha \ p}$ التحويل الخطي الخاص لكرة الوحدةU, حيث إن $p \in U$. بالإضافة إلى ذلك درسنا تراص المؤثر التركيبي ${}_{lpha \ p}$ و المؤثر التركيبي السوي الجوهري ${}_{lpha \ p}$ مع بعض النتائج الأخرى.

Introduction

Let U denote the unite ball in the complex plane, the Hardy space H^2 is the collection of holomorphic (analytic) functions.

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n$$
 with $\hat{f}(n)$ denoting the n-

th Taylor coefficient of f such that $\sum_{n=1}^{\infty} \left| \hat{f}(n) \right|^2 < \infty$

$$\sum_{n=0}^{\infty} |f(n)| < \infty$$

More precisely,

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n \in H^2 \Leftrightarrow$$
$$\|f\|^2 = \sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty.$$

The inner product inducing the H^2 norm is given by

$$\langle f,g\rangle = \sum_{n=0}^{\infty} \widehat{f}(n)\overline{\widehat{g}(n)} \qquad (f,g \in H^2).$$

The particular importance of H^2 is due to the fact that it is a Hilbert space. Let ψ be a homomorphic function that take the unit ball U into itself (which is called homomrphic self-map of U). To each holomorphic self-map ψ of U, we associate the composition operator C_{ψ} defined for all $f \in H^2$ by $C_{\psi} f = f \circ \psi$.

In this paper, we are going to discuss some links between the function theory and the operator theory. We investigate the relationship between the properties of the symbol α_p and the operator C_{α_p} . Composition operators have been studied in many different contexts. A good source of references on the properties of composition operators on H^2 can found in [1] and [2].

We state very loosely some basic facts on composition operator on H^2 .

Theorem 1 [1]: Every composition operator C_{ψ} is bounded.

Theorem 2 [2]: C_{ψ} is normal if and only if $\psi(z) = \lambda z$, $|\lambda| \le 1$.

Theorem 3 [2]: $C_{\sigma} C_{\psi} = C_{\psi \sigma \sigma}$ **Theorem 4 [2]:** C_{ψ} is an identity operator if and only if ψ is the identity self-map.

For each $\alpha \in U$, the reproducing kernel at α , denoted by k_{α} is defined by

$$k_{\alpha}(z) = \frac{1}{1 - \overline{\alpha}z}$$

It is easily seen for each $\alpha \in U$ and $f \in H^2$, f(z) =

$$\sum_{n=0}^{\infty} \hat{f}(n) z^n \text{ that}$$
$$\left\langle f, k_{\alpha} \right\rangle = \sum_{n=0}^{\infty} \hat{f}(n) \alpha^n = f(\alpha) \text{ for } \alpha$$

The reproducing kernels for H^2 will play an important role in this paper. Shapiro gave the following formula for the adjoint C_{ψ}^* of a composition operator C_{ψ} on the family $\{k_{\alpha}\}_{\alpha \in U}$.

Theorem 5 [1]: Let ψ be a homomorphic self map of U, then for all $\alpha \in U$ $C_{\psi}^* k_{\alpha} = k_{\psi(\alpha)}$.

For $p \in U$, Shapiro [1] defined $\alpha_p(z) = \frac{p-z}{1-\overline{p}z}$

(Where \overline{p} is the complex conjugate of p). In fact α_p is called special automorphism of

U. He proved that α_p maps *U* into itself, and ∂U into itself. Since $\alpha_p(\alpha_p(z))=z$, then α_p is called have self-inverse property.

This paper consists of two sections. In section one, we are going to characterize the unitary composition operator $C_{\alpha p}$ on H² see (1.1). In section tow, we characterize the compactness and essential normality of $C_{\alpha p}$ see (2.1) and (2.11). These results are new to the best of our knowledge.

1. The necessary and sufficient condition for normality of C_{α_p} .

Recall that an operator T on a Hilbert space H is called unitary if $TT^* = T^*T = I$ where T^* is the adjoint of T and I is the identity operator on H [3]. We start this section by the following result.

Theorem 1.1: C_{α_p} is a unitary operator on H^2 if and only if p=0.

Proof:

Assume that C_{α_p} is unitary. Assume that $p \neq 0$. Then $\alpha_p(0) = p \neq 0$. By assumption C_{α} is normal, then

$$C_{\alpha_{p}}C_{\alpha_{p}}^{*} = C_{\alpha_{p}}^{*}C_{\alpha_{p}}$$
 It follows that

$$C_{\alpha_{p}}C_{\alpha_{p}}^{*}k_{0}(z) = C_{\alpha_{p}}^{*}C_{\alpha_{p}}k_{0}(z).$$
But $C_{\alpha_{p}}k_{0} = k_{0}$ and by theorem (5)

$$C_{\alpha_{p}}^{*}k_{0} = k_{\alpha_{p}(0)}.$$
 Thus

$$C_{\alpha_{p}}k_{\alpha_{p}(0)}(z) = C_{\alpha_{p}}^{*}k_{0}(z).$$
 Thus from

definition of the composition operator and theorem (5) we have $k_{\alpha_p^{(0)}}(\alpha_p^{(z)}) = k_{\alpha_p^{(0)}}(z)$. Hence,

$$\frac{1}{1 - \overline{\alpha_p(0)}} \frac{1}{\alpha_p(z)} = \frac{1}{1 - \overline{\alpha_p(0)}} \frac{1}{z}$$
. It follows

that $\overline{\alpha_p(0)} \ \alpha_p(z) = \overline{\alpha_p(0)} \ z$. But $\alpha_p(0) \neq 0$, then $\alpha_p(z) = z$, which a contradiction (since α_p can not be identity map). Therefore p=0Conversely, suppose that p=0, then clearly $\alpha_p(z) = -z$. To prove that $C \alpha_p$ is unitary, it is enough to show that

$$C_{\alpha_p}C_{\alpha_p}^*=C_{\alpha_p}^*C_{\alpha_p}=I$$

But it is well known that the span of the family $\{k_{\alpha}\}_{\alpha \in U}$ is dense subset in H^2 , then we can

prove this equation on this family. Let $\beta \in U$, $C^* = C = k \left(z \right) = C^* = k \left(c \left(z \right) \right)$

$$= k_{\alpha_{p}} C_{\alpha_{p}} k_{\beta}(2) - C_{\alpha_{p}} k_{\beta}(\alpha_{p}(2))$$

$$= k_{\alpha_{p}(\beta)}(\alpha_{p}(z))$$

$$= \frac{1}{1 - \overline{\alpha_{p}(\beta)}} \alpha_{p}(z)$$

$$= \frac{1}{1 - (-\overline{\beta})} (-z)$$

$$= \frac{1}{1 - \overline{\beta z}}$$

$$= k_{\beta}(z) .$$

Hence $C_{\alpha_p}^* C_{\alpha_p} k_{\beta}(z) = k_{\beta}(z)$ for each $\beta \in U$. This implies that $C_{\alpha_p}^* C_{\alpha_p} = I$. On the other hand,

$$C_{\alpha_{p}}C_{\alpha_{p}}^{*}k_{\beta}(z) = C_{\alpha_{p}}k_{\alpha_{p}(\beta)}(z)$$
$$= k_{\alpha_{p}(\beta)}(\alpha_{p}(z))$$
$$= \frac{1}{1 - \overline{\alpha_{p}}(\beta)} \alpha_{p}(z)$$
$$= \frac{1}{1 - \overline{\beta z}}$$

$$=k_{\beta}(z)$$

 $C_{\alpha_p} C_{\alpha_p}^* k_{\beta}(z) = k_{\beta}(z)$ for each $\beta \in U$. This implies that $C_{\alpha_p} C_{\alpha_p}^* = I$. So $C_{\alpha_p} C_{\alpha_p}^* = C_{\alpha_p}^* C_{\alpha_p} = I$. Therefore C_{α_p} is a unitary operator on H^2 **Notation:** Let φ be a holomorphic self-map of U and n is a non-negative integer, the nth-iterate of φ is

$$\varphi_n \stackrel{def}{=} \underbrace{\varphi \circ \varphi \circ \cdots \circ \varphi}_{n-times}.$$

Now we give the following result of nthiterate of C_{α_p} .

Corollary (1.2):

1) If *n* is even, then $C_{\alpha p}^{n}$ is a unitary operator on H^{2} for each $p \in U$.

2) If *n* is odd, then $C_{\alpha_p}^n$ is a unitary operator on H^2 if and only if p=0.

Proof:

It is easily seen that by theorem (3) $C_{\alpha_p}^n = C_{\underbrace{\alpha_p \circ \alpha_p \circ \dots \circ \alpha_p}_{n-times}}.$ 1) If r is even then it is clear by the self.

1) If *n* is even, then it is clear by the selfinverse property of α_p that $C_{\alpha_p}^n = I$. Therefore it is easily seen that $C_{\alpha_p}^n$ is a unitary operator on H^2 .

2) If *n* is odd, then by the self-inverse property of α_p , we have $C_{\alpha_p}^n = C_{\alpha_p}$. Thus $C_{\alpha_p}^n$ is operator a unitary on H^2 if and only if C_{α_p} is a unitary operator on H^2 . Hence we get the conclusion by (1.2)

2. The characterization of compactness and essential normality of C_{α_n} .

Recall that an operator T on a Hilbert space H is said to be compact if it maps every bounded set into a relatively compact one (The set is called relatively compact if its closure in H is a compact set). Moreover, T is called essentially normal if $T^*T - TT^*$ is compact [4].

Proposition 2.1: C_{α_p} and $C_{\alpha_p}^*$ are not compact operators on H².

Proof:

By self-inverse property of α_p we have $\alpha_p^{-1} = \alpha_p$. It is easily seen that $C_{\alpha_p}^{-1} = C_{\alpha_p}^{-1}$ and $C_{\alpha_p}C_{\alpha_p} = I$. Since it is well known that every invertible operator is not compact, then C_{α_p} is not compact. Now to prove the compactness of $C_{\alpha_p}^*$. Since

 $C_{\alpha_p}C_{\alpha_p} = I$ then $(C_{\alpha_p}C_{\alpha_p})^* = I^*$. This implies that $C_{\alpha_p}^*C_{\alpha_p}^* = I$.

Therefore $\left(C_{\alpha_p}^*\right)^{-1} = C_{\alpha_p}^* = C_{\alpha_p}^{*-1}$. Since

 $C^*_{\alpha_p}$ is invertible operator, then it is not compact

Corollary 2.2: $C_{\alpha_p}^n$ is not compact operator for each non-negative integer *n*.

Proof:

If *n* is even, then $C_{\alpha_p}^n = I$. Thus $C_{\alpha_p}^n$ is not compact (since the identity operator is not compact). Moreover, if *n* is odd then $C_{\alpha_p}^n = C_{\alpha_p}$. Hence by (2.1) $C_{\alpha_p}^n$ is not compact

To study of the essential normality of C_{α_p} we need some preliminaries.

Recall that if T is a bounded operator on a Hilbert space H. The norm of T is defined as follows $||T|| = \sup \{ ||Tf|| \mid f \in H, ||f|| = 1 \}$.

A holomorphic self-map ψ is called an inner function if $|\psi(z)| = 1$ a.e. on ∂U .

Calculating the exact value of the norm of a composition operator is difficult. Nordgren gave an exact value of the norm of a composition operators induced by inner functions in the next theorem.

Theorem 2.3 [5]: A holomorphic self-map ψ is an inner function if and only if

$$\left\|C_{\psi}\right\|^{2} = \frac{1+|\psi(0)|}{1-|\psi(0)|}.$$

Proposition 2.4: α_p is an inner function. **Proof:**

Since α_p maps ∂U into itself, then by the definition of inner function we have α_p is inner function

Therefore by (2.3) and (2.4) we can give an exact value of the composition operator induced by α_p .

Corollary 2.5:
$$\left\| C_{\alpha_p} \right\|^2 = \frac{1+|p|}{1-|p|}$$
.

1)
$$\left\| C_{\alpha_p} \right\| = 1$$
 if and only if $p=0$.
2) $\left\| C_{\alpha_p} \right\| > 1$ if and only if $p \neq 0$.

Proof:

1) Follows immediately from (2.5).

2) From (2.5)
$$\left\| C_{\alpha_p} \right\|^2 = \frac{1+|p|}{1-|p|}$$

Since
$$p \neq 0$$
, then $1 - |p| < 1 + |p|$.
Therefore $\left\| C_{\alpha_p} \right\| > 1$

Recall that [3] the spectrum of an operator T on a Hilbert space H, denoted by $\sigma(T)$ is the set of all complex numbers λ for which T- λI is not invertible. The

spectral radius of T, denoted by r(T) is defined as

$$r(T) = \sup\{ |\lambda| : \lambda \in \sigma(T) \}.$$

Cowen gave an easy estimate of the spectral radius of composition operator.

Theorem 2.7 [6]: Suppose that ψ is a holomorphic self-map of U and suppose that ψ has a fixed point c, then $r(C_{\psi}) = 1$ when |c| < 1 and

$$r(C_{\psi}) = |\psi'(c)|^{-1/2} \text{ when } |\mathcal{C}| = 1.$$

By (2.7) we can compute the spectral radius of composition operator C_{α_p} by determining the position of fixed points of α_p .

Proposition 2.8: If $p \neq 0$, then $\frac{1 - \sqrt{1 - |p|^2}}{\overline{p}}$ is an interior fixed point and $\frac{1 + \sqrt{1 - |p|^2}}{\overline{p}}$ is an exterior fixed point of α_p .

Proof:

Put $\alpha_p(z) = z$ then $\frac{p-z}{1-pz} = z$. Therefore

 $\overline{p}z^2 - 2z + p = 0$. Hence α_p has two fixed points

$$z_1 = \frac{1 + \sqrt{1 - |p|^2}}{\overline{p}}$$
 and $z_2 = \frac{1 - \sqrt{1 - |p|^2}}{\overline{p}}$.

Since p is an interior point, then $\left|\overline{p}\right| < 1 < \left|1 + \sqrt{1 - \left|p\right|^2}\right|$, therefore

 $|z_1| = \left|\frac{1+\sqrt{1-|p|^2}}{\overline{p}}\right| > 1$. This implies that z_1 is an

exterior fixed point of α_p . Now we must prove

that $|z_2| = \left| \frac{1 - \sqrt{1 - |p|^2}}{\overline{p}} \right| < 1$.

Let r = |p|, then 0 < r < 1 ($p \neq 0$). Suppose that $|z_2| \ge 1$ so that $|1 - \sqrt{1 - r^2}| \ge r$. This implies that $\sqrt{1 - r^2} < 1$.

Therefore $1 - \sqrt{1 - r^2} = \left| 1 - \sqrt{1 - r^2} \right|$. Hence $1 - r - \sqrt{1 - r^2} \ge 0$. This inequality implies that $1 \le r \le 0$, this contradicts that 0 < r < 1. Thus z_2 is an interior fixed point of α_p .

Now we are ready to compute the spectral radius of composition operator $C \alpha_p$ on Hardy space H^2 .

Corollary 2.9: $r(C_{\alpha_p}) = 1$. Proof: The proof follows directly by (2.8) and (2.7).

Definition 2.10 [7]: Let B(H) be a Banach space of all bounded operators on a Hilbert space H, and B(H) be the ideal of all compact operators on H, then the Calkin algebra is the quotient space B(H)/B(H). If $T \in B(H)$, then the canonical projection $\Pi(T)$ onto B(H)/B(H) will be denoted by \widetilde{T} . The essential norm of T is $\|T\|_e = \|\widetilde{T}\|$. The essential spectral radius of Tis $r_e(T) = r(\widetilde{T})$. The essential spectrum of Tis $\sigma_e(T) = \sigma(\widetilde{T})$.

So, one can show that if *T* is an essential normal operator on a Hilbert space *H* then $T^*T - TT^* = 0$ in Calkin algebra. It follows easily from the definition of the essentially normal operator that every normal operator and compact operator is essentially normal.

Shapiro proved the following result.

Theorem 2.11 [5]: A holomorphic self-map ψ is inner if and only if $\|C_{\psi}\|_{e} = \|C_{\psi}\|$ and

$$r_e(\mathbf{C}_{\psi}) = r(\mathbf{C}_{\psi})$$

Now we give the following result.

Theorem 2.12: C_{α_p} is an essential normal operator on H^2 if and only if p=0.

Proof:

Assume that C_{α_p} is an essential normal operator on H^2 . Thus by [8] we have that

$$\left\|C_{\alpha_{p}}\right\|_{e} = r_{e}\left(C_{\alpha_{p}}\right)$$
....(1)

Suppose that $p \neq 0$, this follows by (2.6)(2) that $\left\| C_{\alpha_p} \right\| > 1$ and by (2.9) $r \left(C_{\alpha_p} \right) = 1$. Thus by (2.10) we have that $\left\| C_{\alpha_p} \right\|_e = \left\| C_{\alpha_p} \right\| > 1$. But by (2.4) α_p is inner. Therefore by (2.11) $r_e \left(C_{\alpha_p} \right) = r \left(C_{\alpha_p} \right)$(2) Hence from (1) and (2) we get

$$1 < \left\| C_{\alpha_p} \right\|_e = r_e \left(C_{\alpha_p} \right) = r \left(C_{\alpha_p} \right) = 1,$$

which is a contradiction. Thus p=0. Conversely, if p=0, then by (1.1) we have C_{α_p} is a normal

operator on *H*. Thus C_{α_p} is essentially

normal∎

Thus by (1.1) and (2.12) we get the following consequence.

Corollary 1.13: The following statements are equivalent:

- 1) C_{α_p} is a unitary operator on H².
- 2) C_{α_p} is an essentially normal operator on H².

operator on m

References

- 1. Shapiro, J. H. **1993**. *Composition operators and classical function theory*, Springer-Verlage, New York, p.p. 1-94.
- Al-janabi E. H. 2003. Composition operators on Hardy space H², Ph.D Thesis, Univ. of Baghdad, p.p. 1-35.
- 3. Halmos, P.R. **1982**. *A Hilbert space problem Book*, Springer-Verlag, New York, 41-81.
- Bourdon P. S., Shapiro J. H. and Narayan L, 2003. Which linear-fractional composition operators are essentially normal?, *J. Math. Anal. Appl.* 280: 30-53.
- 5. Shapiro, J. H. **2000**. What do composition operators know about inner function?, *Monatsh. Math.*, **130**(1): 57-70.
- 6. Cowen, C. C. **1983**. Composition operators on H², *J. Operator Theory*, **9**: 77-106.
- Fernando Le_On-Saavedra & Alfonso Montes-Roder_Iguez. 2000. Spectral theory and hypercyclic subspaces, *Trans.Amer.Soc.* 353(1): 247-267