Ahmed and Majeed

Iraqi Journal of Science, 2020, Vol. 61, No. 3, pp: 600-607 DOI: 10.24996/ijs.2020.61.3.16

ISSN: 0067-2904

Γ -(λ , δ)-Derivation on Semi-Group Ideals in Prime Γ -Near-Ring

Hiba A.Ahmed*, Abdulrahman H. Majeed

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 30/6/ 2019

Accepted: 28/8/2019

Abstract

The main purpose of this paper is to investigate some results. When h is $\Gamma - (\lambda, \delta)$ – Derivation on prime Γ -near-ring G and K is a nonzero semi-group ideal of G, then G is commutative.

Keywords: Prime Γ -near-ring, Semi-group ideal, $\Gamma - (\lambda, \delta)$ – derivation

اشتقاق كاما- (٦,δ) على مثالي شبه اولي في حلقه كاما المقتربه الاوليه

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصه

الهدف الرئيسي من هذا البحث هو دراسة بعض النتائج عندما تكون h هي اشتقاق كاما- (λ,δ) على المقتربه الأوليه G و K هي مثالي شبه اولي غير صفري في G فان G حلقه ابدالية.

1. Introduction

Throughout this paper, G denotes a zero – symmetric left Γ -near-ring with a multiplicative center Z(G). For a Γ -near-ring G, the set $G_0 = \{s \in G: \ \partial \rho s = 0, \forall \rho \in \Gamma\}$ is called a zero symmetric part of G. If $G=G_0$, then G is called a zero symmetric [1,2,3,4]. An additive mapping $h:G \to G$ is called a $\Gamma - (\lambda, \delta)$ -derivation on a Γ -near-ring G If there exist two automorphisms mapping $\lambda, \delta : G \to G$, such that $h(s\rho r)=h(s)\rho\lambda(r)+\delta(s)\rho h(r)$, for every $s,r \in G$ and $\rho \in \Gamma$ [4,5]. A Γ -near-ring G is said to be a prime Γ -near-ring if $s\Gamma G\Gamma r = 0$ implies s = 0 or r=0, for every $s,r \in G$, and it said to be a semiprime if $s\Gamma G\Gamma s = 0$ implies s = 0 for every $s \in G$ [5,6]. Further, an element $s \in G$ is called constant if h(s)=0 [4,7]. A non-empty subset K of G is called semi-group ideal if $K\Gamma G \subset K$ and $G\Gamma K \subset K$ [8]. For $s,r \in G$ and $\rho \in \Gamma$, the symbol $[s,r]_{\lambda,\delta}^{\rho}$ will denote $\delta(s)\rho r - r\rho\lambda(s)$, as previously described[4,9]. The other commutators are $[s,r]_{\rho} = s\rho r$ -rps and (s,r) = s+r-s-r which denote the additive-group commutator [4,9].

The purpose of this paper is to study and generalize some results of previous authors [4,7,9,10] on the commutativity of the prime Γ -near-ring. Some recent results on rings deal with commutativity of prime and semiprime rings admitting suitably constrained derivations. For further details on prime near-ring, we refer to some previous articles [11-15].

As a generalization of near-ring, the Γ -near-ring was discussed by Satyanarayana [6], while Booth and Groenewald [5,13] surveyed various portions in the Γ -near-ring .In this paper, we investigate the condition for a Γ -(λ , δ)-derivation on a prime Γ -near-ring to be commutative.

^{*}Email: hiba.abdulla84@yahoo.com

2. The Main Results

In this section, we investigate some results of a semi-group ideal of a Γ - near-ring admitting a Γ -(λ , δ)-derivation.

To prove the main theorems, we need the following lemmas.

Lemma 2.1. Let h be a $\Gamma - (\lambda, \delta)$ – derivation on a prime Γ -near-ring and K a semi-group ideal of G, if and only if $h(s\eta r) = \delta(s)\eta h(r) + h(s)\eta\lambda(r)$, for all $s, r \in K$ and $\eta \in \Gamma$.

Proof. $\forall s, r \in K$ and $\eta \in \Gamma$, we have $s\eta(r + r) = s\eta r + s\eta r$. By applying h for both sides we obtain

 $h(s\eta(r+r)) = h(s)\eta\lambda(r+r) + \delta(s)\eta h(r+r)$ = $h(s)\eta\lambda(r) + h(s)\eta\lambda(r) + \delta(s)\eta h(r) + \delta(s)\eta h(r).$

and

$$h(s\eta r + s\eta r) = h(s\eta r) + h(s\eta r)$$

= $h(s)\eta\lambda(r) + \delta(s)\eta h(r) + h(s)\eta\lambda(r) + \delta(s)\eta h(r).$

By comparing the two relations, we have $h(s)n^2(r) + s(-) + s(-)$

$$h(s)\eta\lambda(r) + \delta(s)\eta h(r) = \delta(s)\eta\lambda(r) + h(s)\eta\lambda(r) h(s\eta r) = \delta(s)\eta\lambda(r) + h(s)\eta\lambda(r)$$

 $\forall s,r \in K \text{ and } \eta \in \Gamma.$

Conversely, assume for every $s, r \in K$ and $\eta \in \Gamma$, that $h(s\eta r) = \delta(s)\eta\lambda(r) + h(s)\eta\lambda(r)$.

then,

$$h(s\eta(r+r)) = \delta(s)\eta h(r+r) + h(s)\eta\lambda(r+r) = \delta(s)\eta h(r) + \delta(s)\eta h(r) + h(s)\eta\lambda(r) + h(s)\eta\lambda(r).$$

and

$$h(s\eta r + s\eta r) = h(s\eta r) + h(s\eta r)$$

= $\delta(s)\eta h(r) + h(s)\eta\lambda(r) + \delta(s)\eta h(r) + h(s)\eta\lambda(r).$

Comparing the two relation provides that:

$$\delta(s)\eta h(r) + h(s)\eta\lambda(r) = h(s)\eta\lambda(r) + \delta(s)\eta h(r)$$
$$h(s\eta r) = h(s)\eta\lambda(r) + \delta(s)\eta h(r)$$

Lemma 2.2. If h be a Γ -(λ , δ) – derivation on a Γ -near-ring G, K a semi-group ideal of G, and λ (K)=K, then

 $(h(s)\eta\lambda(r) + \delta(s)\eta h(r))\rho v = h(s)\eta\lambda(r)\rho v + \delta(s)\eta h(r)\rho v$, for all $s,r,v \in K$ and $\eta, \rho \in \Gamma$. **Proof**. Assume that $\forall s, r, v \in K$ and $\eta, \rho \in \Gamma$.

$$h((s\eta r)\rho v) = h(s\eta r)\rho\lambda(v) + \delta(s\eta r)\rho h(v)$$

= $(h(s)\eta\lambda(r) + \delta(s)\eta h(r))\rho\lambda(v) + \delta(s)\eta\delta(r)\rho h(v)$

and,

$$h(s\eta(r\rho v)) = h(s)\eta\lambda(r\rho v) + \delta(s)\eta h(r\rho v)$$

= $h(s)\eta\lambda(r)\rho\lambda(v) + \delta(s)\eta h(r)\rho\lambda(v) + \delta(s)\eta\delta(r)\rho h(v)$

Comparing the two relations above of $h(s\eta r\rho v)$, $\forall s,r,v \in K$ and $\eta,\rho \in \Gamma$. , and since $\lambda(K)=K$, implies that

$$(h(s)\eta\lambda(r) + \delta(s)\eta h(r))\rho v = h(s)\eta\lambda(r)\rho v + \delta(s)\eta h(r)\rho v.$$

Lemma 2.3 If h be a $\Gamma - (\lambda, \delta)$ – derivation on a Γ -near-ring G and K a semi-group ideal of G such that $h([s, r]_{\rho}) = [s, r]_{\rho}$, $\lambda(K) = K$, and $\delta(K) = K$, then (i) h(v) = v, for every commutator v in K. (ii) $h(k)\gamma[s, r]_{\rho} = [s, r]_{\rho}\gamma h(k)$, for every s, $k \in K$, $r \in G$ and $\rho, \gamma \in \Gamma$. **Proof** .(i) Let $v = [s, r]_{\rho}$, where $s \in K$, $r \in G$ and $\rho \in \Gamma$. $h([s, r]_{\rho}) = [s, r]_{\rho}$, for every $s \in K$, $r \in G$ and $\rho \in \Gamma$. Thus, h(v) = v, for each commutator v in K. (ii) By the hypothesis that $h([s, r]_{\rho}) = [s, r]_{\rho}$, we have $-[s, r]_{\rho}\gamma k + h([s, r]_{\rho}\gamma k) = -k\gamma[s, r]_{\rho} + h(k\gamma[s, r]_{\rho}), \forall s, k \in K, r \in G \text{ and } \rho, \gamma \in \Gamma$ By using Lemma 2.1, we have $-[s, r]_{\rho}\gamma k + h([s, r]_{\rho})\gamma\lambda(k) + \delta([s, r]_{\rho})\gamma h(k) = -k\gamma[s, r]_{\rho} + h(k)\gamma\lambda([s, r]_{\rho}) + \delta(k)\gamma h([s, r]_{\rho})$ By applaying <u>of</u> (i) and as $\lambda(K) = K$, $\delta(K) = K$, λ is an automorphism, we obtain: $[s, r]_{\rho}\gamma h(k) = h(k)\gamma[s, r]_{\rho}, \forall s, k \in K, r \in G \text{ and } \rho, \gamma \in \Gamma$.

Lemma 2.4. If h is a $\Gamma - (\lambda, \delta)$ – derivation on a Γ -near-ring G, K is a nonzero semi-group ideal of G, and h([s, r]_{ρ}) = [s,r]_{ρ}, λ (K)=K, δ (K)=K, then (i) If v is a commutator in K and $w\mu v = z\mu v$, where $w, z \in K$ and $\mu \in \Gamma$, then $v\mu h(w-z) = 0$. (ii) If v_1 and v_2 are commutators in K with $v_1 \mu v_2 = 0$, then $v_1 = 0$ or $v_2 = 0$.

Proof. (i) Let $v = [s, r]_{\rho}$, $\forall s \in K, r \in G$ and $\rho \in \Gamma$.

Then, the hypothesis provides that $w\mu[s,r]_{\rho} = z\mu[s,r]_{\rho}, \forall s,w,z \in K, r \in G \text{ and } \rho, \mu \in \Gamma$.

Applying h for both sides, implies that

 $h(w\mu[s,r]_{\rho}) = h(z\mu[s,r]_{\rho}), \forall s,w,z \in K, r \in G \text{ and } \rho, \mu \in \Gamma.$

Thus, $h(w)\mu\lambda([s,r]_{\rho}) + \delta(w)\mu h([s,r]_{\rho}) = h(z)\mu\lambda([s,r]_{\rho}) + \delta(z)\mu h([s,r]_{\rho}).$

Using Lemma 2.3 (i,ii) provides that:

$$\begin{split} h(w)\mu\lambda([s,r]_{\rho}) &= h(z)\mu\lambda([s,r]_{\rho}), \forall s,w,z \in K, r \in G \text{ and } \rho,\mu \in \Gamma. \\ \text{So , } [s,r]_{\rho}\muh(w-z) &= 0. \text{ Thus, } v\muh(w-z) &= 0, \text{ for every commutator } v \text{ in } K, w,z \in K, \text{ and } \mu \in \Gamma. \\ (ii) \text{ If } v_{1}\mu v_{2} &= 0 &= 0\mu v_{2}, \text{ since } v_{2} \text{ is a commutator in } K, (i) \text{ yields} \\ v_{2}\mu h(v_{1}) &= 0 & \dots \dots \dots (1) \\ \text{By using Lemma 2.3 (i), since } v_{1} \text{ is a commutator in } K, we obtain \\ v_{2}\mu v_{1} &= 0 & \dots \dots \dots (2) \\ \text{B substituting } r\gamma v_{1} \text{ for } v_{1}, \text{ where } r \in K, \gamma \in \Gamma \text{ in equation } (1), \text{ we obtain:} \\ v_{2}\mu h(r\gamma v_{1}) &= 0 & \dots \dots (3) \end{split}$$

Using Lemma 2.3 (ii) and equation (2) in equation (3) provides that:

 $v_2 \mu \delta(\underline{r}) \gamma h(v_1) = 0$, for every commutator v_1, v_2 in K, $r \in K$, and $\mu, \gamma \in \Gamma$.

Hence, $v_2\Gamma K\Gamma h(v_1) = 0$.

By using Lemma 2.3 (i), since v_1 is commutator, we obtain $v_2 \Gamma K \Gamma v_1 = 0$.

Since K is a nonzero semi-group ideal of G and G is a prime Γ -near-ring, we obtain $v_1 = 0$ or $v_2 = 0$.

Lemma 2.5. If G be a prime Γ -near-ring and K is a nonzero semi-group ideal of G, then $Z(K) \subseteq Z(G)$.

Proof. Suppose that $t \in Z(K)$, this means that, $[t,s]_{\rho} = 0$, $\forall s \in K$ and $\rho \in \Gamma$.

Replacing s by sµr, so $r \in G$ in the above equation, we obtain

 $[t, s\mu r]_{\rho} = 0 = s\mu[t, r]_{\rho} + [t, s]_{\rho}\mu r$, $\forall t, s \in K, r \in G$ and $\rho, \mu \in \Gamma$.

Thus, $K\mu[t,r]_{\rho} = 0$. Since K is a nonzero semi-group ideal of G and G is a prime Γ -near-ring, we get $[t,r]_{\rho} = 0$, $\forall t \in K$, $r \in G$ and $\rho \in \Gamma$. Hence, $t \in Z(G)$.

Lemma 2.6. If h is a $\Gamma - (\lambda, \delta)$ – derivation on a prime Γ -near-ring G and K be a semi-group ideal of G.

(i) If u is a nonzero element in Z(G), then u is not a zero divisor.

(ii) If there exists a nonzero element u of Z(G) such that $u + u \in Z(G)$, then (K,+) is an abelian. **Proof**. (i) If $u \in Z(G) \setminus \{0\}$ and $u\eta s = 0$, $\forall s \in K$ and $\eta \in \Gamma$.

Then ,left multiplication of this equation by ty, where $t \in G$ and $\gamma \in \Gamma$, provides that

 $tyu\eta s = 0$. Since G is a multiplicative with the center Z(G), it implies that

 $u\gamma t\eta s = 0$, $\forall t \in G$ and $s \in K$, thus , $u\Gamma G\Gamma s = 0$.

Since G is a prime Γ -near-ring and u is a nonzero element, it shows that s = 0. (ii) Let $u \in Z(G) \setminus \{0\}$ be an element, such that $u + u \in Z(G)$, Let $s, r \in K$ and $\rho \in \Gamma$ so,

$$(s+r)\rho(u+u) = (u+u)\rho(s+r)$$

 $s\rho u + s\rho u + r\rho u + r\rho u = u\rho s + u\rho r + u\rho s + u\rho r$

Since $u \in Z(G)$, we get $u\rho s + u\rho r = u\rho r + u\rho s$

Thus, $u\rho(s+r-s-r) = 0$, $\forall s, r \in K$ and $\rho \in \Gamma$

Left multiplication this equation by $a\gamma$, where $a \in G$, $\gamma \in \Gamma$, provides that:

 $a\gamma u\rho(s,r) = 0, \forall s,r \in K, a \in G and \gamma, \rho \in \Gamma.$

Because G is a multiplicative with the center Z(G) , this provides that:

 $u\gamma a\rho(s,r) = 0$. Hence, $u\Gamma G\Gamma(s,r) = 0$

Because G is a prime Γ -near-ring and u is a nonzero element, it implies that

 $(s, r) = 0, \forall s, r \in K$. Thus, (K, +) is an abelian. \Box

Lemma 2.7. If h be a nonzero Γ - (λ,δ) -derivation on a prime Γ -near-ring G and K be a nonzero semi-group ideal of G. Then $s\Gamma h(K) = 0$, which implies that s = 0 and $h(K)\Gamma s = 0$, which means that s = 0, where $s \in G$.

Proof. Assume that $s\Gamma h(K) = 0$, $\forall r \in G$, $t \in K$ and $\beta \in \Gamma$

Then, $s\eta h(t\beta r) = 0$, showing that:

 $s\eta h(t)\beta\lambda(r) + s\eta\delta(t)\beta h(r) = 0$

Therefore, $\forall s, r \in G$, $t \in K$ and $\eta, \beta \in \Gamma$, we have $s\eta \delta(t)\beta h(r) = 0$.

Since $\delta(K) = K$, then $s\Gamma K\Gamma h(r) = 0$.

Since K is a nonzero semi-group ideal and G is a prime Γ -near-ring, h $\neq 0$, it implies that s = 0.

Similarly, we can show that if $h(K)\Gamma s = 0$, $\forall s \in G$, it implies that s = 0. \Box

Lemma 2.8. If G is a 2 – torsion free prime Γ -near-ring, h be a nonzero Γ - (λ,δ) -derivation of G, and K be a nonzero semi-group ideal of G. If $h^2(K) = 0$ and λ , δ commute with h, then h(K) = 0. **Proof**. $\forall s, r \in K$ and $\rho \in \Gamma$.

$$0 = h^{2}(s\rho r) = h(h(s\rho r)) = h(h(s)\rho\lambda(r) + \delta(s)\rho h(r))$$

= $h(h(s)\rho\lambda(r)) + h(\delta(s)\rho h(r))$
= $h^{2}(s)\rho\lambda^{2}(r) + \delta(h(s))\rho h(\lambda(r)) + h(\delta(s))\rho\lambda(h(r)) + \delta^{2}(s)\rho h^{2}(r)$

By the hypothesis, we obtain that $2h(\delta(s))\rho h(\lambda(r)) = 0$, $\forall s, r \in K$ and $\rho \in \Gamma$. Because G is a 2 – torsion free and $\lambda(K) = K$, this provides $h(\delta(s))\rho h(K) = 0$ By using Lemma 2.7, we obtain that h = 0.

By using Lemma 2.7, we obtain that $h = 0. \square$

Lemma 2.9. Let G be a prime Γ -near-ring and K be a nonzero semi-group ideal of G. If K is a commutative then G is a commutative ring.

Proof. \forall s,r \in K, [s,r]_{ρ} = 0.

2

By taking sya instead of s and ryb instead of r, where $a,b \in G$ and $\gamma \in \Gamma$, we obtain that $[sya, ryb]_{\rho} = 0$. Since K is a commutative and semi-group ideal of G, this provides

 $0 = s\gamma a\rho r\gamma b - r\gamma b\rho s\gamma a = s\gamma r\gamma a\rho b - s\gamma r\gamma b\rho a$ $= s\gamma r\gamma [a,b]_{\rho}$

 $\forall a,b \in G, s,r \in K \text{ and } \gamma, \rho \in \Gamma$, this implies that $s\Gamma K\Gamma[a,b]_{\rho} =0$. Because K is a a nonzero semi-group ideal of G, G is a prime Γ -near-ring, thus $[a,b]_{\rho} = 0, \forall a,b \in G$. Thus, G is a commutative ring.

Lemma 2.10. If G is a prime Γ -near-ring and K is a nonzero semi-group ideal of G. If (K,+) is an abelian, then (G,+) is an abelian.

Proof. Since (K, +) is an abelian, we obtain that z + c = c + z, $\forall z, c \in K$.

By substituting snz for z and rnz for c, for s,r \in G and $\eta \in \Gamma$, we have

 $s\eta z + r\eta z = r\eta z + s\eta z$, $\forall z \in K$, $s, r \in G$ and $\eta \in \Gamma$.

Which gives $(s+r-s-r)\eta z=0$.

Thus, $(s,r)\Gamma K=0$. Since $K \neq 0$ is a semi-group ideal and G is a prime, then

 $(s,r) = 0, \forall s,r \in G$, Then (G,+) is abelian.

Lemma 2.11. If h be a $\Gamma - (\lambda, \delta)$ – derivation on a prime Γ -near-ring G and K is a semi-group ideal of G. Suppose that $t \in K$ is not a left zero divisor. If $[t,h(t)]^{\beta}_{(\lambda,\delta)} = 0$, then (s,t) is a constant for every $s \in K$ and $\beta \in \Gamma$.

Proof. From $t\beta(s+t) = t\beta s + t\beta t$, $\forall t \in K$ and $\beta \in \Gamma$. By applying h for both sides, we have

$$h(t\beta(s+t)) = h(t)\beta\lambda(s+t) + \delta(t)\beta h(s+t)$$

= $h(t)\beta\lambda(s) + h(t)\beta\lambda(t) + \delta(t)\beta h(s) + \delta(t)\beta h(t)$

and

$$\begin{aligned} h(t\beta s + t\beta t)) &= h(t\beta s) + h(t\beta t) \\ &= h(t)\beta\lambda(s) + \delta(t)\beta h(s) + h(t)\beta\lambda(t) + \delta(t)\beta h(t) \end{aligned}$$

Which gives that $h(t)\beta\lambda(t) + \delta(t)\beta h(s) = \delta(t)\beta h(s) + h(t)\beta\lambda(t)$, $\forall t,s \in K$ and $\beta \in \Gamma$. By using the hypothesis, we have $\delta(t)\beta h((s,t)) = 0$.

By substituting $\delta(t)$ by $\delta(t)\gamma m$, where $m \in K$ and $\gamma \in \Gamma$, we get $\delta(t)\gamma m\beta h((s,t)) = 0$. Hence, $\delta(t)\Gamma K\Gamma h((s,t)) = 0$, $\forall t, s \in K$.

Because t is not a left zero divisor and $\delta(K) = K$, K is a semi-group ideal and G is a prime Γ -nearring, we obtain that

h((s,t)) = 0. Thus, (s,t) is a constant for every $s \in K$.

Now we can prove the main theorems.

Theorem 2.12. Let h be a Γ -(λ , δ) – derivation of a prime Γ -near-ring G and K is a semi-group ideal of G which has no nonzero divisors of zero, where h is commuting on K, $\lambda(K) = K$, then (G, +) is an abelian.

Proof. Let v be any additive commutator in K.

So, the application of Lemma 2.11 yields that v is a constant.

For any $s \in K$, syv is also an additive commutator in K. Then, syv is also a constant.

Therefore, $0 = h(s\gamma v) = h(s)\gamma\lambda(v) + \delta(s)\gamma h(v) = h(s)\gamma\lambda(v), \forall s \in K \text{ and } \gamma \in \Gamma$.

Because $h(s) \neq 0$, for some $s \in K$, and K has no nonzero divisors of zero,

Which gives $\lambda(v) = 0$, thus v = 0, for every additive commutator v in K.

Hence, (K, +) is an abelian. By using Lemma 2.10, we obtain that (G, +) is an abelian. \Box

We need the following lemma to prove the main theorem.

Lemma 2.13. Let h be a nonzero Γ -(λ , δ) – derivation on a prime Γ -near-ring G, and K is a semigroup ideal of G, so $\lambda \gamma h = h\gamma \lambda$, $\delta \gamma h = h\gamma \delta$ for every $\gamma \in \Gamma$, $\lambda(K) = K$, where $h(K) \subset Z(G)$, then (K, +) is an abelian. If G is a 2 – torsion free and $h(K) \subseteq K$, then K is a central ideal. **Proof.** Since $h(K) \subseteq Z(G)$ and h is a nonzero Γ -(λ , δ)-derivation. There exists a nonzero element t in K, such that $u = h(t) \in Z(G) \setminus \{0\}$. And, $u+u = h(t)+h(t) = h(t+t) \in Z(G)$. Therefore, (K,+) is an abelian by Lemma 2.6 (ii). Using the hypothesis, $\forall s, r \in K$, $c \in G$ and $\beta, \gamma \in \Gamma$ gives $\lambda(c)\gamma h(s\beta r) = h(s\beta r)\gamma \lambda(c)$. Uusing Lemma 2.2, it provides $\lambda(c)\gamma h(s)\beta\lambda(r) + \lambda(c)\gamma\delta(s)\beta h(r) = h(s)\beta\lambda(r)\gamma\lambda(c) + \delta(s)\beta h(r)\gamma\lambda(c).$ Now, by using $h(K) \subseteq Z(G)$ and since (K, +) is an abelian, $\lambda \gamma h = h \gamma \lambda$, and $\delta \gamma h = h \gamma \delta$, it shows that $h(s)\beta\lambda(c)\gamma\lambda(r) - h(s)\beta\lambda(r)\gamma\lambda(c) = h(r)\beta\delta(s)\gamma\lambda(c) - h(r)\beta\lambda(c)\gamma\delta(s)$ Then, $h(s)\beta\lambda([c,r]_{\gamma}) = h(r)\beta([\delta(r), \lambda(c)]_{\gamma})$, $\forall s, r \in K, c \in G \text{ and } \gamma, \beta \in \Gamma$. Suppose that K is not a central ideal. By choosing $r \in K$ and $c \in G$, such that $[c, r]_{\gamma} \neq 0$. And since $h(K) \subseteq K$, let $s = h(x) \in Z(G)$, where $x \in K$, which gives $h^{2}(x)\beta\lambda([c,r]_{\gamma}) = h(r)\beta([\delta(r),\lambda(c)]_{\gamma}), \forall x, r \in K, c \in G \text{ and } \gamma, \beta \in \Gamma.$ Then, $h^2(x)\beta\lambda([c,r]_{\gamma}) = 0$. By Lemma 2.6 (i), the central element $h^2(x)$ cannot be a nonzero divisor of zero, then we conclude that $h^2(x) = 0$, $\forall x \in k$. By using Lemma 2.8, we obtain that h(x) = 0This contradicts that h is a nonzero Γ - (λ , δ)- derivation on G. So, we obtain that $\lambda([c,r]_{\gamma}) = 0, \forall r \in K, c \in G$. Because $\lambda(K) = K$, this gives a contradiction with the assumption. Then K is a central ideal. \Box **Theorem 2.14.** Let h be a nonzero $\Gamma - (\lambda, \delta)$ – derivation on a prime Γ -near-ring G and K a semigroup ideal of G, so $\lambda \gamma h = h \gamma \lambda$, $\delta \gamma h = h \gamma \delta$ for every $\gamma \in \Gamma$, $\lambda(K) = K$, where $h(K) \subseteq Z(G)$, then (G, +)is an abelian. If G is a 2 – torsion free and $h(K) \subseteq K$, then G is a commutative ring. **Proof.** By using Lemma 2.13, it gives that (K, +) is an abelian. By using Lemma 2.10, it gives that (G,+) is an abelian. Now, assume that G is a 2 -torsion free. The application of Lemma 2.13. shows that K is a central ideal. Thus, K is a commutative. By Lemma 2.9, it implies that G is a commutative ring. \Box **Theorem 2.15.** Let h be a nonzero $\Gamma - (\lambda, \delta)$ – derivation on a prime Γ -near-ring G, and K is a nonzero semi-group ideal of G, so $h([s,r]_{\rho}) = -[s,r]_{\rho}$ where $t\gamma k\beta u = t\beta k\gamma u$ for every $t,k,u \in K$ and $\gamma,\beta \in \Gamma$, then (G, +) is an abelian. If G is a 2-torsion free and h(K) \subseteq K, then G is a commutative ring. **Proof.** Since $[s,s\gamma r]_{\rho} = s\gamma [s,r]_{\alpha}$, $\forall s \in K, r \in G$ and $\rho, \gamma \in \Gamma$. By using Lemma 2.3(ii), we have $h(v)\beta s\gamma[s,r]_{\rho} = s\gamma[s,r]_{\rho}\beta h(v) = s\gamma h(v)\beta[s,r]_{\rho}, \forall s,v \in K, r \in G \text{ and } \rho,\gamma,\beta \in \Gamma.$ By using Lemma 2.4 (i), we obtain that $[s,r]_{\rho}\beta h(h(v)\gamma s - s\gamma h(v)) = 0, \forall s,v \in K$, $r \in G$ and $\rho,\gamma,\beta \in \Gamma$. Hence, $[s,r]_{\rho}\beta h([h(v), s]_{\gamma}) = 0$ By Lemma 2.3 (i), we obtain that $[s,r]_{\rho}\beta([h(v), s]_{\gamma}) = 0$ The application of Lemma 2.4 (ii) gives either $[s,r]_{\rho} = 0$ or $[h(v),s]_{\gamma} = 0$, $\forall s,v \in K$, $r \in G$ and $\rho,\gamma \in \Gamma$. If $[h(v), s]_{\gamma} = 0$, $\forall s, v \in K$ and $\gamma \in \Gamma$. Hence, $h(K) \subseteq Z(K)$. By Lemma 2.5, we obtain that $h(K) \subseteq Z(G)$. Then, by Theorem 2.14, we complete this theorem.

So, if $[s, r]_{\rho} = 0$, $\forall s \in K$, $r \in G$ and $\rho \in \Gamma$.

We substitute $s\gamma h(v)$ for s, where $v \in K$, which gives

 $[sγh(v), r]_{ρ} = 0 = sγ[h(v), r]_{ρ}, \forall s,v \in K, r \in G \text{ and } ρ,γ \in Γ$ Which gives, $Kγ[h(v), r]_{ρ} = 0, \forall v \in K, r \in G \text{ and } ρ,γ \in Γ$ Because K is a nonzero semi-group ideal of G and G is a prime Γ-near–ring, this implies that $[h(v), r]_{ρ} = 0, \forall v \in K, r \in G \text{ and } ρ \in Γ$. So, $h(K) \subseteq Z(G)$. By Theorem 2.14, the proof will be complete. □

Theorem 2.16. Let h be a nonzero Γ $-(\lambda,\delta)$ - derivation on a prime Γ-near-ring G, and K is a nonzero semi-group ideal of G, so h([s,r]_ρ)= [s,r]_ρ and tγkβu = tβkγu for every t,k,u \in K and γ,β \in Γ,λ(K)=K, then G is a commutative ring.

 $\label{eq:proof_since} \textbf{Proof.Since} \ h([s,r]_{\rho}) = - \, s\rho r + r\rho s, \ \forall \ s \in K, r \in G \ and \ \rho \in \Gamma.$

By replacing r by rys in this equation, we get

h([*s*,*r*γ*s*]_ρ) = − *s*ρ*r*γ*s* + *r*γ*s*ρ*s* = (−*s*ρ*r* + *r*ρ*s*)γ*s*, ∀*s*∈ K, *r*∈ G and ρ , γ ∈ Γ And,

$$h([s, r\gamma s]_{\rho}) = h([s, r]_{\rho} \gamma s) = h([s, r]_{\rho})\gamma\lambda(s) + \delta([s, r]_{\rho})\gamma h(s)$$
$$= (-s\rho r + r\rho s)\gamma\lambda(s) + \delta([s, r]_{\rho})\gamma h(s)$$

It follows from the two expressions for $h([s, r\gamma s]_{\rho})$ that

 $\delta(s)\rho\delta(r)\gamma h(s) = \delta(r)\rho\delta(s)\gamma h(s), \ \forall s \in K, r \in G \text{ and } \rho, \gamma \in \Gamma$ (4)

Replacing r by v β r in equation (4), where v \in K and $\beta \in \Gamma$, we obtain that $\delta(s)\rho\delta(v\beta r)\gamma h(s) = \delta(v\beta r)\rho\delta(s)\gamma h(s), \forall s, v \in K, r \in G \text{ and } \rho, \gamma, \beta \in \Gamma$ (5)

Left multiplicative equation (4) by $\delta(v)\beta$, gives $\delta(v)\beta\delta(s)\rho\delta(r)\gamma h(s) = \delta(v)\beta\delta(r)\rho\delta(s)\gamma h(s), \forall s, v \in K, r \in G \text{ and } \rho,\gamma,\beta \in \Gamma$ (6)

The combining of equation (5) and equation (6) gives $\delta([s,v]_{\beta})\rho\delta(r)\gamma h(s) = 0, \forall s, v \in K, r \in G \text{ and } \rho, \gamma, \beta \in \Gamma.$

Since $\delta(K) = K$, and δ is automorphism on G.

Hence, $[s,v]_{\beta}\Gamma G\Gamma h(s) = 0$.

Because G is a prime Γ -near-ring, this implies that h(s) = 0 or $[s,v]_{\beta} = 0$.

Since $h \neq 0$, therefore $[s,v]_{\beta} = 0$, $\forall s,v \in K$ and $\beta \in \Gamma$.

Thus, K is a commutative. By Lemma 2.9, we obtain that G is a commutative ring. \Box Lemma 2.17:- Let h be a nonzero $\Gamma -(\lambda,\delta)$ - derivation on a prime Γ -near-ring G, and K be a nonzero semi-group ideal of G, if $[s,r]_{\rho} = [h(s), h(r)]_{\rho}$, then the constant in K is in Z(G). **Proof:** Let s be a constant in K. i.e. h(s) = 0, then

 $[s, r]_{\rho} = [h(s), h(r)]_{\rho} = [0, h(r)]_{\rho} = 0, \forall r \in K \text{ and } \rho \in \Gamma.$

Then, $s \in Z(K)$. By Lemma 2.5, we obtain that $s \in Z(G)$.

Theorem 2.18. Let h be a nonzero $\Gamma - (\lambda, \delta)$ - derivation on a prime Γ - near - ring G, and K is a nonzero semi-group ideal of G that has no nonzero divisors of zero. If K has a right cancellation and $[h(s),h(r)]_{\alpha} = [s,r]_{\alpha}$, $t\gamma k\beta u = t\beta k\gamma u$ for every $t,k,u \in K$ and $\gamma,\beta \in \Gamma$, and $h(K) \subseteq K$, then h is commuting and (G, +) is an abelian.

Proof. $\forall s \in K, [s, s\gamma h(s)]_{\rho} = [h(s), h(s\gamma h(s))]_{\rho}$ (7) By using Lemma 2.1 and 2.2, the right – hand side of equation (7) equals

$$\begin{bmatrix} h(s), h(s\gamma h(s)) \end{bmatrix}_{\rho} = h(s)\rho h(s)\gamma\lambda(h(s)) + h(s)\rho\delta(s)\gamma h^{2}(s) - h(s)\gamma\lambda(h(s))\rho h(s) - \delta(s)\gamma h^{2}(s)\rho h(s)$$

= $h(s)\rho\delta(s)\gamma h^{2}(s) - \delta(s)\gamma h^{2}(s)\rho h(s)$

The left – hand side of equation (7) equals

 $s\gamma[s,h(s)]_{\rho} = s\gamma[h(s),h^2(s)]_{\rho} = s\gamma h(s)\rho h^2(s) - s\gamma h^2(s)\rho h(s), \forall s \in K \text{ and } \rho, \gamma \in \Gamma$ It follows from equation (7), since $\delta(K) = K$, it implies that

 $syh(s)\rho h^2(s) = h(s)\rho syh^2(s), \forall s \in K \text{ and } \rho, \gamma \in \Gamma.$

Hence, by using the hypotheses, we obtain that $[s,h(s)]_{\gamma}\rho h^2(s) = 0$, $\forall s \in K$ and $\rho,\gamma \in \Gamma$. If $h^2(s) = 0$, $\forall s \in K$.

Then, h(s) is constant in K, by using Lemma 2.17, we obtain that h is central. Thus, h is commuting in K.

.....(8)

By Theorem 2.12, we obtain that (G, +) is an abelian. Otherwise, $h^2(x)$ can be cancelled on the right in equation (8). In either event, $[s,h(s)]_{\gamma} = 0$, $\forall s \in K$ and $\gamma \in \Gamma$. Then, by using Theorem 2.12, we obtain that (G, +) is an abelian. \Box **Theorem 2.19.** Let h be a nonzero $\Gamma - (\lambda, \delta)$ — derivation on a prime Γ -near-ring G, and K be a nonzero semi-group ideal of G that has no nonzero divisors of zero. If h is commuting on K and $[s, r]_{\rho} = [h(s),h(r)]_{\rho}$, then G is a commutative ring. **Proof.** For every $s, r \in K$, we have $[s, s\beta r]_{\rho} = [h(s),h(s\beta r)]_{\rho} = [h(s), h(s)\beta\lambda(r) + \delta(s)\beta h(r)]_{\rho}$ By using Lemma 2.2, we have $[h(s),h(s\beta r)]_{\rho} = h(s)\beta[h(s), \lambda(r)]_{\rho} + \delta(s)\beta[h(s), h(r)]_{\rho}$ Since h is commuting, by using Theorem 2.12, (G, +) is an abelian, and $\delta(K) = K$, we obtain that $s\beta[s, r]_{\rho} = s\beta[h(s),h(r)]_{\rho} = h(s)\beta[h(s),\lambda(r)]_{\rho} + \delta(s)\beta[h(s), h(r)]_{\rho}$, $\forall s, r \in K$ and $\rho, \beta \in \Gamma$. Hence, $h(s)\beta[h(s),r]_{\rho} = 0$.

Since K has no nonzero divisors and h is a nonzero, we conclude that

 $[h(s),r]_{\rho} = 0, \forall s,r \in K \text{ and } \rho \in \Gamma.$

In particular, \forall s,r,t \in K, we have

 $[\mathbf{h}(\mathbf{s}),\mathbf{t}\beta\mathbf{h}(\mathbf{r})]_{\rho} = \mathbf{0} = \mathbf{t}\beta[\mathbf{h}(\mathbf{s}),\mathbf{h}(\mathbf{r})]_{\rho}.$

Hence,

Kβ[h(s),h(r)]_ρ = 0, \forall s,r∈ K and ρ, β∈Γ.

Since K is a nonzero semi-group ideal of G and G is a prime Γ -near-ring, we obtain that $[h(s),h(r)]_{\rho} = 0, \ \forall \ s,r \in K \text{ and } \rho \in \Gamma$.

Then, we conclude that $[s,r]_{\rho}=0, \forall s,r \in K \text{ and } \rho \in \Gamma$.

Hence, K is commutative. By Lemma 2.9, we have G is a commutative ring.

References

- 1. Bell. H. E., 1997. On derivations in near-rings. II. In Near rings, near fields and K-loops (Hamburg, 1995), volume 426 of Math. Appl.pages 191–197. Kluwer Acad. Publ., Dordrecht.
- 2. Cho.Y. U. and Jun. Y. B. 2002. Gamma-derivations in prime and semiprime gamma-near rings *Indian J. Pure Appl. Math.*, 33(10):1489–1494.
- **3.** Golbasi, .O. and Aydin, N. **2004**. Results on prime near-ring with (σ, τ) -derivation. *Math. J.Okayama Univ.*, **46**:1–7.
- **4.** Ravi .R., Bhat, V.K. and Neetu k. **2009**. Commutativity of prime Γ -Near Rings with Γ -(σ , τ)-derivation. *Math* , **25**:165-173.
- 5. Booth. G. L. and Groenewald. N. J. 1991. Equiprime Γ-near rings, *Quaestiones Matheicae*, 14:411 417.
- 6. Satnarayan. B. 1984. Contributions to near-ring theory. PhD thesis, Nargarjuna University.
- **7.** Booth. G. L. and Groenewald. N. J. **1991**. Equiprime Γ-near rings, *Quaestiones Matheicae*, **14**:411 417.
- 8. Madhuchelvi. L. 2016. On Generalized Derivations in Γ Near Ring. Int Jr.of Mathematical sciences and Applications, 6(1):2230-9888, jan-jun.
- 9. Ashraf .M., Ali .A. and Ali .S. 2004. (σ, τ) -derivations on prime near rings. Arch. Math. (Brno), 40(3): 281–286.
- **10.** Asci. M. **2007**. Γ -(σ , τ)-derivation on Gamma Near Ring, *International Math Forum*, **2**(3): 97-102.
- 11. Bell .H. E. and Mason.G. 1994. On derivations in near-rings and rings. *Math. J. Okayama Univ*, 34:135–144.
- 12. Beidar. K. I., Fong. Y. and Wang .X. K. 1996. Posner and Herstein theorems for derivations of 3-prime near-rings. *Comm. Algebra*, 24(5): 1581–1589.
- **13.** Bell. H. E. and Mason .G. **1987**. On derivations in near-rings. In Near-rings and near-fields(T^{*}ubingen, 1985), volume 137 of North-Holland Math. Stud., pages 31–35. North-Holland, Amsterdam.
- 14. Kama. A. A. 2001. σ-derivations on prime near-rings. *Tamkang J. Math.*, 32(2):89–93.
- 15. Wang. X. K. 1994. Derivations in prime near-rings. Proc. Amer. Math. Soc., 121(2):361–366.