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Abstract
Let R be a commutative ring with identity and let M be a unitary left
R —module. We call the R—module M kerquasi-injective if for every
monomorphism f from N into Q(M), where N is a submodule of Q(M)
and Q(M) is a quasi-injective hull of M and for every homomorphism 9
from N into M , there exists a homomorphism h from Q(M) into M such that
kerhf c kerg

It is clear that every quasi-injective module is kerquasi-injective, however the
converse is false. Also every ker-injective module is kerquasi-injective, however the
converse is false. In this paper we give some characterizations of kerquasi-injective
modules, we also study some conditions under which a kerqausi-injective module
becomes quasi-injective. For example, if a kerquasi-injective module is a finitely
generated, then it is a quasi-injective. We ought to mention that we were not able to
give an example of a kerquasi-injective module which is not quasi-injective and ker-
injective.
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Introduction has shown that if two modules are
Two modules are subisomorphic if each has a subisomorphic then their quasi-injective hulls
monomorphism into the other [1]. Bumby, [1] are isomorphic. The purpose of this paper is to
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initiate the study of modules which are
subisomorphic to their quasi-injective hulls.
We introduce the following definition: a module
M is kerquasi-injective (KQI) if given any
monomorphism f : N — Q(M), where N is
any submodule of the quasi-injective hull
Q(M), and any homomorphism ¢g: N — M
there exists a homomorphism h:Q(M) —> M
such that kerhf c kerg. In section 1, we
show that KQI modules are precisely those
modules which are subisomorphic to their quasi-
injective hulls. In section 2 of the paper we give
various conditions under which a KQI module
becomes quasi-injective, we would like point
out that our results parallel the results in [2] of
ker-injecctive modules. Finally, we remark that
R in this paper stands for a commutative ring
with 1 and a module means a unitary left
R —module.
1. Characterization  of
injective modules

We start the section by the following:
Theorem 1.1. Let M be a R —module, then

kerquasi-

the following statements are  equivalent:

() M is KQI .

(i1) M is subisomorphic to Q(M).

(iii)Given any  monomorphism f : N —
Q(M), where N is any submodule of the
quasi-injective  hull  Q(M) and any
homomorphism@ : N — M, there exists a
monomorphism k:M —> M and a
homomorphism h:Q(M)—> M such that
hf =kg.

(iv) There  exist two  homomorphisms

f:M—>Q(M)andh:Q(M) — M such that

hf is a monomorphism.

Proof. (i) = (ii).
diagram:

Consider the following

0>M——Q(M)

1y

M 4« h
where | is the inclusion homomorphism and |
is the identity homomorphism. Since M is
KQl , there exists a
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homomorphismh : Q(M) — M such that
ker hi = ker | = 0. This implies that hiis

a monomorphism, we claim that h isa
monomorphism . In fact, if h(x)=0

and X #0, there exists reR such that
0#rxeM, since M <, Q(M)(M is an
essential extension of Q(M)),

h(rx) = rh(x) = 0 ,buth(rx) = hi(rx) =0,

hence rx = 0 contradiction. Therefore h is a

momomorphism  and  hence M is

subisomorphic to Q(M).

(i) = (iii) .Consider the following diagram:
0> N—>Q(M)

g tl QA

0 ----»M_1 QM) , M

where N is a submodule of the quasi-injective
hull of Q(M), f is any monomorphism and
g is any homomorphism. Let i : M — Q(M)
be the inclusion homomorphism. Since Q(M)
is quasi-injective there exists a homomorphism
t:Q(M)—>Q(M) such that tf =ig[3].

From part (il) there exists a monomorphism

S:Q(IM)—> M. Let st=h and si=Kk.
Hence hf =kg.
()= (v). LetN=Mandg= identity
homomorphism.
(ivy= (). Let f:N—>Q(M) be any

monomorphism and ¢g:N —-> M be any
homomorphism. Let 1: M — Q(M) be the
Q(M)
quasi-injective there exists a homomorphism

t:Q(M)—>Q(M) such that tf =ig. From
part (iV) there exists a homomorphism S such

inclusion homomorphism. Since is

that Si is a monomorphism. Let St=h. We

claim that kerhf ckerg. In fact
let X € ker hf then
0= (hf)(x) =h(f(x)) = st(f(x)) =

s(ig)(x) =(si)(g(x)). But si is a

monomorphism therefore g(X) =0 and hence
Xekerg.

Corollary 1.2. If M is a KQI module,
then for every diagram of the form
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0—>N—->Q(M)

tal
M M

there exists a homomorphism h:Q(M)
— M such that kerhf =kerg.

Proof. From the proof of theorem 1.1 part
(iv) = (i), ifx e ker g theng(x) = 0
=si(g(x)) =s(ig(x)) = (st)(f (x)) = h(f (x))
=(hf)(X) and hence X ekerhf, that is
ker g < ker hf . Thus kerhf =kerg.

Remarks and examples 1.3
() 1f Q(M) is subisomorphic to
E(M)(E(M)is an injective hull of M) then

E(M)=Q(M).

Proof. By [1], E(M) < Q(M) ,butQ(M)

c E(M), therefore E(M)=Q(M).

(2) If M, is subisomorphic to M, and M, is
KQI , then M, is also.

Proof.  There
f:M, > M,
g:Q(M,) > M, and hence fg is also a
monomorphism. By [1]Q(M,) = Q(M,) .Thus
there exists a monomorphism from Q(M,) into
M,.

(3) It is easy to see that if ker g < ker hf in the
definition of KQI , then the module M is not
necessarily KQI (take M =Z as Z —module).
(4) It is clear that every quasi-injective is KQI .

a
a

monomorphism
monomorphism

exists
and

But the converse is not true in general. For
example let M =Z @TIE(Z) as Z —module.

E(M) is subisomorphic to M and by (1)
Q(M) is subisomorphic to M . But M is not
quasi-injective since Z is not quasi-injective.

(5) It is clear that every ker-injective module
M (E(M) is subisomorphic toM) [2] is
KQI , but the converse is not true in general.
For example take M =27, as Z —module,
Q(Z,) =Z,that is Z, is quasi-injective and
hence by (4) Z, is KQI, but Z, is not ker-

228

Iragi Journal of Science, Vol.50, No.1, 2009, PP. 226-230

injective because if Z, is ker-injeective module,
then Z, is subisomorphic to E(Z,)=Z . and
by [11Z o = Z, ,this is contradiction. Thus Z,
is KQI but not ker-injective.

Proposition 1.4. If M is KQI then for every

monomorphism f :N — Mand for
homomorphism ¢g:N — M

every
there exists a

homomorphism h: M —
M such that kerhf =kerg.

Proof. Consider the following diagram:
0—>N

LN L 5Q(M)

M
M KQI,

Since is there exists a
homomorphism t:Q(M)— Q(M) such that
kertif =kerg. Let ti=h. Thus
ker hf =kertif =kerg.

Lemma 1.5. If R is principle ideal domain then

every mnonzero homomorphism f: 1 —>R,
where |is a nonzero ideal of R is a
monmorphism.

Proof. Let | =(r) for some 0 #r e R and let
f(x)=0, xe |, this implies that f(sr)=0,
for some S € R and hence Sf(r)=0.But R is
an integral domain, therefore either S=0 or
f(r)y=0. 1f f(r)=0, then f is the zero
homomorphism and this is impossible. Thus
S=0 and hence X=0 that is f is a

monomorphism.

The converse of the proposition 1.4 is not
true. For example let M =Z as Z —module.
Consider the following diagram:

0> () ——>Z

gl /1

Z

Now we suppose that N #0and g # 0. Since

Z is principle ideal domain therefore by lemma
1.5, any homomorphism h:Z —-Z is a
monomorphism also ¢ is a monomorphism,

thus  hf
Hence ker hf = ker g =0
But Z as Z —module is not KQI .

is also a monomorphism.
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2. Quasi-injective modules  and

kerquasi-injective modules
We start with the following:

Proposition 2.1. If M is a KQI module, then
there exists an epimorphism h: M — Q(M).
Proof. Since M is KQI, there exists a
monomorphism f :Q(M) — M . This implies
that Q(M)= f(M). Consider the following
diagram:
0—> f(M)—>M—L>Q(M)
ki f

QM)
where i, | are inclusion homomorphisms and
k is an isomorphism. Since Q(M) is a quasi-
injective module, there exists a homomorphism
t:Q(M)—> Q(M) such
that tij = K. This implies t is an epimorphism.
Let tj=h and let Xe Q(M), since k is an
isomorphism, there exists Y € f(M) such that
k(y)=x. Thus h(y)=hi(y)=k(y)=x.

Thatis h is an epimorphism.

Corollary 2.2. If M
ann, (M) = ann, (Q(M)).

then

KQI,

1S

Proof. Clearly ann, (Q(M)) < ann, (M)

Let reanny,(M), by proposition 2.1 there
exists an epimorphism h: M —
Q(M).But r e anny (M), therefore 0=
h(0)=h(rM)=rh(M)=rQ(M).
implies € ann, (Q(M)) , thus ann, (M)
 ann, (Q(M)).

This

Corollary 2.3. For every KQI module,

there exists a proper submodule N of M such
that M /N is quasi-injective. Moreover

M/N=Q(M).

Proof. By proposition 2.1 there exists an
epimorphism h:M — Q(M) and  hence
M /kerh=zQ(M),put N =kerh.

A module is hopfian if every
endomorphism is an automorphism.

onto
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Theorem 2.4. If M is a KQI module and Q(M)
is hopfian, then M is quasi-injective.

Proof. Suppose Q(M)is hopfian, by the proof
of  proposition 2.1  there exists an
epimorphismt : Q(M) — Q(M ) such that
tji =k . SinceQ(M)is hopfian, therefore t is
jiooi
isomorphism, this implies ] is an epimorphism
and hence M =Q(M).

Theorem 2.5. If M is a KQI module and M
or Q(M) is finitely generated, then M
quasi-injective.

Proof. Suppose Q(M) is finitely generated,
then by [4] Q(M) is hopfian and we use

theorem 2.4 to have the requirement .Now
suppose M is finitely generated. By
proposition 2.1 there exists an epimorphisim

h:M — Q(M) and hence Q(M) is finitely
generated and by [4] Q(M) is hopfian and by
proposition 2.4 M is quasi-injective.

A module is cohopfian if every one to one
endomorphism is an automorphism.

Theorem 2.6. If M is KQI and M or Q(M)

is cohopfian, then M is quasi-injective.

an isomorphism and hence is an

18

Proof. Suppose M is cohopfian and
i:M —>Q(M) is the inclusion
homomorphism and f:Q(M)—>M is a
monomorphism Then fi is also a
monomorphism, this implies fi is an

isomorphism and hence f is an epimorphism.
Thus M is quasi-injective. While if Q(M) is
cohopfian, if is a monomorphism this implies
if
epimorphism, that is M is quasi-injective.
Corollary 2.7. If M is KQI and Q(M) is
directly finite (that is a module not isomorphic
to any proper direct summand of it self [5,
P.165]) then M is quasi-injective.

Proof. If Q(M) is directly finite then by [6]
Q(M) is cohopfian and by theorem 2.6 M is
quasi-injective.

Proposition 2.8. If R is an integral domain and
» R has a submodule which is KQI , then R is
a field.

Proof. By [7] fR is subisomorphic to every

R has KOQI

is an isomorphism. Thus 1| is an

submodule of -R. Since
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submodule say I, then by remarks and examples
1.3(2) xR is KQI . By proposition

2.1 there exists an epimorphism
f :R— Q(R). Since R is finitely generated,

then by theorem 2.5 R is quasi-injective and
hence R is self injective. Thus by [7] R is a
field.

Next we give a proposition that shows that if
every KQI onthering R is a quasi-injective,
then that ring must be a semi-simple artinian
and conversely.

Proposition 2.9. R is a semi-simple artinian iff

every KQI R —module is quasi-injective.
Proof.(=) By [8] every module is a quasi-

injective. Conversely let M be any module,
this implies M @TIIE(M) is a ker-injective
module and hence by remarks and examples 1.3
5) M@IIE(M)isKQI .ThusM @ TIE(M)
is quasi-injective. Since a direct summand of a
quasi-injective is a quasi-injective [5] then M

is a quasi-injective and by [8] R is a semi-
injective artinian.
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