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Abstract

In this paper, we characterize the unitary composition operator '

o, On the

Hardy space H * where & » is a special automorphism of a unit open disk U such

that p € U . In addition to we study the compactness and essential normality of

Ca » and give some other partial results.

S izl

29 G Glal
Gl S sk deals caslel) LK lml )l

Al
058 Levie H2 spjla slad e C o, Gl S sl Caay Ll Gl 128 8
Sigall Galp L ey QALY peU o) Gum, Usangl 380 (alall adll Jysatll op
AV B Gan e C g @l gl Sl sl C. , @S

Introduction

Let U denote the unite ball in the complex
plane, the Hardy space H’ is the collection of
holomorphic (analytic) functions.

f(z)= gf(n)z” with f(n) denoting the n-

n=0
th Taylor coefficient of f such that
w 2
3 f(n)‘ <w.

n=0
More precisely,

f()= Sim)z" e H &
n=0
Jon)| <.

o0

=2

n=0

The inner product inducing the A° norm is given
by

(1,8)=Y 7(n)gln)  (rgetr).

n=0

The particular importance of H° is due to the
fact that it is a Hilbert space. Let y be a
homomorphic function that take the unit ball U
into itself (which is called homomrphic self-map
of U ). To each holomorphic self-map i of U,

we associate the composition operator C,
defined for all feH’ by Cl//f =foy.
In this paper, we are going to discuss some links

between the function theory and the operator
theory. We investigate the relationship between

the properties of the symbol «, and the
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operator Cq p Composition operators have

been studied in many different contexts. A good
source of references on the properties of
composition operators on H° can found in [1]
and [2].

We state very loosely some basic facts on
composition operator on H”.

Theorem 1 [1]: Every composition operator C,
is bounded.
Theorem 2 [2]: C, is normal if and only if

w(z)=2z, |A<1.

Theorem 3 [2]: C, C\, = Cor
Theorem 4 [2]: C,, is an identity operator if
and only if v is the identity self-map.

For each aeU, the reproducing kernel at a,
denoted by k,, is defined by

1
l-az

It is easily seen for each acU and feH’, f(z)=
D f(m)z" that
n=0

k(2=

(£ )= T’ = f(@).

The reproducing kernels for H° will play an
important role in this paper. Shapiro gave the
following formula for the adjoint C,” of a
composition operator C, on the family {k,

}an-

Theorem 5 [1]: Let y be a homomorphic self

map of U, then for all aeU
Cyka=kyuw:

. p—z
For p €U, Shapiro [1] defined «,(z) = P

(Where ; is the complex conjugate of p). In fact

o, is called special automorphism of
U. He proved that ¢, maps U into itself, and

oU into itself. Since o, (ap (z))=z, then ¢ is

called have self-inverse property.

This paper consists of two sections. In section
one, we are going to characterize the unitary
composition operator C , on H? see (1.1). In

section tow, we characterize the compactness
and essential normality of C , , see (2.1) and
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(2.11). These results are new to the best of our
knowledge.

1. The necessary and sufficient condition
for normality of C .

Recall that an operator 7 on a Hilbert space
H is called unitary if TT'= T'T=I where I’
is the adjoint of 7 and [ is the identity operator
on H [3]. We start this section by the following
result.

Theorem 1.1: C o » 1S a unitary operator on
H’ if and only if p=0.

Proof:
Assume that C ¢ » is unitary. Assume that

p#0.Then ¢ » (0)=p#0.

By assumption C ¢ » is normal, then

oo Tt follows that
Cy,Cq,=Cp,C,, - 1t ollows tha

Cp,Co kF)=Cpy Cyp ko2):
But Ca ko = k, and by theorem (5)

Cap ko= kap(o)' Thus

Cp kg () =Cy kole)- Thus  from

definition of the composition operator and
theorem ®)] we have

kap(o)(ap (2)) = kap(o)(z). Hence,

1 1
1-q,0) ¢,z) 1-¢,0) =
a,0) a,(2)=¢q,0) 2. But a,0

#0, then ¢ (z) =z, which a contradiction (since

. It follows

ap can not be identity map). Therefore p=0
Conversely, suppose that p=0, then clearly
O p (z)=-z. To prove that Ca » iS unitary, it is

enough to show that
Co,Co,=Cpy,Co =1 -

But it is well known that the span of the family
tko }acu 1s dense subset in H°, then we can
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prove this equation on this family. Let feU,

Coy Co ky(D=Cly k(2D
~ kg (@, @)

Hence C*a Ca kﬁ(z) :kﬂ(z) for each

=1 .On the

p

%
U. This implies that
Pe is implies tha Cap Ca

other hand,
Ca,,cjxpkﬁ(z) = Capkapw)(z)
kg, (a,(2)

- 1
- 1_;(@ a,,(Z)
_ 1

1-pz
= k,(2)

) = for each BeU. Thi
Capca,,kﬂ(z) kﬂ(z) or each fe is
sk
implies that =7.
implies tha Capcap J -So

Yl — I Theref
Capca,, Capcap I erefore

Cq » is a unitary operator on H° m
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Notation: Let ¢ be a holomorphic self-map of
U and 7 is a non-negative integer, the nth-iterate
of g is

def

Q= PoPooQ.

n—times

Now we give the following result of nth-
iterate of C 4 e

Corollary (1.2):

1) If n is even, then Cna is a unitary operator
P

on H° for each p eU.
2) If nis odd, then Cna is a unitary operator
P

on A if and only if p=0.

Proof:
It is easily seen that by theorem (3)

1) If n is even, then it is clear by the self-

inverse property of » that C&p =1
Therefore it is easily seen that C; is a unitary
P

operator on H-.
2) If n is odd, then by the self-inverse property

of we have (7 = . Thus (" s
Xp> Cap C(Zp Cap

operator a unitary on A’ if and only if Cqu » isa

unitary operator on H’. Hence we get the
conclusion by (1.2)m

2. The characterization of compactness

and essential normality of C',.

Recall that an operator 7 on a Hilbert space
H is said to be compact if it maps every bounded
set into a relatively compact one (The set is
called relatively compact if its closure in H is a
compact set). Moreover, T is called essentially
normal if 7°T-T T is compact [4].

Proposition 2.1: Cg, and (7, are not
P

compact operators on H°.

Proof:
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By self-inverse property of ¢, we have
Ca,

and CapCap = [ . Since it is well known

-1
(24

p =&, Itis easily seen that c!' =

Ap

that every invertible operator is not compact,
then C o » is not compact. Now to prove the

* .
. Since
p

compactness of ('
CapCap:] then (CapCap) :]*
This implies that C; C; =1.

p Yp

-1 5 *
Therefore * ) = = -1. Since
(CO‘P Co P Co P

C*a is invertible operator, then it is not
P

compactm

Corollary 2.2: Cna is not compact operator
p

for each non-negative integer n.

Proof:

If n is even, then C&p =1 . Thus

C; is not compact (since the identity operator
p
is not compact).
n
= . Hence by (2.1
Cyq,~Ca, y (2.1)

compactm

Moreover, if n is odd then
n .
1S not

Cq,
To study of the essential normality of C o » We

need some preliminaries.

Recall that if T is a bounded operator on a
Hilbert space H. The norm of 7 is defined as

follows ||T||:sup{ ||Tf|| | feH, f||:1}

A holomorphic self-map y is called an inner
function if |w(z)| =1 ae. on U

Calculating the exact value of the norm of a
composition operator is difficult. Nordgren gave
an exact value of the norm of a composition
operators induced by inner functions in the next
theorem.

Theorem 2.3 [5]: A holomorphic self-map v is

an inner function if and only if
H 2 1+|w(01
A T e)
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Proposition 2.4: « , 1s an inner function.

Proof:
Since ¢, maps JU into itself, then by the
definition of inner function we have ¢, is

inner functionm

Therefore by (2.3) and (2.4) we can give an
exact value of the composition operator induced

by ap-

2 1+|p|
Corollary 2.5: ||C =—.
ap 1- |p|
Corollary 2.6:
1 =1 if and only if p=0.
) CapH if and only if p
2) ‘C >1 if and only if p#£0.
&p
Proof:
1)  Follows immediately from (2.5).
2) F (2.5) ‘ 2 1+|p|
rom (2. =—.
Co| T1-
Since p#0, then] — |p| <1+ |p| .
Theref >1
erefore Cap [

Recall that [3] the spectrum of an operator T on
a Hilbert space H, denoted by o(T) is the set of
all complex numbers A for which T-AI is not
invertible. The

spectral radius of T, denoted by r(T) is defined
as

r(T)=sup{ |4: Lea(T)}.

Cowen gave an easy estimate of the spectral
radius of composition operator.

Theorem 2.7 [6]: Suppose that w is a
holomorphic self-map of U and suppose that

has a fixed point ¢, then 7 (C(/,) =1 when
|C|<1 and

I’(CW) = ‘t//'(c) e When|C| =1.
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By (2.7) we can compute the spectral radius of
composition operator C , by determining the

position of fixed points of ¢, .

2
Proposition 2.8: If p = 0, then Iy M is an
p

2
interior fixed point and T+yl-lp| Vl_‘p‘ is an exterior

p
fixed point of x , .

Proof:

p-z
l—;z
pz’-2z+ p=0. Hence «, has two fixed

_ 1-y/1-[p|
P
point,

Put o, (z) =z then = z . Therefore

points

:1+1/1—|p|2

P
p is an

1+4/1-[p|
1+,/1:\p\2

p

and z

1 2

Since interior then

|ﬁ| <l< therefore

b

2| = - 1- This implies that z, is an

exterior fixed point of ¢ ,. Now we must prove

‘ 2

I—4/1-|p

p

25| =
Let r = |p|, then 0 <1 <1 ( p # 0). Suppose
that|z,| =1 so that ‘1-\/1-1’2
that v1-7 <1.

Therefore 1-+/1-72 = ‘1 -A/1-72

1-7r-+/1-7> =0. This inequality implies that
1 <r <0, this contradicts that 0 <r < 1. Thus z,

>y .This implies

. Hence

is an interior fixed point of @, .

Now we are ready to compute the spectral radius
of composition operator C o , on Hardy space
H2
Corollary 2.9: r(c ) =1.

xp

Proof:
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The proof follows directly by (2.8) and
2.7).

Definition 2.10 [7]: Let B(H) be a Banach space
of all bounded operators on a Hilbert space H,
and B(H) be the ideal of all compact operators
on H, then the Calkin algebra is the quotient
space B(H)/B(H). If TeB(H), then the canonical

projection H(T ) onto B(H)/B(H) will be

denoted by 7. The essential norm of T is

HT He = HT H The essential spectral radius of T’

is re(T )= r(f ). The essential spectrum of T
is O'e(T): O'(ZN“).

So, one can show that if T is an essential normal
operator on a Hilbert space H then 7" T- T T"=0
in Calkin algebra. It follows easily from the
definition of the essentially normal operator that
every normal operator and compact operator is
essentially normal.

Shapiro proved the following result.

Theorem 2.11 [5]: A holomorphic self-map v is
inner if and only if HCWHe = HC‘//H and

re(CW )= r(CV,) .
Now we give the following result.

Theorem 2.12: Cap is an essential normal
operator on A if and only if p=0.

Proof:
Assume that C a, is an essential normal

operator on H°. Thus by [8] we have that

AR 1

lCa,) "
e

Suppose that p#£0, this follows by (2.6)(2)

Cap >1 and by (2.9) F[Capj =1.
Thus by (2.10) we have that
Cay| =|Ca,

inner. Therefore by (2.11)

lCa)lCa,)

Ca,

that

) >1.Butby (2.4) @, is
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Hence from (1) and (2) we get

| el

e
which is a contradiction. Thus p=0. Conversely,

if p=0, then by (1.1) we have Cap is a normal

operator on H. Thus C ¢ , 1s essentially

normalm

Thus by (1.1) and (2.12) we get the following
consequence.

Corollary 1.13: The following statements are
equivalent:

1) Ca » is a unitary operator on H’.
2) Cyq , 18 an essentially normal

operator on H*.
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