Al-Aadhami and Aubad Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 428-439
DOI: 10.24996/ijs.2026.67.1.36

/-\__/
Iraqi

Journal of

Science

N/
ISSN: 0067-2904
Some Results of Ideals for Partial Transformation Semigroups

Asawer Al-Aadhami” and Ali Abd Aubad
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 5/10/2024 Accepted: 14/1/2025 Published: 30/1/2026

Abstract:

Let PT,, be the set of all partial functions from the set V' to the set M, where
N, M c X, and X, ={1,2,...,n}. Then PT, is a semigroup subject to the
composition of partial mapping or a monoid with identity PJ,,. Here, the ideal of
PT, in terms of an element & € fﬁl‘o was studied, where ff;,_o is full transformation
monoid from the set X,, ¢ to itself such that X, o = {0} U X,,. Finding that there are
two kinds of ideals in P7,,, two-sided ideals, and a left ideal. As well as the ideals of

partial transformation monoid of a free (left) G -act on n-generators, PJr, ) where

G is a finite group and F,(G) =U, Gx; were considered. Finally, the number of

elements of a two-sided ideal and left ideal of PJ;, and PJTF, ) were also found.
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1. Introduction

The present article aims to study the ideals of partial transformation semigroups on a finite
set. Suppose that X,, = {1,2,...,n} is a finite set of positive integers, which is fixed
throughout this article. The partial transformation semigroups PJ;, is a semigroup of all
partially defined functions from X, to itself, i.e., PT,, = {a|la: N - M, where N', M <
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X,,} under the composition of partial functions. The subsemigroup set of PJ;, includes the
full transformation semigroups J;,, which consists of all totally defined transformations on
X, (i.e., all functions X,, = X,,), the symmetric inverse semigroups JS,,, which consists of all
injective partial transformations on X,, and the symmetric group §,, which consists of all
bijection maps and it represents the group of units of PJ, (and of 7, and JS,). The
importance of these semigroups is due to the fact of fundamental results of Cayley’s Theorem
(for semigroups and groups), which states that every finite semigroup (or, finite group) may
be embedded in some 7, (or, some &), respectively. Also, the fundamental results of
Vanger-Preston Theorem (for inverse semigroups), [1]. The corresponding transformation
semigroups and other related semigroups have been studied in [2-37].
Hawie and McFadden [12] investigated the ideals of 7,,, these are the set
Kn,r)={a € T;:|Ima| <r}, wherel <r <n.
It is clear that K(n,r) is a two-sided ideal, and K(n,r) = 7. James and R. D. Gray in [5]
proved that where 1 < r < n — 1, then the ideal K(n, ) is an idempotent generator and
. n ifr=1;
rank(K(n, r)) = idrank(K(n,r)) = {S(n, " ifr>a,
where, S(n, r) is the Stirling number of the second kind. If S is a finite semigroup, then
rank(S) = min{|A]:A S S, < A >=S}.
If S is generated by its set E(S) of idempotents, then the idempotent rank of S is defined by
idrank(S) = min{|A|:A S E(S),< A > = S}.
For n > 3, the rank of PJ7, and 7, is 4, 3, respectively [11]. Garba [7] postulated the
semigroup
P(n,r) ={a € PT,:|Ima| <1}
And showed that, for 2 <r <n —1, both the rank and idempotent rank are equal to
S(n+1,r + 1). It is worth mentioning that for « € 7, (or, @ € PT,,) defining the rank of a
to be the cardinality of Ima (i.e., |Ima| = rank(a)). In [5], the proper two-sided ideals of
partition monoid a € P7T, are studied, and it was shown that each such ideal is an idempotent
generated semigroup. The formula is given to generate the semigroup to find the minimal
number of elements and the minimal number of idempotent elements.
The description of principal ideals has long been known for 7;,, PJ,, and IS, [8] which have
the form SaS = {p € S:rank(B) < rank(a)} where S=17,, PT, or, 1§, anda € S.
Moreover, all two-sided ideals in S are principal and generated by any element of the ideal,
which has the maximal possible rank.

The full transformation semigroup of a free left G -act on n-generators Jg (), where
E,(G) =UlL, Gx; has been considered in [36], and its ideal has been investigated in [35].
This work aims to describe the ideals in partial transformation semigroup P7,,, and in partial
transformation semigroup of free left G -act on n -generators PTg, (¢).

This paper is organized as follows: notation concerning preliminaries was set for full
transformations 7, and partial transformations P7,, in Section 2. In Section 3, the
description of the ideals in PJ,, were considered. Also, enumerating the number of elements
in a two-sided ideal and a left ideal of PJ,,. In Section 4, establishing the notation concerning
partial transformations of free-left G-act, PT, (), and then describing the ideals of PJg ().
Then, the number of elements in a two-sided ideal and a left ideal were found.

2. Preliminaries
Throughout this work, we compose (partial) functions from left to right and write them to
the right of their arguments, which means if @, 8 € PJf, (4, then x(af) = (xa)p for any

x € X, for which both sides of the latter equality are defined. The domain of partial
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transformation « is denoted by Doma and its image by Ima. Furthermore, Domaf =
[Ima n DomBla~! and Imap = [Ima N DompB]B, [13].

If a € PT,, then a can be illustrated as follows:
( 1 2 3 .- n)
a= )
Yi Y2 Y3 W

_{— if i€ Doma;
Yi = ia if i€ Doma.

where

Deducing from that PJ7, has a zero element (the empty map) where for all i € Doma =
(i E 3 n). As well as, for i €

2 3 .. n)

1 2 3. nf
Detailed information on the structure of PJ, is provided in [8]. It is well-known that the
number of elements in P7, is (n+ 1), this can be found in [8]. In semigroup S, an
idempotent element e € S with e? = e, and the set of all idempotents in S is denoted by
E(S). Let p € PJ; and Y € X,,, the restriction of fto Y is the function B] such that
y(ﬁ |y) = yp forall y € Y. Itis clear that §|y has domain Y and co-domain Y.

The following theorem examines idempotents in PT,,:

Theorem 2.1: [8] An a € PT, is an idempotent if and only if Ima € Doma and the
restriction @|1ma=In ;.-
Corollary 2.2: [8] The number E( PT;,) of idempotents in a partial transformation monoid
PT, 1s

{1,2,...,n} and that can be represented as PO =

Doma, then PT, is a transformation monoid with identity PJ,, = (

E(PT) = Zi=o() U + D",

where |Ima| = k.
Now, consider the set X, U {0} to be the set X, o = {0,1,2, ..., n}, then the full transformation
semigroup on X, o will be defined as follows;

Tho = {a: a is transformation on ano}.
Clearly, T, 0 = Tpy1. By letting T, = {&:a € Tho 0a = 0}. It is easy to show that the
subset f},,o is a submonoid of T, where a submonoid means it is closed under
multiplication. And for any n € N, the partial transformation monoid PJ;, is isomorphic to
71,0. From that, it can be deduced that a € P7, if and only if & € 7;1,0 . Moreover, that can
be illustrated as follows:

If
(1 2 3 4 5 - n—-1 n )
_(la 20 - — 5q - (n—1a — )€ P
then
6~¥:<0 1 2 3 4 5 . n-—1 n>eg~w
0 1la 2a 0 0 5¢ -+ (n—Da 0 n0:

For the simplest, this work will focus on the set 72.0 instead of the set P7,.

3. Ideals of partial transformation monoids P7",,

In this section, two kinds of ideals of partial transformation monoids P7,, = Tn,o in terms
of an element & € 71,0 were describe; a two-sided ideal and a left ideal. The following
definition is necessary for this work:
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Definition 3.1: [13] Let @ # A € S, where S is a semigroup. A subset A of S is called a left
ideal if SA € A, a right ideal if AS S A, that means for all s € S and a € A, then sa €
A (as € A). A subset A of S'is a two-sided ideal if it is both a left and a right ideal.

The description of a two-sided ideal J, o of a full transformation monoid 7;, ¢ is obtained in
the following lemma, where & € jn,o is an idempotent.

Lemma 3.2: Let jn,O be a non-empty subsemigroup of Tn,O- Assume @ € jn,o, such that &
is an idempotent and |Im&| = k, |Dom@| = € where 0 < k <nand k < € < n. Define ¢ €
Tno0 by
e (1 forall i, suchthat ia # 0.
i§ = { 0

else.
Then @& = é@ = @, and Jp g is a two-sided ideal of Ty, .

(1

Proof: Let @ € jn,o such that & is an idempotent, and let ¢ € j:'n,O- If i # 0, then from the
definition of & having i = i, for all i, and hence (i&@)¢& = id, this gives @¢ = @, as well as,
(i5)a = ia, so £& = a.

Now, as & € Jno which is a subsemigroup of 7, then 0a = 0, foralli, so from the
definition of ¢ obtaining 0§ = 0. This gives (0&)¢ = 0§ = 0 = (0§)@. If i@ = 0, for some i,
then i€ = 0, this implies (i@)é = 0§ = 0 = 0& = (i§)@. Therefore, Jy ¢ is a two-sided ideal
of Tpo-

The following lemma for a left ideal J "no of Tn,o obtained where @ € J "m0, and @ is not an
idempotent

Lemma 3.3: Let J "n0 be a non-empty subsemigroup of j:'n,O- If aed "no such that @ is not
an idempotent and |Imé@| = k, |[Dom@| =€ where 1 <k <n—1and k < <n-—1. Let
§€Tho, thené@ =& € J'ppand J'ng is aleft ideal, where & defined in (1).

Proof: Let @ € J',, ¢ such that @ is not an idempotent, and let € 7;1,0 JAf i@ # 0, then i€ =i
for all i, and from that, having (i§)& = i @, that means £& = &, and therefore J "no Will be a
left ideal of T;, 0.

As d € j,n,O which is a subsemigroup of J;, ¢ then 0& = 0, where i = 0. From that, having
i =0& =0, then (i§)@ = 0& = 0 = i@ When i@ = 0, for some i, then form (1) obtaining
i€ = 0, this gives (i§)@ = 0& = 0 = i@. Therefore, J'y, ¢ is a left ideal of Ty, .

Now, where, & € Jp 0, and & is not an idempotent such that |Ima@| = |[Dom@| =n and @ #
T, (I, = P3J,) the identity transformation of T, o, another description of a two-sided ideal is
given in the following lemma.

Lemma 3.4: Let jn,O be a non-empty subsemigroup of j;n,0~ If @ € Jp such that & is not

an idempotent with |Im&| = |Dom@&| = n and & # J,,. Define & as before in (1), then @& =
§a = &, and Jy, 0 is a two-sided ideal of Ty, 0.

Proof: Let & € J, ¢ such that @ is not an idempotent with |Im@&| = |Domé&| = n and & #
jn:

and let & € T, 9. From the hypotheses and the definition of £ it is easy to show that & = 7,
the identity transformation of 7, o. Hence, (i@)¢ = i(@&¢) = i(§&) = (i€)@ . That means Jy, o
is a two-sided ideal of Ty, .
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The number of elements in a two-sided ideal Jy, o of J;, ¢ Will be counted by the following
lemma:
Lemma 3.5: The number V' (&, J,, 0) of elements in a two-sided ideal J, ¢ of Ty, ¢ is

N (@ Jno) = Zk=o()(k + D" + (! = 1),
where |Imé| = k.
Proof: Let @ € Jpo such that |Im@| =k, where 0 < k < n. Let & € 7, ¢ defined by (1).
From Lemma 3.2 and Lemma 3.4, there are two cases for jn,O to be a two-sided ideal:

Case 1: This case comes from Lemma 3.2. It is already known from Corollary 2.2 that there
are Zﬁ:o(Z) (k + 1)™¥, idempotent elements in T, ¢, which is the number of elements in
jn,o, as every element in jn,O is an idempotent, in this case.

Case 2: This case comes from Lemma 3.4, where & € jn,O is not an idempotent and
|Im&| = |Dom@| = n with & # J,. Clearly, @ € S, 9, where S, is a symmetric group (a
group of units of fﬁw). Since there are n! elements in S~n,0 [8], and as & # J,,, then there are
(n!' — 1) elements of @ € jn,O in this case.

By putting the two cases together, having the number of elements in a two-side ideal J,, ¢,

Lemma 3.6: The number NV (&, J' ) of elements in a left ideal J'y, o of Ty, ¢ is

~ N(d,jln,o) = (n+ 1" - N(d’ jn,O)-
Proof: Let J'n0 be a left ideal, and let @ € J',,¢ such that & is not an idempotent and
|Imé&| = k, |[Domd@| =€ where 1 <k <n—1and k < ¢ <n-—1. Since PT,, = .771,0 there
are (n + 1)" elements in Ty, 0. Then, the result is obtained by subtracting the value of a two-
sided ideal in Lemma 3.5 from the above value.

It is helpful to illustrate the formula in Lemma 3.6 by having the following example:

Example 3.7: For counting the elements in a left ideal J "no of Tn,o, where n = 3. Let £ €
Tno be defined by (1). In the binging, we will find the number of elements in a two-sided
ideal J3 9. As known from Lemma 3.2 and Lemma 3.4, there are two cases for J3 ¢ to be a
two-sided ideal:

Case 1: This case comes from Lemma 3.2, which is if @ € (73,0 and & is an idempotent such
that |Im@| =k, |Dom@| = € where 0 < k < n and k < £ < n. By Corollary 2.2, there are
23 idempotents in J3 9. These idempotents are divided into 4 cases:

Case I: If |Imd@| = k = 1. There are 3 positions for |[Domé| = ¢, that are either 1, 2, or 3.
1. If [Dom@&| = #=1. There are 3 idempotents in J3 ¢ having k = £ = 1, and they are
a=(0 123 (0123 g (0123

"W 100”7 "27%0 020" "*" 0 0 0 3/
Then forall @ € J3 o having k = £ = 1, and from (1) we have & = {a = a.
Therefore, there are 3 idempotents in J3 ¢ in terms of ¢ € 73,0.
2. If|Dom@| = £=2. There are 6 idempotents in J3 o having [Ima| = 1, |Domé| = 2

and they are as follows:
5:(0 1 2 3)’ d6:(0 1 2 3)'

a=(0123)
7\ 1 1 0o/ 01 01 0 2 20

Q
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~ 0 1 2 3 ~ 0 1 2 3 ~ 0 1 2 3
“7:(0 0 2~2)' “8:(0 3 0 3)’ “9:(0 0 3 3)'
Then for all @ € J3¢ having k =1, £ = 2, and from (1) we have @¢ = @ = a.
That means there are 6 idempotents in (73,0 in terms of & € 7:3,0.
3. If |Dom@| = ¢=3. In this case, there are 3 idempotents in J3o having |Imé| = 1,
|Domé| = 3, which are as follows:
dm:(O 1 2 3) 6711=(0 1 2 3) d12=(0 1 2 3).
01 1 1/ 0 2 2 2/ 0 3 3 3
Forall @ € J30 having k =1, £ = 3, and from (1) we have @¢ = (& = @. From that, there
are 3 idempotents in J3 o having |[Im@| = 1, |Dom@&| = 3 in terms of & € T3 ¢.

Case II: If |Im@| = k = 2. There are 2 cases for |Domd| = ¥, and they are either 2 or, 3.
1. If |Dom@| = ¢=2. In this case, there are 3 idempotents in (‘73’0 having |Imd| = 2,
|Domé@| = 2, and they are

0 1 2 3 0 1 2 3 01 2 3
“13=(0 1 2 0)’ fx“:(o 10 3)' “15=(0 0 2 3)'
It is clear that for all @ € J3¢ having k = ¢ = 2, and from (1) we have @¢ = {@ = &. That
means there are 3 idempotents in J3 o in terms of & € T3 .
2. If |Dom@| = #=3. In this case, there are 6 idempotents in j3,0 having |Iméd| = 2,
|Doma@| = 3, and they are

a6=(0 1353 =0 13571 @=0 133
0=y 1 13 Gu=(g 5 53 =0 3533

Clearly, for all & € J3o having k =2, =3, and from (1) we have @§ = é& = @. That
means there are 6 idempotents in j3,0 in terms of & € f]~"3,0.
Case III: If |Imd@| = k = 3. There is just one case for | Domd|, which is £ = 3.
Here, there is only one idempotent in J3 9, which is
Ty = (O 1 2 3)’
_ T N01 2 3 3

the identity transformation of 73 9. As ImJ,, = {1, 2,3}, it is clear from (1) that & = T3,
and then &J3 g = J3 & = J3¢. This means there is only one element in Js¢ in terms of &
having 3 elements in its image and in its domain.
Case IV: If |Ima| = k = 0. Here, there is also one matter for |Domd| = ¢, thatis £ = 0.
There is only one idempotent in 53,0 such that k = £ = 0, that is, the zero element

0 000 o
where ¢, is a constant function with image zero.

As |Imf)| = |D0m6| = 0, then giving from the definition of ¢ that

¢=(o 0 0 o

That means & = 0, and there is only one element in J3q with k =# = 0 in terms of & €

T30-
Deducing from Case 1 that there are 23 elements in a two-sided ideal J3 o.
Case 2: If @ € J3 ¢, and @ is not an idempotent where |Ima| = |[Dom@| = 3, and @ # T3 ,.

Clearly, & € 5’3'0. It is well-known that there are 3! elements in S3¢, [8]. But & # J3, this
gives 3! —1=6—1=5elements in J3 9. Now, from the definition of € (1), implies

=0 2 )
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this gives @& = & = @. That means there are 5 elements in (73‘0 in terms of & € T3 .
Deducing from Case 1 and Case 2 that there are 23+5=28 elements in a two-sided ideal (73,0.
Observe that the same result was obtained using the formula in Lemma 3.5.

Now, as known, there are (n+ 1)" elements in T, hence there are (3 +1)° = 64
elements in 7~"3'0.

By subtracting the value of a two-sided ideal (73,0 from 64, obtain 64 — 28 = 36, which
represents the number of elements in a left ideal J'3o. By applying Lemma 3.6, we have the
similar result.

4. Ideals of partial transformation monoids PJg,

This section aims to study and describe the ideals of partial transformation semigroup
PTr,(c)» Where G is a finite group and F,(G) =UjL; Gy, is rank (n) free left G-act.
Denoting the semigroup of all morphisms A — B, where A and B are subalgebras of F,(G)
by PTr,6)-

If « € PTg, ) then

N Xi,
“= (gfixila ggxita)’
where @ € PT;,, gi, ..., gi, €G,and x;;@ = gi; ;). Furthermore, for every selection of
g € PT, with Domfi = {j, ..., ji}, where 1 < jy <+ <jp <n,k 20 and h,..,hi €G
gives

Xj, Xj,

K <hﬁxj1ﬁ hﬁcxfk;) € PIr. )
If G ={e} (i.e., G is a trivial set) that implies PJf, (¢ is isomorphic to PTy, and if G # {e}
then PTg () isomorphic to EndF,(G)°, the endomorphism monoid of free left G-act that is
given by E,(G)° = E,(G) U{0}, when {0} is a trivial left G-act. Notice, when a €
EndFE,(G)° then

X = gi' Xz,

for some gf € G, such that g{* is defined uniquely if i@ # 0, V i when i € {1,2,...,n} .
Observe that, as 0& = 0 so that @ € 17;1,0. It was already proved that PTg, (¢) is embedded via
Y in
G® 41 Tpo, where G%is a group adjoining with 0 and Imy = K, (G)° such that K,(G)° =
{(O,gl, vy gn, @):i@ = 0 ifand only if g; = 0,where1 <i<nand @€ 7;1,0}. See [36]
and the references therein.

From the definition of K,,(G)°, now having

Lemma 4.1: The number of elements in K,,(G)° is equal to |G|*(n + 1)".

Proof: There are |G|" choices for arbitrary elements g; € G, 1 < i < n. Further, as @ € ffn'o
and there are (n + 1)™ elements in Ty, ¢, then there are |G|™(n + 1)™ elements in K, (G)°.

The following lemma has already been proved in [36] (see the references).
Lemma 4.2: Assume that [ be an ideal of K,,(G)° such that
I'={&: there exists (0,9, ..., gn, &) € I}.
So that ["is an ideal of Ty, o.
Conversely, if ] is an ideal of 7, o, then when

J ={00,g1, ., g, &) E K (G)°:@ €]},
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obtaining J is an ideal of K, (G)°.

Theorem 4.3: Let I,(G)° be a two-sided ideal of K, (G)°. Let & € Jp o be an idempotent
such that |Imé&| =k, |Doma@| =€, where 1<k <n,k<¥<nand jn,o be a two-sided
of T, 0-
Then (0,94, ..., gn, @) € I,(G)° if and only if (0,9, ...,9'n, @) € [,(G)° for any g'; €
G° with g'; = 0 if and only if i@ = 0.
Proof: Let (0, gy, ..., gn, &) € I,(G)°, such that & be given as above. Define & € T, ¢ by (1).
Let g';,...,g", € G°be g'; = 0 if and only if i@ = 0. Hence, (0,97"9'1, -, 9n"9'n, &) €
K,(G6)°, where 071 = 0. As I,,(G)° is a two-sided ideal of K, (G)° then
(0,91, G0 00,9791, -, 91 ' §) = (0, 91973 9" 130 +» InIn 9 na» AE).

Now, since @& is an idempotent, implies g;9% 9"z = 9:9: *9'i = g'i» for all i € {1,...,n},
and as @¢ € Jy ¢, then from Lemma 3.2, obtain @ = é@ = @. Therefore,

(0,91, G @(0,97°9" 1, 979", 6) = (0, 9", . 9"y @) € L, (G)°.
Furthermore, (0,91, 97" ., 9'ngnt, &) € K, (G)°, such that 0~ = 0. As I,(G)°
is a two-sided ideal then
(0,9"197" -, 992" )0, g1, e, G @) = (0,9"197 " G1g » s I 0 G, EE).
Notice, if i@ # 0, then g’; # 0, and from the definition of § gives ié = i. So,
9'197 " 9i¢ =~g’igi_1gi =g’ foralli € {1,..,n}. Ifi@ = 0,then g'; = 0 = g';9; ' gi¢ -
Since £& € Jp 0 and from Lemma 3.2, implies {& = @& = @, this gives

0,9"191" 1, 992" 60,91, o, g @) = (0,9, ., g’y @) € [,(G)°.

Corollary 4.4: Let I,,(G)° be a right (left) ideal of K,(G)°, and let @ € J, o be an
idempotent such that |Imd&| = k, |[Dom@| =¥, where 1 <k <n,k < <nand jn,O is a
two-sided of J;, ¢.Then (0, gy, ..., gn, @) € I,(G)° if and only if (0,g'y, ..., g'n, &) € [,(G)°
for any g'; € G® with g'; = 0 if and only if i@ = 0.

Proof: Clear form Theorem 4.3.

It is worth mentioning that if @ is not an idempotent, then Theorem 4.3 works only if I,,(G)°
is a left ideal, and this can be illustrated by the following lemma:

Lemma 4.5: Suppose [',(G)° is a left ideal of K,,(G)°.Then (0, g4, ..., gn, @) € I',,(G)° if
and only if (0,9'q, ..., g'n, &) € I',(G)° for any g'; € G° with g'; = 0 if and only if i@ = 0,
and @ € T;, 9, such that @ is not an idempotent.

Proof: See [36].

Theorem 4.6: Let G # {0}. The number E(n,[,(G)°) of idempotents in a two-sided ideal
I,(6)° of the set K,,(G)is

E(n,I,(6)°) = [Zn: Zn: (Z) (z ) kK| G|

k=1%¢=k
where |Imda| = k, |[Dom@| =€ wherel <k <n,andk < ¢ <n.

Proof: We want to count all the possibilities for an element = (0, gy, ..., gn, &) € I,(G)° ,
where & € jn,o be an idempotent. It is clear that A is an idempotent if and only if & is an
idempotent, and for all 1<i<n, i@ #0, g;giz = g; and giz = 1. As @ € Jpp is an
idempotent, then the number of idempotent elements in I,(G)° will equal to all the
idempotent elements in K, (G)°, [36] (see the references there).

+1,
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Corollary 4.7: Let G # {e}. The number of elements in a two-sided ideal I,,(G)° of K, (G)°
is equal to the number of its idempotent.
Proof: As all the elements in I,,(G)° is an idempotent, so it was done.

Theorem 4.8: Let G # {e}. The number NV (n,I',(G)°) of elements in a left ideal I',,(G)° of
K,.(6)° is

N, I'y(6)°) = 16]"(n + D™ — E(n, [,(6)°).
Proof: Let & € 172'0, such that & is not an idempotent. In virtue of Lemma 4.1, the number of
elements in K,(G)° is |G|™(n + 1)", then by subtracting the number of elements of I,,(G)°
in Corollary 4.7 from |K,,(G)°|, we get the result.

Example 4.9: Let ¢ = {1,a}. Wanting to calculate the number of elements of a left ideal
I'3(6)° of the set K5(G)°.

To apply the formula in Theorem 4.8, first, needing to count the number of elements in a
two-sided ideal I53(G)°.

Deducing from Corollary 4.7 that the number of elements in a two-sided ideal I3(G)° of
K3(G)° is equal to the number of its idempotents. So, for counting the number of idempotents
in I3(G)°, remember that (if A € [3(G)° € K3(G)°, means from the definition of K5(G)° that
A= (0,91, g, g3, &), where gy, go, g3 € G, and & € J3 such that @ is an idempotent and
(73'0 is a two-sided ideal of 7},,0). It is clear that
G3={1,1,1),(a,a,a),(a,1,1),(1,a,1),(1,1,a),(a,a,1),(a1,a),(1,aa)}

So, |G|® =|G3| =23 =8.

Suppose |Imé| = k, |Domd@| = £suchthat 1 <k <n,k <€ <n.

From Example 3.7, there are 23 idempotents in (73,0 in terms of £ € f]}o, and those elements
are divided into 4 cases, all of which correspond to |Im@| = k. Also, there are 4 cases to
find the idempotents in I3(G)° all of them also corresponds to k.

Case I: If |Im@| = k = 1. Three cases for |Domd| = ¢, that are either 1, 2, or 3.

Case A: If |Doma| = ¢ =1. From Example 3.7 that there are 3 idempotents in J3¢ in
terms of & € T3¢ where k = £ = 1. Observe that, in this case, there are 3 ways to choose
Ima for each of these, there is only one way to select Domda. Notice that if
(0,91, 92,93, @) € I3(G)°, then g; = 1, and from the definition of K3(G)° implies g, =
gs =0, as 2,3 & Dom@,. So, that there is only one idempotent in I5(G)° of the form
(0,91, 92,93, @) that is (0,1,0,0,&,). Similarly, when the idempotents have the form
(0,91, 92,93, @) or, (0,91, 9o, g3, &3). So, there will be three idempotents in I3(G)° where
k=¢=1.

Case B: If |[Domd| = ¢ = 2. know from Example 3.7 that there are 6 idempotents in J3 o
in terms of & € T3 4. Notice that there are 3 ways to choose Ima for each of these, there are
two ways to select Domd. Now, if Im@ = {1}, and if (0, g1, g2, g3 @s) € I3(G)°, then
g1 = land as 2 € Doma,, there are two choices for g, which are either 1 or a.

Moreover, by the definition of K3(G)° having g; = 0, as 3 € Domd@,. From that, there are 2
idempotents in I[3(G)° of the form (0,91, g2, g3 @) and they are (0,1,1,0,d,),
(0,1,a,0,a,). Similarly, if the idempotent has the form (0, g4, g5, g3, @s). Hence, there are 4
idempotents in I3(G)° where k = 1, £ = 2, and Ima@ = {1}.

As there are 3 ways to choose Im@, then there are 3 X 4 = 12 idempotents in this position.
Case C: If |Domd| = ¢ = 3. It is obvious from Example 3.7 that there are 3 ways to choose
Ima, for each of these, there is only one way to select Domd. In each way of choosing Ima
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there are 4 idempotents in I3(G)° of the form (0, g;, g,, g3, @) such that, g; = 1, where j €
Im@&, hence by the definition of K3(G)° obtain g; = 0 Vi & Dom@.

As there are 3 ways to choose Imda, there are 3 X 4 = 12 idempotents in this case.

Now, by putting everything of case k = 1, there are 3 + 12 + 12 = 27 idempotents in this
matter.

Case II: If |Imd&| = k = 2. In this case, there are two cases for |Domd|, which are either 2
or, 3.

Case A: If |Dom@| = ¢ = 2. From Example 3.7, there are 3 idempotents in J3 ¢ in terms of
¢ € f]~"3‘0 and they are

~ 0 1 2 3 ~ 0 1 2 3 ~ 0 1 2 3

a5=(p 1 2 00 @n=(o 1 030 =0 o 7 3)

It is clear that there are three ways for choosing Im@, and for each way, there is only one way
to select Doma@. Now, if (0,91, g2, 93, &13) € I3(G)°. Then, g, = g, =1 as 1,2 €
Domd,;. As well as g3 = 0 since g3 € Domda;3. Hence, there is only one idempotent in
I;(G)° of the form (0, g1, gz, g3, @13), whichis (0,1,1,0, &@;53).

In the same way, there is only one idempotent in I3(G)° of the form (0, g1, g2, g3, @14) and
(Or g1 92,93 &15)-

Now, since there are three ways for selecting Ima@ then 3 X 1 = 3 idempotents in this case.
Case B: If |Domd| =¥ = 3. It has been known from Example 3.7 that there are six
idempotents in (73'0 in terms of & € 7‘;3,0. Observe that, in this matter, there are 3 ways to
select Imd@, and for each of these, there are 2 ways to select Domd. Furthermore, in each
way of selecting Dom@ there are 2 idempotents in I5(G)° having the form (0, g,, g3, g3, &)
such that g; = 1, where j € Imd&, and g; = 0 for all i € Domd by the virtue of the definition
of K3(G)°. Hence, there are 2 X 2 = 4 idempotents in I3(G)° in every way of selecting Im@.
Since we have 3 ways of choosing Ima, therefore, there are 3 X 4 = 12 idempotents in this
case.

By putting all the cases corresponding to k = 2 together, obtaining 3 + 12 = 15 idempotents
in 5(G)°.

Case III: If |[Im@| = k = 3. There is only one case for |Domd| = ¢, that is £ = 3. From
Example 3.7, there is only one idempotent in 53,0 in terms of & € f]~"3,0 having three elements
in its image and in its domain, which is

= (0 1 2 3
) 73'0‘(0 1 2 3)' )

There is only one idempotent in I3(G)°of the form (0, 91, 92, 93, 73,0) and that it is

(0, 1,1, 1,73,0). Therefore, g;j =1, where j € Ima.

Case IV: If |Imd| = k = 0. There is only one matter for |Domd| = ¢, that is |Doméa| =

£ =0.

Obviously, there is one idempotent in J3 ¢ in terms of & € T3¢ having |Imé&| = |Domé| =
0, which is

. (01 23

w=(y 0 0 of

From that, there is only one idempotent in I3(G)° of the form (0, g1, g2, g3, &), Which is
(0,0,0,0,¢,), this is by using the definition of K3(G)° such that have g; = 0 for all i ¢
Doma.

For counting all the idempotents in I3(G)° need to count all the idempotents in the four
cases to have 27 + 15 + 1 + 1 = 44 idempotents in [3(G)°. So, there are 44 elements in a
two-sided ideal I3(G)° of K53(G)°. The result will be obtained using the formula in Theorem
4.6. Now, we are ready to use the formula Theorem 4.8 for counting the number of elements
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in a left I'3(G)° of K3(G)°. From Corollary 4.1, know |K3(G)°| = |G|*(3+ 1) =
23(3 +1)3 =512.

By subtracting the number of elements in a two-sided ideal I3(G)° from the above result,
obtaining 512 — 44 = 468 elements in a left I'3(G)° of K5(G)°.

5. Conclusions

The ideals of partial transformations semigroup PJ,, were considered such that there are
two kinds of ideals in PJ, . Firstly, (a two-sided ideal Jpo) which have two cases if
ace jn‘o, such that @ is an idempotent and [Imé&| = k, |Domd&| = £ where 0 < k < n and
k<f<n,andif @ € jn,O such that & is not an idempotent with |Im@| = |[Domd@| = n and
@ # J,. Secondly, (left ideal J',q), where @& € J'po such that @ is not an idempotent and
|Imé&| =k, [Dom@| =€ where 1 <k <n—1and k <f<n-—1. As well as the number
of elements of a two-sided ideal jn,O and a left ideal j,n,O were calculated. Proceeded by
describing the ideals of partial transformation monoid of a free (left) G -act on n-generators,
PTr, 6y Where G is a finite group and F,(G) =Uj_,; Gx;. The extension of the current work to

cover the problem of finding the number of nilpotent elements of a two-sided ideal I,,(G)°
and a left ideal I',,(G)° of K,(G)°, is deferred as a future work.
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