Iraqi Journal of Science, 2020, Vol. 61, No.1, pp: 132-138 DOI: 10.24996/ijs.2020.61.1.14

ISSN: 0067-2904

$sp[\gamma, \gamma^*]$ -Open Sets and $sp[\gamma, \gamma^*]$ -Compact Spaces

Jamil Mahmoud Jamil

Department of mathematics, college of science, University of Diyala, Diyala, Iraq

Received: 30/6/2019 Accepted

Accepted: 3/8/2019

Abstract:

In this work, we present the notion of $sp[\gamma, \gamma^*]$ -open set, $sp[\gamma, \gamma^*]$ -closed, and $sp[\gamma, \gamma^*]$ -closure such that several properties are obtained. By using this concept, we define a new type of spaces named $sp[\gamma, \gamma^*]$ -compact space.

Keywords: $sp[\gamma, \gamma^*]$ -open set, $sp[\gamma, \gamma^*]$ -closed, $sp[\gamma, \gamma^*]$ -closure, $sp[\gamma, \gamma^*]$ -regular space, $sp[\gamma, \gamma^*]$ -compact space.

 $sp[\gamma,\gamma^*]$ المفتوحة من النمط $sp[\gamma,\gamma^*]$ و الفضاءات المتراصة من النمط $sp[\gamma,\gamma^*]$

جميل محمود جميل

قسم الرياضيات ، كلية العلوم ، جامعة ديالي ، ديالي، العراق

الخلاصة

في هذا البحث قمنا بدراسة بمفهوم المجموعة المفتوحة من صنف $[p, \gamma] = sp[\gamma, \gamma]$ و المجموعة المغلقة من صنف $[p, \gamma^{*}] = e^{t}$ وذلك من خلال استخدام عاملين احداهما شبه مفتوح و الاخر شبه اولي حيث أعطينا عدة خواص وبرهنا عدة نظريات حول هذه المجموعات وكذلك قمنا بتعريف الفضاءات و المجموعات المرصوصة من صنف $[p, \gamma^{*}] = sp[\gamma, \gamma]$ حيث درسنا بعض الخواص المهمة لهذه الفضاءات كذلك درسنا تأثير الدوال المفتوحة من صنف $[p, \gamma^{*}] = sp[\gamma, \gamma]$

1-Introduction

Levine [1] defined the semi-open set in topological space and investigated some properties of semicontinuous functions. Mashhour. [2] introduced the notion of pre-open set such that several results are obtained. The concept of operation was initiated by Kasahara [3] and discussed α -closed graphs. Van and others [4] studied the operation pre-open sets in topological space and investigated several properties of γ_p - T_i spaces (i = 0, 1/2, 1). Hariwan [5] defined the concept of γ -semi open set and used it to define new types of functions such as γ -semi continuous and weakly γ -semi continuous functions. Later, Maki and Noiri [6] introduced the notion [γ, γ^*]-open set in topological space. Carpintro, Rajesh, and Rosas [7] defined [γ, γ^*]-semi open sets and studied[γ, γ^*]-semi continuous functions such that several important properties are given.

In this work, we present a new type of bi-operation open sets that we named as $sp[\gamma, \gamma^*]$ -open set, by using operation γ defined on the collection of semi-open sets and operation γ^* defined on the collection of pre-open sets. We studied the relations between $sp[\gamma, \gamma^*]$ -open sets with other types of bi-operation open sets. Moreover, the present work introduced $sp[\gamma, \gamma^*]$ -compact spaces and sets, then investigated some important results from these spaces.

2-Preliminaries

Definition 2.1A subset *A* of topological space (X, τ) is named semi-open [1] (resp., pre-open set [2] if $A \subseteq cl$ int (A)(resp., $A \subseteq int cl(A)$). We use SO(X) and PO(X) to denote, respectively, the family of semi-open and pre-open sets on topological space *X*.

Definition 2.2 [8]. A topological space (X, τ) is called extremally disconnected if the closure of any open subset of X is open.

Proposition 2.3 [8]. In extremally disconnected space, every semi-open set is pre-open.

Definition 2.4 [9]. An operation γ on topology τ is mapping $\gamma: \tau \to P(X)$ from τ to the power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V.

Definition 2.5 [10]. Let (X, τ) be a topological space and let $\gamma: PO(X) \to P(X)$ be an operation defined on $PO(X, \tau)$. A non empty subset *A* of (X, τ) is called γ pre-open if for each point $x \in A$, there exists a pre-open set *U* such that $x \in U$ and $U^{\gamma} \subseteq A$

Definition 2.6 [5]. Let(X, τ) be a topological space and let $\gamma: SO(X) \to P(X)$ be an operation defined on $SO(X, \tau)$. A non empty subset A of (X, τ) is called γ semi-open if for each point $x \in A$, there exists a semi-open set U such that $x \in U$ and $U^{\gamma} \subseteq A$

Definition 2.7 [11]. Let(X, τ) be a topological space, an operation $\gamma: SO(X) \to P(X)$ is named by semi- γ -regular, if for every semi-open sets *S* and *T* containing *x*, there exists a semi-open *V* containing *x* such that $V^{\gamma} \subseteq S^{\gamma} \cap T^{\gamma}$.

Definition 2.8 [10]. Let(X, τ) be a topological space, an operation $\gamma: PO(X) \to P(X)$ is named by pre- γ -regular, if for every pre-open sets U and V containing x, there exists a pre-open P containing x such that $P^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$.

Definition 2.9 [6]. Let (X, τ) be a topological space and *A* be a non-empty subset of *X*, we named A is $[\gamma, \gamma^*]$ -open if there are two open sets *U* and *V* containing *x* such that $U^{\gamma} \cap V^{\gamma^*} \subseteq A$.

Definition 2.10. Let (X, τ) be a topological space and A be a non-empty subset of X, we named A is pre $[\gamma, \gamma^*]$ -open if there are two pre-open sets U and V containing x such that $U^{\gamma} \cap V^{\gamma^*} \subseteq A$.

Definition 2.11 [6]. A function $f: (X, \tau) \to (Y, \psi)$ is said to be $([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous if for each point $x \in X$ and each open neighborhood W and S of f(x), there exists open neighborhoods U and V of x such that $f(U^{\alpha} \cap V^{\alpha^*}) \subseteq W^{\gamma} \cap S^{\gamma^*}$

Theorem 2.12 [6]. A function $f: (X, \tau) \to (Y, \psi)$ is said to be $([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous if the inverse image of every $[\gamma, \gamma^*]$ -open set in Y is $[\alpha, \alpha^*]$ - open set in X

Definition 2.13. Let (X, τ) be a topological space and A be a non-empty subset of X, we named A is pre $[\gamma, \gamma^*]$ -open if there are two pre-open sets U and V containing x such that $U^{\gamma} \cap V^{\gamma^*} \subseteq A$.

Definition 2.14. Let (X, τ) be a topological space and A be a non-empty subset of X, we named A is semi $[\gamma, \gamma^*]$ -open if there are two semi-open sets U and V containing x such that $U^{\gamma} \cap V^{\gamma^*} \subseteq A$.

3-*sp*[γ , γ^*]-open set

Definition 3.1. Let (X, τ) be a topological space and A be a non-empty subset of X, we named A is $sp[\gamma, \gamma^*]$ -open if for each $x \in A$, there are a semi-open set U and pre-open set V containing x such that $U^{\gamma} \cap V^{\gamma^*} \subseteq A$.

Proposition 3.2. In extremely disconnected, every $sp[\gamma, \gamma^*]$ -open is semi $[\gamma, \gamma^*]$ -open (resp., pre $[\gamma, \gamma^*]$ -open set).

Proof: Follows from Proposition 2.3.

Proposition 3.3. Every $[\gamma, \gamma^*]$ -open set is $sp[\gamma, \gamma^*]$ -open.

Proof: Follows from the fact that every open set is semi-open (resp., pre-open).

But the converse is not true generally as showed in the next example

Example 3.4. Let $X = \{a, b, c\}$ and let $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ be a topology defined on. Let $\gamma: SO(X) \to P(X)$ and $\gamma^*: PO(X) \to P(X)$ be two operators defined as follows

 $A^{\gamma} = \begin{cases} cl(A) & if A = \{a\} \\ A & if A \neq \{a\} \end{cases}$ $A^{\gamma^*} = \begin{cases} A & if A = \{b\} \\ A \cup \{a\} & if A \neq \{b\} \end{cases}$

Then {*b*} is $sp[\gamma, \gamma^*]$ -open set, however, it is not $[\gamma, \gamma^*]$ -open set **Proposition 3.5.** The union of $sp[\gamma, \gamma^*]$ -open sets is also $sp[\gamma, \gamma^*]$ -open set. Proof: Let $\{V_i: i \in I\}$ be the collection of $sp[\gamma, \gamma^*]$ -open sets of topological space (X, τ) . Let $x \in \bigcup_{i \in I} V_i$, then there is $sp[\gamma, \gamma^*]$ -open set V_i containing x and so, there are semi-open set S and preopen set P containing x such that $S^{\gamma} \cap P^{\gamma^*} \subseteq V_i \subseteq \bigcup_{i \in I} V_i$. Hence $\bigcup_{i \in I} V_i$ is $sp[\gamma, \gamma^*]$ -open set.

Proposition 3.6. Let(X, τ) be a topological space. If A is γ semi-open and γ^* pre-open subsets of X, then it is $sp[\gamma, \gamma^*]$ -open set

Proof: Let $x \in X$ and since A is γ semi-open containing x, then there exists a semi-open set U containing x such that $x \in U^{\gamma} \subseteq A$. And, since A is γ^* pre-open set, then there exists a pre-open set V such that $x \in V^{\gamma^*} \subseteq A$. It follows that $x \in U^{\gamma} \cap V^{\gamma^*} \subseteq A$. Hence A is $sp[\gamma, \gamma^*]$ -open set.

Proposition 3.7. Let *A* and *B* are non-empty subsets of *X*. If *A* is γ semi-open set and *B* is γ^* pre-open set, then $A \cap B$ is $sp[\gamma, \gamma^*]$ -open set.

Proof: Similar to the proof of Proposition 3.6.

Proposition 3.8. Let $\gamma: SO(X) \to P(X)$ be semi- γ -regular and $\gamma^*: PO(X) \to P(X)$ be pre- γ^* -regular operation. If *A* and *B* are $sp[\gamma, \gamma^*]$ -open sets, then $A \cap B$ is $sp[\gamma, \gamma^*]$ -open set.

Proof: Let $x \in X$ such that $x \in A \cap B$. Since $x \in A$, and A is $sp[\gamma, \gamma^*]$ -open, then there are a semi-open S_1 and pre-open P_1 containing x such that $S_1^{\gamma} \cap P_1^{\gamma} \subseteq A$

and since, $x \in B$, and B is $sp[\gamma, \gamma^*]$ -open, then there exists a semi-open S_2 and pre-open P_2 containing x such that $S_2^{\gamma} \cap P_2^{\gamma} \subseteq B$.

By hypothesis, γ is semi- γ -regular, thus there exists a semi-open set S_3 containing x such that $S_3^{\gamma} \subseteq S_1^{\gamma} \cap S_2^{\gamma}$.

Similarly, γ^* is pre- γ^* -regular operation, then there exists a pre-open set P_3 containing x such that $P_3^{\gamma^*} \subseteq P_1^{\gamma^*} \cap P_2^{\gamma^*}$. It follows that $S_3^{\gamma} \cap P_3^{\gamma^*} \subseteq (S_1^{\gamma} \cap P_1^{\gamma^*}) \cap (S_2^{\gamma} \cap P_2^{\gamma^*}) \subseteq A \cap B$. Hence $A \cap B$ is $sp[\gamma, \gamma^*]$ -open set.

Proposition 3.9. If $\gamma: SO(X) \to P(X)$ be semi- γ -regular and $\gamma^*: PO(X) \to P(X)$ be pre- γ^* -regular operations, then the collection of $sp[\gamma, \gamma^*]$ -open sets forms a topology.

Proof: Obviously ϕ is $sp[\gamma, \gamma^*]$ -open set. Let $x \in X$ and since $X^{\gamma} \cap X^{\gamma^*} \subseteq X$. The union and intersection conditions follow from Proposition 3.5 and Proposition 3.8.

Example 3.10. Let $X = \{a, b, c\}$ and let $\tau = \{\phi, X, \{a\}\}$ be a topology defined on . Let $\gamma: SO(X) \rightarrow P(X)$ and $\gamma^*: PO(X) \rightarrow P(X)$ are two operations defined as following $A^{\gamma} = A$ and $(A \quad if A = \{b\})$

 $A^{\gamma^*} = \begin{cases} A & if \ A = \{b\} \\ \phi & if \ A \neq \{b\} \end{cases}$

Clearly, γ and γ^* are semi- γ -regular and pre- γ^* -regular operations, respectively. Then, the family of $sp[\gamma, \gamma^*]$ -open sets which listed as $\phi, X, \{a\}, \{a, b\}, \{a, c\}$ forms a topology defined on X.

Definition 3.11. A topological space (X, τ) is named by $sp[\gamma, \gamma^*]$ -regular space if for each $x \in X$ and every semi-open set *A* containing *x*, there are semi-open set *S* and pre-open set *P* containing *x* such that $S^{\gamma} \cap P^{\gamma^*} \subseteq A$.

Proposition 3.12. A topological space (X, τ) is $sp[\gamma, \gamma^*]$ -regular space if and only if for each $x \in X$ and every semi-open set U of X, there a $sp[\gamma, \gamma^*]$ -open set V such that $x \in V$ and $V \subseteq U$.

Proof: Let $x \in X$ and let U be a semi-open set containing x. Since X is $sp[\gamma, \gamma^*]$ -regular space, then there are a semi-open S and pre-open P containing x such that $(S^{\gamma} \cap P^{\gamma^*}) \subseteq U$.

Conversely, suppose that A is a semi-open set containing x.By hypothesis, there is $sp[\gamma, \gamma^*]$ -open set V such that $x \in V$ and $V \subseteq A$. So, there are a semi-open S and pre-open P containing x such that $S^{\gamma} \cap P^{\gamma^*} \subseteq V \subseteq A$. Hence (X, τ) is $sp[\gamma, \gamma^*]$ -regular space.

Proposition 3.13A topological space(X, τ) is $sp[\gamma, \gamma^*]$ -regular space if and only if $SO(X) = sp[\gamma, \gamma^*]O(X)$.

Proof: straightforward.

Proposition 3.14. Let $id\gamma: SO(X) \to P(X)$ and $id\gamma^*: PO(X) \to P(X)$ be two identity operators, then every semi-open and pre-open set is $sp[\gamma, \gamma^*]$ -open set.

Proof: obvious.

Definition 3.15. Let γ and γ^* be two operations defined on SO(X) and PO(X), respectively, then a subset *A* of *X* is named $sp[\gamma, \gamma^*]$ -closed if its complement is $sp[\gamma, \gamma^*]$ -open set.

Jamil

Definition 3.16. Let *A* be a subset of topological space (X, τ) , the intersection of all $sp[\gamma, \gamma^*]$ -closed sets containing *A* is named $sp[\gamma, \gamma^*]$ -closure of *A* and is denoted by $sp[\gamma, \gamma^*] - cl(A)$.

Proposition 3.17. The intersection of any $sp[\gamma, \gamma^*]$ -closed sets is also $sp[\gamma, \gamma^*]$ -closed set. Proof: Follows from Proposition 3.5.

Proposition 3.18. Let A and B are two sets in topological space (X, τ) and let γ and γ^* be two operations defined on SO(X) and PO(X), respectively, then we have the following $1 > 4 \subseteq \operatorname{cm}[u : u^*]$ al(A)

1) $A \subseteq sp[\gamma, \gamma^*] - cl(A).$

2) *A* is $sp[\gamma, \gamma^*]$ -closed if and only if $A = sp[\gamma, \gamma^*] - cl(A)$

3) If $\subseteq B$, then $sp[\gamma, \gamma^*] - cl(A) \subseteq sp[\gamma, \gamma^*] - cl(B)$

 $4)sp[\gamma,\gamma^*] - cl(A \cap B) \subseteq sp[\gamma,\gamma^*] - cl(A) \cap sp[\gamma,\gamma^*] - cl(B)$

 $5)sp[\gamma,\gamma^*] - cl(A) \subseteq [\gamma,\gamma^*] - cl(A)$

 $6)sp[\gamma,\gamma^*] - cl(sp[\gamma,\gamma^*] - cl(A)) = sp[\gamma,\gamma^*] - cl(A)$

Proposition 3.19. For each $ax \in X$, $x \in sp[\gamma, \gamma^*] - cl(A)$ if and only if $V \cap A \neq \phi$ for each $sp[\gamma, \gamma^*]$ -open *V* containing *x*.

Proof: Obvious.

Proposition 3.20. If γ and γ^* are semi- γ -regular and pre- γ^* -regular operations defined on SO(X) and PO(X) respectively, then $sp[\gamma, \gamma^*] - cl(A \cup B) = sp[\gamma, \gamma^*] - cl(A) \cup sp[\gamma, \gamma^*] - cl(B)$.

Proof: Clearly $sp[\gamma, \gamma^*] - cl(A) \cup sp[\gamma, \gamma^*] - cl(B) \subseteq sp[\gamma, \gamma^*] - cl(A \cup B)$. Assume that $x \notin [sp[\gamma, \gamma^*] - cl(A) \cup sp[\gamma, \gamma^*] - cl(B)]$. Since $x \notin sp[\gamma, \gamma^*] - cl(A)$, then by proposition, there is $sp[\gamma, \gamma^*]$ -open set U containing x such that $U \cap A = \phi$. Similarly, $x \notin sp[\gamma, \gamma^*] - cl(B)$, then by Proposition 3.19, there is $sp[\gamma, \gamma^*]$ -open set V containing x such that $V \cap A = \phi$. By Proposition 3.8, $U \cap V$ is $sp[\gamma, \gamma^*]$ -open set containing x such that $(U \cap V) \cap (A \cup B) = \phi$. It follows that $sp[\gamma, \gamma^*] - cl(A \cup B)$.

Definition 3.21. Let *A* be a subset of topological space (X, τ) , then $x \in spcl - [\gamma, \gamma^*](A)$ if $(S^{\gamma} \cap P^{\gamma^*}) \cap A \neq \phi$ for every semi-open *S* and pre-open *P* containing *x*.

Proposition 3.22. Let *A* be a subset of topological space (X, τ) , then

1) $spcl - [\gamma, \gamma^*](A) \subseteq sp[\gamma, \gamma^*] - cl(A)$

2) $sp[\gamma, X] - cl(A) \subseteq S\gamma cl(A)$

 $3)spcl - [\gamma, \gamma^*](A \cup B) \subseteq scl_{\gamma}(A) \cup pcl_{\gamma^*}(B)$

4) If γ and γ^* are semi-open and pre-open operations defined on $spcl - [\gamma, \gamma^*](spcl - [\gamma, \gamma^*]) = spcl - [\gamma, \gamma^*](A)$

Proof: 1) let $x \notin sp[\gamma, \gamma^*] - cl(A)$, then there exists a $sp[\gamma, \gamma^*]$ -open set U containing x such that $U \cap A = \phi$., then there are semi-open S and pre-open P containing x such that $S^{\gamma} \cap P^{\gamma^*} \subseteq U$ and so, $(S^{\gamma} \cap P^{\gamma^*}) \cap A = \phi$. Hence $x \notin spcl - [\gamma, \gamma^*](A)$.

2) Let $x \notin S\gamma cl(A)$, then there is γ -semi open U containing x such that $U \cap A = \phi$, and since $(U \cap X) \cap A = \phi$ by proposition 3.6, $U \cap X$ is $sp[\gamma, \gamma^*]$ -open set containing x and so, $x \notin w[\gamma, X] - cl(A)$.

3) Follows from Definition 3.21.

4) Follows from Proposition 3.23 and Proposition 3.18.

Proposition 3.23. Let γ and γ^* are semi-open and pre-open operations defined on SO(X) and PO(X), respectively, then $spcl - [\gamma, \gamma^*](A) = sp[\gamma, \gamma^*] - cl(A)$

Proof: By Proposition 3.22 (1), $spcl - [\gamma, \gamma^*](A) \subseteq sp[\gamma, \gamma^*] - cl(A)$. It is remaining to prove that $sp[\gamma, \gamma^*] - cl(A) \subseteq spcl - [\gamma, \gamma^*](A)$. Let $x \notin spcl - [\gamma, \gamma^*](A)$, then there are semi-open set S and pre-open set P containing x such that $(S^{\gamma} \cap P^{\gamma^*}) \cap A = \phi$. Since γ is a semi-open operation, then there is γ -semi open set U containing x such that $U \subseteq S^{\gamma}$ and since γ^* is a pre-open operation, then there is γ^* -pre open set V containing x such that $V \subseteq P^{\gamma^*}$. It follows that $U \cap V \subseteq S^{\gamma} \cap P^{\gamma^*}$ and by Proposition 3.6, $U \cap V$ is $sp[\gamma, \gamma^*]$ -open set containing x such that $(U \cap V) \cap A = \phi$. Hence $x \notin sp[\gamma, \gamma^*] - cl(A)$.

$sp[\gamma, \gamma^*]$ -compact space and set4-

Definition 4.1. A subset *A* of topological space (X, τ) is $sp[\gamma, \gamma^*]$ -compact set, if every cover $\{V_i : i \in I\}$ of *X* by $[\gamma, \gamma^*]$ -open sets, there exists a finite subset I_0 of *I* such that $A \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i)$. And topological space (X, τ) is named $sp[\gamma, \gamma^*]$ -compact if $X = \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i)$. Jamil

Definition 4.2. A subset *A* of topological space (X, τ) is $[\gamma, \gamma^*]$ -compact set if every cover $\{V_i : i \in I\}$ of *X* by $[\gamma, \gamma^*]$ -open sets, there exists a finite subset I_0 of *I* such that $A \subseteq \bigcup_{i \in I_0} V_i$. And topological space (X, τ) is named $[\gamma, \gamma^*]$ -compact space if $X = \bigcup_{i \in I_0} V_i$

It is clear that every $[\gamma, \gamma^*]$ -compact is $sp[\gamma, \gamma^*]$ -compact space

Proposition 4.3. Let γ and γ^* be two operations defined on SO(X) and PO(X) and let A be any proper subset of X. If A and X / A are $sp[\gamma, \gamma^*]$ -compact sets, then X is $sp[\gamma, \gamma^*]$ -compact.

Proof: Let $\varphi = \{U_i : i \in I\}$ be $[\gamma, \gamma^*]$ -open cover of X, then $\varphi = \{U_i : i \in I\}$ is $[\gamma, \gamma^*]$ -open cover of A and X / A. Since A and X / A are $sp[\gamma, \gamma^*]$ -compact sets, then there are finite sub-collection I_0 and I_1 of I such that $A \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i)$ and $X / A \subseteq \bigcup_{i \in I_1} sp[\gamma, \gamma^*] - cl(U_i)$, therefore $X = A \cup X / A \subseteq \bigcup_{i \in I_0} \bigcup_{i \in I_1} sp[\gamma, \gamma^*] - cl(U_i)$. Hence X is $sp[\gamma, \gamma^*]$ -compact.

Proposition 4.4. The finite union of any $sp[\gamma, \gamma^*]$ -compact sets is $sp[\gamma, \gamma^*]$ -compact set.

Proof: Similar to the proof of Proposition 4.3.

Proposition 4.5. Let γ and γ^* be two operations defined on SO(X) and (X), then a topological space (X, τ) is $sp[\gamma, \gamma^*]$ -compact if and only if every proper $[\gamma, \gamma^*]$ -closed subset of X is $sp[\gamma, \gamma^*]$ -compact.

Proof: Let *F* be a proper $[\gamma, \gamma^*]$ -closed set in *X* and let $\varphi = \{U_i : i \in I\}$ be $[\gamma, \gamma^*]$ -open cover of *F*, then $\{U_i : i \in I\} \cup X / F$ is $[\gamma, \gamma^*]$ -open cover of *X*. Since *X* is $sp[\gamma, \gamma^*]$ -compact, then there is finite sub-collection I_0 of *I* such that $X = \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i \cup X / F) = \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i) \cup X / F$ and so, $F \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i)$. Hence *F* is $sp[\gamma, \gamma^*]$ -compact.

Conversely, suppose that every proper $[\gamma, \gamma^*]$ -closed subset of X is $sp[\gamma, \gamma^*]$ -compact and let $\psi = \{V_i : i \in I\}$ be $[\gamma, \gamma^*]$ -open cover of X such that V_{j_0} is a proper $[\gamma, \gamma^*]$ -open subset of X for $j_0 \in I$, then X / V_{i_0} is a proper $[\gamma, \gamma^*]$ -closed set and by hypothesis X / V_{j_0} is $sp[\gamma, \gamma^*]$ -compact, then there is finite sub-collection I_0 of I such that $X / V_{j_0} \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i)$, it follows that $X = V_{j_0} \cup X / V_{j_0} \subseteq V_{j_0} \cup \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i) \subseteq sp[\gamma, \gamma^*] - cl(V_i) \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i) \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i)$. Hence X is $sp[\gamma, \gamma^*]$ -compact.

Proposition 4.6. Let *K* be a subset of topological space (X, τ) , and let γ and γ^* be two operations defined on SO(X) and PO(X), such that $w[\gamma, \gamma^*]_K - cl(G \cap K) = sp[\gamma, \gamma^*] - cl(G) \cap K$ for every *G* is $[\gamma, \gamma^*]$ -open set in *X*, then *K* is $sp[\gamma, \gamma^*]$ -compact if and only if *K* is $sp[\gamma, \gamma^*]_K$ -compact.

Proof: Suppose that *K* is $sp[\gamma, \gamma^*]$ -compact and let $\varphi = \{G_i \cap K : i \in I\}$ be $[\gamma, \gamma^*]_K$ -open cover of *K*, then $K \subseteq \bigcup_i (G_i \cap K) \subseteq \bigcup_i G_i$. But *K* is $sp[\gamma, \gamma^*]$ -compact, thus there is a finite subset I_0 of *I* such that $K \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(G_i)$. It follows that $K \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(G_i) \cap K = \bigcup_{i \in I_0} sp[\gamma, \gamma^*]_K - cl(G_i \cap K)$ and so *K* is $sp[\gamma, \gamma^*]_K$ -compact.

Conversely, suppose that $\psi = \{U_i : i \in I\}$ be $is[\gamma, \gamma^*]$ -open cover of , then $\varphi^* = \{U_i \cap K : i \in I\}$ be $sp[\gamma, \gamma^*]_k$ -open cover of K. Since K is $[\gamma, \gamma^*]_k$ -compact set, then there is a finite subset I_0 of I such that $K \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i \cap K) \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i) \cap K \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i)$. Hence K is $sp[\gamma, \gamma^*]$ -compact.

Definition 4.7. A topological space (X, τ) is named $sp[\gamma, \gamma^*]$ -Urysohn space if for every two distinct points x and y, there are two $[\gamma, \gamma^*]$ -open sets U and V containing x and y such that $sp[\gamma, \gamma^*] - cl(U) \cap sp[\gamma, \gamma^*] - cl(V) = \phi$

Proposition 4.8. Let γ be semi- γ -regular and γ^* be pre- γ^* -regular operators defined on SO(X) and PO(X). If X is $sp[\gamma, \gamma^*]$ -Urysohn space and K be $sp[\gamma, \gamma^*]$ -compact subset of topological space(X, τ), then K is $sp[\gamma, \gamma^*]$ -closed.

Proof: We want to prove that X / K is $sp[\gamma, \gamma^*]$ -open set. Let $x \in X / K$, then for each $y \in K$, there are two $[\gamma, \gamma^*]$ -open sets U and V containing x and y such that $sp[\gamma, \gamma^*] - cl(U_x) \cap sp[\gamma, \gamma^*] - cl(V_y) = \phi$

Take $\varphi = \{V_y : y \in K\}$ be $[\gamma, \gamma^*]$ -open cover of K and since K is $sp[\gamma, \gamma^*]$ -compact, then there is a finite sub-collection of I_0 of I such that $K \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_{yi})$, let $\bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_{yi}) = sp[\gamma, \gamma^*] - cl(V)$ and let $U = \bigcap_{i=1}^n U_{xi}$, such that $U \cap sp[\gamma, \gamma^*] - cl(V) = \varphi$ then by Proposition 2.8, U is $[\gamma, \gamma^*]$ -open set and so, $x \in U \subseteq X / K$, that is X / K is $[\gamma, \gamma^*]$ -open set. Hence K is $sp[\gamma, \gamma^*]$ -closed.

Proposition 4.9. Let γ be semi- γ -regular and γ^* be pre- γ^* -regular operators defined on SO(X) and PO(X). If A is $sp[\gamma, \gamma^*]$ -compact and U is $[\gamma, \gamma^*]$ -open and $sp[\gamma, \gamma^*]$ -closed sets in topological space(X, τ) such that $U \subseteq A$, then A / U is $sp[\gamma, \gamma^*]$ -compact.

Proof: Let $\varphi = \{V_i : i \in I\}$ be $[\gamma, \gamma^*]$ -open cover of A / U. Since U is $[\gamma, \gamma^*]$ -open set, then $\varphi \cup U$ is $[\gamma, \gamma^*]$ -open cover of A, and since A is $w[\gamma, \gamma^*]$ -compact, then there is a finite sub-collection of I_0 of I such that $A \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i \cup U) = \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i) \cup sp[\gamma, \gamma^*] - cl(U) = \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i) \cup U$ and so, $A / U \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i)$. Hence A / U is $sp[\gamma, \gamma^*]$ -compact.

Proposition 4.10. Let γ be semi- γ -regular and γ^* be pre- γ^* -regular operators defined on SO(X) and PO(X) and let U be $sp[\gamma, \gamma^*]$ -compact subset of $sp[\gamma, \gamma^*]$ -Urysohn spaceX, for every $x \in U$ and any $[\gamma, \gamma^*]$ -open, $sp[\gamma, \gamma^*]$ -closed setV such that $x \in V \subseteq U$, then there is $[\gamma, \gamma^*]$ -open setG such that $x \in G \subseteq sp[\gamma, \gamma^*] - cl(G) \subseteq V$.

Proof: Let $x \in U$ and let V any $[\gamma, \gamma^*]$ -open, and $sp[\gamma, \gamma^*]$ -closed set in X such that $x \in V \subseteq U$. For every $y \in U / V$ in $sp[\gamma, \gamma^*]$ -Urysohn space X, then there are $[\gamma, \gamma^*]$ -open sets G_x and H_y containing xand , thus $\{H_y: y \in U / V\}$ is $[\gamma, \gamma^*]$ -open cover of U / V and since V is $[\gamma, \gamma^*]$ -open, and $w[\gamma, \gamma^*]$ closed set, then by Proposition 3.9, U / V is $sp[\gamma, \gamma^*]$ -compact, and so $U / V \subseteq \bigcup_{i=1}^n sp[\gamma, \gamma^*] - cl(H_{yi}) = sp[\gamma, \gamma^*] - cl(\bigcup_{i=1}^n H_{yi}) = sp[\gamma, \gamma^*] - cl(H)$. Assume that $G_{xi} \subseteq A$, set $G = \bigcap_{i=1}^n G_{xi} \subseteq A$ with $sp[\gamma, \gamma^*] - cl(G) \cap sp[\gamma, \gamma^*] - cl(H) = \phi$. It follows $sp[\gamma, \gamma^*] - cl(G) \cap H = \phi$. Since U is $sp[\gamma, \gamma^*]$ -compact subset of $sp[\gamma, \gamma^*]$ -Urysohn spaceX, then U is $sp[\gamma, \gamma^*]$ -closed and since $G \subseteq$ $V \subseteq U$, then $sp[\gamma, \gamma^*] - cl(G) \subseteq U$, therefore $U/V \subseteq U \cap sp[\gamma, \gamma^*] - cl(H) \subseteq B \cap (X/sp[\gamma, \gamma^*] - cl(G)) = B / X/sp[\gamma, \gamma^*] - cl(G)$. Hence $x \in G \subseteq sp[\gamma, \gamma^*] - cl(G) \subseteq V$

Proposition 4.11. Let γ be semi- γ -regular and γ^* be pre- γ^* -regular operators defined on SO(X) and (X), and let A and B are two subsets of topological space X. If A is $sp[\gamma, \gamma^*]$ -compact and B is $[\gamma, \gamma^*]$ -closed, then $A \cap B$ is $sp[\gamma, \gamma^*]$ -compact

Proof: Let $\{U_i: i \in I\}$ be $[\gamma, \gamma^*]$ -open cover of $A \cap B$. Since B is $[\gamma, \gamma^*]$ -closed, then X / B is $[\gamma, \gamma^*]$ -open set and so, $\{U_i: i \in I\} \cup X / B$ is $[\gamma, \gamma^*]$ -open cover of A. But A is $sp[\gamma, \gamma^*]$ -compact, thus there is a finite sub-collection I_0 of I such that $A \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i \cup X / B) = \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i) \cup sp[\gamma, \gamma^*] - cl(X/B) = \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i) \cup X/B$

That is $A \cap B \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(U_i)$. Hence $A \cap B$ is $sp[\gamma, \gamma^*]$ -compact.

Definition 4.12. A function $f: (X, \tau) \to (Y, \psi)$ is said to be $sp([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous if the inverse image of each $sp[\gamma, \gamma^*]$ -open set in Y is $sp[\alpha, \alpha^*]$ - open set in X. Equivalently, the inverse image of each $sp[\gamma, \gamma^*]$ -closed set in Y is $sp[\alpha, \alpha^*]$ - closed set in X.

Lemma 4.13. A function $f: (X, \tau) \to (Y, \psi)$ is $sp([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous if and only if $f(sp[\alpha, \alpha^*] - cl(U)) \subseteq sp[\gamma, \gamma^*] - cl(f(U))$ for each subset U of X.

Proof: Suppose that f is $([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous. Since $f(U) \subseteq sp[\gamma, \gamma^*] - cl(f(U))$, then $U \subseteq f^{-1}(sp[\gamma, \gamma^*] - cl(f(U)))$. Since $sp[\gamma, \gamma^*] - cl(f(U))$ is $sp[\gamma, \gamma^*]$ -closed in Y and since f is $sp([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous, then $f^{-1}(sp[\gamma, \gamma^*] - cl(f(U)))$ is $w[\gamma, \gamma^*]$ -closed in X and so, $sp[\alpha, \alpha^*] - cl(U) \subseteq f^{-1}(sp[\gamma, \gamma^*] - cl(f(U)))$. Hence $f(sp[\alpha, \alpha^*] - cl(U)) \subseteq sp[\gamma, \gamma^*] - cl(f(U))$

Conversely, suppose that $f(sp[\alpha, \alpha^*] - cl(U)) \subseteq sp[\gamma, \gamma^*] - cl(f(U))$ for each subset U of X. Let F be $sp[\gamma, \gamma^*]$ -closed in Y, and so $f^{-1}(F)$ be a subset of X. By hypothesis, $f(sp[\alpha, \alpha^*] - cl(f^{-1}(F))) \subseteq sp[\gamma, \gamma^*] - cl(f(f^{-1}(F)))$. It follows $f(w[\alpha, \alpha^*] - cl(f^{-1}(F))) \subseteq sp[\gamma, \gamma^*] - cl(F)$ and so, $sp[\alpha, \alpha^*] - cl(f^{-1}(F)) \subseteq f^{-1}(F)$. Then $f^{-1}(F)$ is $sp[\gamma, \gamma^*]$ -closed in X, Hence f is $([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous.

Proposition 4.14 Let $f: (X, \tau) \to (Y, \psi)$ is $([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous, $sp([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous, and one to one function. If K is $sp[\alpha, \alpha^*]$ -compact set in X, then f(K) is $sp[\gamma, \gamma^*]$ -compact set in Y.

Proof: Let $\varphi = \{V_i : i \in I\}$ be $[\gamma, \gamma^*]$ -open cover of f(K), then $V_i = U_i \cap f(K)$ where U_i is $[\gamma, \gamma^*]$ -open set in Y. Since f is $([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous, then $f^{-1}(V_i) = f^{-1}(U_i) \cap K$, $f^{-1}(U_i)$ is $[\gamma, \gamma^*]$ -

open set in *X*, it follows $\{f^{-1}(V_i): i \in I\}$ is $[\alpha, \alpha^*]$ -open cover of *K*. Since *K* is $sp[\alpha, \alpha^*]$ -compact, then there is finite sub-collection I_0 of *I* such that $K \subseteq \bigcup_{i \in I_0} sp[\alpha, \alpha^*] - cl(f^{-1}(V_i))$ and so, $f(K) \subseteq f(\bigcup_{i \in I_0} sp[\alpha, \alpha^*] - cl(f^{-1}(V_i))) = \bigcup_{i \in I_0} f(sp[\alpha, \alpha^*] - cl(f^{-1}(V_i))) \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(f^{-1}(V_i))) \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(Y_i)$. hence f(K) is $sp[\gamma, \gamma^*]$ -compact set.

Corollary 4.15 Let γ be semi- γ -regular and γ^* be pre- γ^* -regular operators defined on SO(X) and PO(X), and let $f: (X, \tau) \to (Y, \psi)$ is $([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous, $sp([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous, and one to one function. If A is $sp[\gamma, \gamma^*]$ -compact and B is $[\gamma, \gamma^*]$ -closed sets in topological space X, $f(A \cap B)$ is $sp[\gamma, \gamma^*]$ -compact set in Y.

Proof: Follows from Proposition 4.11, and Proposition 4.14.

Definition 4.16 A function $f: (X, \tau) \to (Y, \psi)$ is said to be $([\alpha, \alpha^*], [\gamma, \gamma^*])$ -continuous, if the image of each $[\alpha, \alpha^*]$ - open set in X is $[\gamma, \gamma^*]$ -open set in Y

Proposition 4.17 Let $f: (X, \tau) \to (Y, \psi)$ be $([\alpha, \alpha^*], [\gamma, \gamma^*])$ - continuous and bijective function, If *K* is $[\gamma, \gamma^*]$ -compact set in *Y*, then $f^{-1}(K)$ is $sp[\alpha, \alpha^*]$ -compact set in *X*.

Proof: Suppose that $\varphi = \{V_i : i \in I\}$ be $[\alpha, \alpha^*]$ -open cover of $f^{-1}(K)$, then $\varphi^* = \{f(V_i) : i \in I\}$ is $[\gamma, \gamma^*]$ -open cover of K and since K is $[\gamma, \gamma^*]$ -compact set, then there is a finite sub-collection I_0 of I such that $K \subseteq \bigcup_{i \in I_0} f(V_i)$ then $f^{-1}(K) \subseteq f^{-1}(\bigcup_{i \in I_0} f(V_i)) = \bigcup_{i \in I_0} f^{-1}(f(V_i)) \subseteq \bigcup_{i \in I_0} V_i \subseteq \bigcup_{i \in I_0} sp[\gamma, \gamma^*] - cl(V_i)$. Hence $f^{-1}(K)$ is $sp[\alpha, \alpha^*]$ -compact set in X.

References

- 1. Levine N. 1963. Semi-open and semi-continuity in topological spaces, *Amer. Math. Monthly*; (70): 36-41.
- 2. Mashhour A., Abd- E lmonse f. and El-Deeb S. 1982. On Pre-continuous and weak pre-continuous mapping, *Proc. Amer. Phys. Soc. Egypt.* (19) 2: 47-53.
- 3. Kasahara S.1979. Operation –compact spaces, Math Japonica.(24): 75-105.
- **4.** Van T., Xuan D., and Maki H. **2008**. On operation pre-open sets in topological spaces, scientiae Mathematicaejaponicae online. pp.241-260.
- 5. Hariwan Z. 2013. γ -semi-open sets and γ -semi-functions, Journal of advanced studies in topology. 4(1): 55-65.
- 6. Maki H. and Noiri T. 2001. Bi-operation and separation axioms, Sci. Math. Japonica.(4): 165-180.
- 7. Carpintero Ca., Rajesh Ne. and Rosas E. 2010. On $[\gamma, \dot{\gamma}]$ -semi open sets, *Bol. Mat.* 17(2): 125-136.
- 8. Stone M. 1937 Algebraic characterizations of special Boolean rings, Fund. Math.; (29): 223-302.
- 9. Kasahara S.1979. Operation compact spaces, Math Japonica. (24): 75-105.
- **10.** Van T., Xuan D., and Maki H. **2008**. On operation pre-open sets in topological spaces, scientiae Mathematicaejaponicae online. pp.241-260.
- 11. Ahmed B. and Hussain S. 2010. γ^* -Semi-open sets in topological spacesII, *South Asian Bulletin of Mathematics*. (34): 997-1008.