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Abstract: 

      Let 𝒫𝒯𝒏 be the set of all partial functions from  the set 𝒩 to the set  ℳ, where 

𝒩, ℳ ⊆ 𝑋𝑛 and 𝑋𝒏 = {1,2, … , 𝑛}. Then  𝒫𝒯𝒏 is a semigroup subject to the 

composition of partial mapping or a monoid with identity 𝒫ℐ𝒏. Here,  the ideal of  

𝒫𝒯𝒏 in terms of an element 𝜉 ∈  𝒯̃𝒏,𝟎 was studied, where 𝒯̃𝒏,𝟎 is full transformation 

monoid from the set 𝑋𝒏,𝟎 to itself such that 𝑋𝒏,𝟎 = {0} ∪ 𝑋𝒏. Finding that there are 

two kinds of ideals in 𝒫𝒯𝒏, two-sided ideals, and a left ideal. As well as the ideals of 

partial transformation monoid of a free (left) 𝐺 -act on 𝑛-generators, 𝒫𝒯𝑭𝒏(𝑮) where 

𝐺 is a finite group and 𝐹𝑛(𝐺) =∪̇𝑖=1
𝑛 𝐺𝑥𝑖  were considered. Finally, the number of 

elements of a two-sided ideal and left ideal of 𝒫𝒯𝒏 and 𝒫𝒯𝑭𝒏(𝑮) were also found. 
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 :الخلاصة 
من  𝒫𝒯𝒏 لتكن        الجزئية  الدوال  كل  مجموعة  ,𝒩عندما    ℳ  المجموعة   الى   𝒩  المجموعةهي  ℳ 

المجموعة من  جزئية  𝑋𝒏  وان𝑋𝒏 مجاميع  = {1,2, … , 𝑛}    .  لذلك𝒫𝒯𝒏   الجزئية هي الدوال  تركيب  تحت 
محايد   مع  زمرة  شبه  او  زمرة  البحث .  𝒫ℐ𝒏شبه  هذا  المجموعة    في  مثاليات  حالة    𝒫ℐ𝒏سندرس  ن  كو في 

𝜉 العنصر  ∈  𝒯̃𝒏,𝟎,    وان𝒯̃𝒏,𝟎    الزمرة شبه  تحويلات  للمجموعةهي  ان  𝑋𝒏,𝟎   الكاملة  حيث  نفسها  الى 
𝑋𝒏,𝟎 = {0} ∪ 𝑋𝒏.  البحث هذا  الزمرة    في  للشبه  المثاليات  من  نوعين  مثاليات    𝒫𝒯𝒏 وجدنا  ذات  وهي 

الزمرة   لشبه  المثاليات  دراسة  تم  وكذلك  اليسرى.  الجهة  ومثاليات  𝐹𝑛(𝐺)عندما    𝒫𝒯𝑭𝒏(𝑮)الجهتين  =

∪̇𝑖=1
𝑛 𝐺𝑥𝑖  الزمر اليسرى لاشباه  الجهة  الجهتين ومثاليات  مثاليات ذات  العناصر في  إيجاد عدد  تم  . وخيرا 

𝒫𝒯𝒏   و𝒫𝒯𝑭𝒏(𝑮) . 
 

1. Introduction  

     The present article aims to study the ideals of partial transformation semigroups on a finite 

set. Suppose that 𝑋𝒏 = {1,2, … , 𝑛} is a finite set of positive integers, which is fixed 

throughout this article. The partial transformation semigroups 𝒫𝒯𝒏 is a semigroup of all 

partially defined functions from 𝑋𝒏 to itself, i.e., 𝒫𝒯𝒏 = {𝛼|𝛼: 𝒩 → ℳ, where 𝒩, ℳ ⊆
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𝑋𝑛} under the composition of partial functions. The subsemigroup set of  𝒫𝒯𝒏 includes the 

full transformation semigroups 𝒯𝒏, which consists of all totally defined transformations on 

𝑋𝒏 (i.e., all functions 𝑋𝒏 →  𝑋𝒏), the symmetric inverse semigroups ℐ𝒮𝒏, which consists of all 

injective partial transformations on  𝑋𝒏, and the symmetric group 𝒮𝒏 which consists of all 

bijection maps and it represents the group of units of 𝒫𝒯𝒏 (and of 𝒯𝒏 and ℐ𝒮𝒏).  The 

importance of these semigroups is due to the fact of fundamental results of Cayley’s Theorem 

(for semigroups and groups), which states that every finite semigroup (or, finite group) may 

be embedded in some 𝒯𝒏 (or, some 𝒮𝒏), respectively. Also, the fundamental results of 

Vanger-Preston Theorem (for inverse semigroups), [1]. The corresponding transformation 

semigroups and other related semigroups have been studied in [2-37].  

Hawie and McFadden [12] investigated the ideals of  𝒯𝒏, these are the set  

𝐾(𝑛, 𝑟) = {𝛼 ∈  𝒯𝒏: |𝐼𝑚𝛼| ≤ 𝑟},  where 1 ≤ 𝑟 ≤ 𝑛. 
It is clear that 𝐾(𝑛, 𝑟) is a two-sided ideal, and 𝐾(𝑛, 𝑟) = 𝒯𝒏. James and R. D. Gray in [5] 

proved that where 1 ≤ 𝑟 ≤ 𝑛 − 1, then the ideal 𝐾(𝑛, 𝑟) is an idempotent generator and  

𝑟𝑎𝑛𝑘(𝐾(𝑛, 𝑟)) = 𝑖𝑑𝑟𝑎𝑛𝑘(𝐾(𝑛, 𝑟)) = {
𝑛             𝑖𝑓 𝑟 = 1;

𝑆(𝑛, 𝑟)   𝑖𝑓 𝑟 > 1,
 

where, 𝑆(𝑛, 𝑟) is the Stirling number of the second kind. If 𝑆 is a finite semigroup, then  

𝑟𝑎𝑛𝑘(𝑆) = 𝑚𝑖𝑛{|𝐴|: 𝐴 ⊆ 𝑆, < 𝐴 >= 𝑆}. 
If  𝑆 is generated by its set 𝐸(𝑆) of idempotents, then the idempotent rank of 𝑆 is defined by  

𝑖𝑑𝑟𝑎𝑛𝑘(𝑆) = 𝑚𝑖𝑛{|𝐴|: 𝐴 ⊆ 𝐸(𝑆), < 𝐴 > = 𝑆}. 
For 𝑛 ≥ 3,  the rank of 𝒫𝒯𝒏 and 𝒯𝒏 is 4, 3, respectively [11]. Garba [7] postulated the 

semigroup 

𝑃(𝑛, 𝑟) = {𝛼 ∈  𝒫𝒯𝒏: |𝐼𝑚𝛼| ≤ 𝑟}. 
And showed that, for 2 ≤ 𝑟 ≤ 𝑛 − 1, both the rank and idempotent rank are equal to 

𝑆(𝑛 + 1, 𝑟 + 1). It is worth mentioning that for 𝛼 ∈  𝒯𝒏 (or, 𝛼 ∈ 𝒫𝒯𝒏) defining the rank of 𝛼 

to be the cardinality of 𝐼𝑚𝛼 (i.e., |𝐼𝑚𝛼| = 𝑟𝑎𝑛𝑘(𝛼)). In [5], the proper two-sided ideals of 

partition monoid 𝛼 ∈ 𝒫𝒯𝒏 are studied, and it was shown that each such ideal is an idempotent 

generated semigroup. The formula is given to generate the semigroup to find the minimal 

number of elements and the minimal number of idempotent elements. 

The description of principal ideals has long been known for 𝒯𝒏, 𝒫𝒯𝒏 and  ℐ𝒮𝒏 [8] which have 

the form 𝑆𝛼𝑆 = {𝛽 ∈  𝑆: 𝑟𝑎𝑛𝑘(𝛽) ≤ 𝑟𝑎𝑛𝑘(𝛼)} where 𝑆 = 𝒯𝒏, 𝒫𝒯𝒏 or, ℐ𝒮𝒏 and 𝛼 ∈ 𝑆. 

Moreover, all two-sided ideals in 𝑆 are principal and generated by any element of the ideal, 

which has the maximal possible rank. 

 

     The full transformation semigroup of a free left 𝐺 -act on 𝑛-generators 𝒯𝑭𝒏(𝑮), where 

𝐹𝑛(𝐺) =∪̇𝑖=1
𝑛 𝐺𝑥𝑖 has been considered in [36], and its ideal has been investigated in [35]. 

This work aims to describe the ideals in partial transformation semigroup 𝒫𝒯𝒏, and in partial 

transformation semigroup of free left 𝐺 -act on 𝑛 -generators 𝒫𝒯𝑭𝒏(𝑮).  

 

     This paper is organized as follows: notation concerning preliminaries was set for full 

transformations 𝒯𝒏, and partial transformations 𝒫𝒯𝒏, in Section 2. In Section 3, the 

description of the ideals in 𝒫𝒯𝒏   were considered. Also, enumerating the number of elements 

in a two-sided ideal and a left ideal of 𝒫𝒯𝒏. In Section 4, establishing the notation concerning 

partial transformations of free-left 𝐺-act, 𝒫𝒯𝑭𝒏(𝑮), and  then describing the ideals of   𝒫𝒯𝑭𝒏(𝑮). 

Then, the number of elements in a two-sided ideal and a left ideal were found. 

 

2. Preliminaries  

     Throughout this work, we compose (partial) functions from left to right and write them to 

the right of their arguments, which means if 𝛼, 𝛽 ∈  𝒫𝒯𝑭𝒏(𝑮), then 𝑥(𝛼𝛽) = (𝑥𝛼)𝛽 for any 

𝑥 ∈ 𝑋𝒏 for which both sides of the latter equality are defined. The domain of partial 
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transformation 𝛼 is denoted by 𝐷𝑜𝑚𝛼 and its image by 𝐼𝑚𝛼. Furthermore, 𝐷𝑜𝑚𝛼𝛽 =
[𝐼𝑚𝛼 ∩ 𝐷𝑜𝑚𝛽]𝛼−1 and 𝐼𝑚𝛼𝛽 = [𝐼𝑚𝛼 ∩ 𝐷𝑜𝑚𝛽]𝛽, [13].  

 

If  𝛼 ∈ 𝒫𝒯𝒏, then 𝛼 can be illustrated as follows: 

 

𝛼 = ( 
1 2 3  ⋯
𝑦1 𝑦2 𝑦3  ⋯

  
𝑛
𝑦𝑛

), 

where 

𝑦𝑖 = {
−      𝑖𝑓    𝑖 ∉ 𝐷𝑜𝑚𝛼;
𝑖𝛼    𝑖𝑓     𝑖 ∈ 𝐷𝑜𝑚𝛼.

 

 

 Deducing from that 𝒫𝒯𝒏 has a zero element (the empty map) where for all 𝑖 ∉ 𝐷𝑜𝑚𝛼 =

{1,2, … , 𝑛} and that can be represented as 𝒫0 = ( 
1 2 3  ⋯
− − − ⋯

  
𝑛
−

).  As well as, for 𝑖 ∈

𝐷𝑜𝑚𝛼, then  𝒫𝒯𝒏 is a transformation monoid with identity 𝒫ℐ𝒏 = ( 
1 2 3  ⋯
1 2 3 ⋯

  
𝑛
𝑛

). 

Detailed information on the structure of 𝒫𝒯𝒏 is provided in [8]. It is well-known that the 

number of elements in  𝒫𝒯𝒏 is (𝑛 + 1)𝑛, this can be found in [8]. In semigroup 𝑆, an 

idempotent element 𝑒 ∈ 𝑆 with 𝑒2 = 𝑒, and the set of all idempotents in 𝑆 is denoted by 

𝐸(𝑆). Let 𝛽 ∈ 𝒫𝒯𝒏 and 𝒴 ⊆ 𝑋𝒏, the restriction of  𝛽 to  𝒴 is the function 𝛽| 𝒴  such that  

𝑦(𝛽|𝒴) = 𝑦𝛽 for all 𝑦 ∈ 𝒴. It is clear that 𝛽|𝒴 has domain 𝒴 and co-domain 𝒴𝛽. 

The following theorem examines idempotents in  𝒫𝒯𝒏: 

Theorem 2.1: [8] An 𝛼 ∈ 𝒫𝒯𝒏 is an idempotent if and only if 𝐼𝑚𝛼 ⊆ 𝐷𝑜𝑚𝛼 and the 

restriction  𝛼|𝐼𝑚𝛼=ℐ𝒏𝐼𝑚𝛼
. 

Corollary 2.2: [8] The number 𝐸( 𝒫𝒯𝒏) of idempotents in a partial transformation monoid 

 𝒫𝒯𝒏 is 

𝐸( 𝒫𝒯𝒏) = ∑ (𝑛
𝑘

)(𝑘 + 1)𝑛−𝑘𝑛
𝑘=0 , 

where |𝐼𝑚𝛼| = 𝑘. 
Now, consider the set 𝑋𝒏 ∪ {0} to be the set 𝑋𝒏,𝟎 = {0,1,2, … , 𝑛}, then the full transformation 

semigroup on 𝑋𝒏,𝟎 will be defined as follows;  

𝒯𝒏,𝟎 = {𝛼: 𝛼 is transformation on 𝑋𝒏,𝟎}. 

Clearly, 𝒯𝒏,𝟎 ≅ 𝒯𝒏+𝟏. By letting 𝒯̃𝒏,𝟎 = {𝛼̃: 𝛼 ∈  𝒯𝒏,𝟎, 0𝛼̃ = 0}. It is easy to show that the 

subset 𝒯̃𝒏,𝟎 is a submonoid of 𝒯𝒏,𝟎, where a submonoid means it is closed under 

multiplication.  And for any 𝑛 ∈ ℕ, the partial transformation monoid  𝒫𝒯𝒏 is isomorphic to 

𝒯̃𝒏,𝟎. From that, it can be deduced that 𝛼 ∈ 𝒫𝒯𝒏 if and only if  𝛼̃ ∈ 𝒯̃𝒏,𝟎 . Moreover, that can 

be illustrated as follows: 

If  

𝛼 = ( 
1 2   3           4        5    ⋯

1𝛼 2𝛼   −          −      5𝛼  ⋯
  

 𝑛 − 1                𝑛
(𝑛 − 1)𝛼         −

    ) ∈  𝒫𝒯𝒏 , 

then 

𝛼̃ = (
0       1 2   3           4          5     ⋯

   0       1𝛼 2𝛼 0           0          5𝛼  ⋯
  
 𝑛 − 1              𝑛
(𝑛 − 1)𝛼        0

    ) ∈  𝒯̃𝒏,𝟎. 

For the simplest, this work will focus on the set 𝒯̃𝒏,𝟎 instead of the set  𝒫𝒯𝒏. 

 

3. Ideals of partial transformation monoids 𝓟𝓣𝒏 

     In this section, two kinds of ideals of partial transformation monoids 𝒫𝒯𝒏 ≅ 𝒯̃𝒏,𝟎 in terms 

of an element  𝜉 ∈ 𝒯̃𝒏,𝟎  were describe;  a two-sided ideal and a left ideal. The following 

definition is necessary for this work: 
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Definition 3.1: [13] Let ∅ ≠ 𝒜 ⊆ S, where S is a semigroup. A subset 𝒜  of  S is called a left 

ideal if 𝑆𝒜 ⊆ 𝒜,  a right ideal if 𝒜𝑆 ⊆ 𝒜, that means for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝒜, then  𝑠𝑎 ∈
𝒜 (𝑎𝑠 ∈ 𝒜). A subset 𝒜 of S is a two-sided ideal if it is both a left and a right ideal.  

 

The description of a two-sided ideal 𝒥̃𝒏,𝟎 of a full transformation monoid 𝒯̃𝒏,𝟎 is obtained in 

the following lemma, where 𝛼̃ ∈ 𝒥̃𝒏,𝟎 is an idempotent. 

 

 Lemma 3.2: Let  𝒥̃𝒏,𝟎 be a non-empty subsemigroup of  𝒯̃𝒏,𝟎. Assume  𝛼̃ ∈ 𝒥̃𝒏,𝟎, such that 𝛼̃ 

is an idempotent and |𝐼𝑚𝛼̃| = 𝑘, |𝐷𝑜𝑚𝛼̃| = ℓ where 0 ≤ 𝑘 ≤ 𝑛 and 𝑘 ≤ ℓ ≤ 𝑛. Define  𝜉 ∈
𝒯̃𝒏,𝟎 by  

𝑖𝜉 = {
𝑖                for all      𝑖,    such that    𝑖𝛼̃ ≠ 0.

0              else.                                                      
                                        (1) 

Then 𝛼̃𝜉 = 𝜉𝛼̃ = 𝛼̃, and 𝒥̃𝒏,𝟎 is a two-sided ideal of 𝒯̃𝒏,𝟎.  

 

Proof: Let 𝛼̃ ∈ 𝒥̃𝒏,𝟎 such that 𝛼̃ is an idempotent, and let 𝜉 ∈ 𝒯̃𝒏,𝟎. If 𝑖𝛼̃ ≠ 0, then from the 

definition of 𝜉 having 𝑖𝜉 = 𝑖, for all 𝑖, and hence (𝑖𝛼̃)𝜉 = 𝑖𝛼̃, this gives 𝛼̃𝜉 = 𝛼̃, as well as, 

(𝑖𝜉)𝛼̃ = 𝑖𝛼̃, so 𝜉𝛼̃ = 𝛼̃.  

Now, as 𝛼̃ ∈ 𝒥̃𝒏,𝟎 which is a subsemigroup of 𝒯̃𝒏,𝟎 then 0𝛼̃ = 0, for all 𝑖, so from the 

definition of 𝜉 obtaining 0𝜉 = 0. This gives (0𝛼̃)𝜉 = 0𝜉 = 0 = (0𝜉)𝛼̃. If 𝑖𝛼̃ = 0, for some 𝑖, 
then 𝑖𝜉 = 0,  this implies (𝑖𝛼̃)𝜉 = 0𝜉 = 0 = 0𝛼̃ = (𝑖𝜉)𝛼̃. Therefore, 𝒥̃𝒏,𝟎 is a two-sided ideal 

of  𝒯̃𝒏,𝟎. 

 

The following lemma for a left ideal 𝒥̃′𝒏,𝟎 of 𝒯̃𝒏,𝟎 obtained where 𝛼̃ ∈ 𝒥̃′𝒏,𝟎, and 𝛼̃ is not an 

idempotent 

 

Lemma 3.3: Let 𝒥̃′𝒏,𝟎 be a non-empty subsemigroup of  𝒯̃𝒏,𝟎. If  𝛼̃ ∈ 𝒥̃′𝒏,𝟎 such that 𝛼̃ is not 

an idempotent and |𝐼𝑚𝛼̃| = 𝑘, |𝐷𝑜𝑚𝛼̃| = ℓ where 1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑘 ≤ ℓ ≤ 𝑛 − 1. Let 

𝜉 ∈ 𝒯̃𝒏,𝟎, then 𝜉𝛼̃ = 𝛼̃ ∈  𝒥̃′𝒏,𝟎 and  𝒥̃′𝒏,𝟎 is a left ideal, where 𝜉 defined in (1). 

 

Proof: Let 𝛼̃ ∈ 𝒥̃′𝒏,𝟎 such that 𝛼̃ is not an idempotent, and let ∈ 𝒯̃𝒏,𝟎 . If  𝑖𝛼̃ ≠ 0, then 𝑖𝜉 = 𝑖 

for all 𝑖, and from that, having (𝑖𝜉)𝛼̃ = 𝑖 𝛼̃, that means 𝜉𝛼̃ = 𝛼̃, and therefore 𝒥̃′𝒏,𝟎 will be a 

left ideal of  𝒯̃𝒏,𝟎.  

As 𝛼̃ ∈ 𝒥′̃𝒏,𝟎 which is a subsemigroup of 𝒯̃𝒏,𝟎 then 0𝛼̃ = 0, where 𝑖 = 0. From that, having 

𝑖𝜉 = 0𝜉 = 0, then (𝑖𝜉)𝛼̃ = 0𝛼̃ = 0 = 𝑖𝛼̃. When 𝑖𝛼̃ = 0, for some 𝑖, then form (1) obtaining 

𝑖𝜉 = 0, this gives (𝑖𝜉)𝛼̃ = 0𝛼̃ = 0 = 𝑖𝛼̃. Therefore, 𝒥̃′𝒏,𝟎 is a left ideal of 𝒯̃𝒏,𝟎. 

 

Now, where, 𝛼̃ ∈ 𝒥̃𝒏,𝟎, and 𝛼̃ is not an idempotent such that  |𝐼𝑚𝛼̃| = |𝐷𝑜𝑚𝛼̃| = 𝑛 and 𝛼̃ ≠

ℐ̃𝒏, ( ℐ̃𝒏 ≅ 𝒫ℐ𝒏) the identity transformation of 𝒯̃𝒏,𝟎, another description of a two-sided ideal is 

given in the following lemma.  

 Lemma 3.4:  Let  𝒥̃𝒏,𝟎 be a non-empty subsemigroup of  𝒯̃𝒏,𝟎. If  𝛼̃ ∈ 𝒥̃𝒏,𝟎 such that 𝛼̃ is not 

an idempotent with   |𝐼𝑚𝛼̃| = |𝐷𝑜𝑚𝛼̃| = 𝑛 and 𝛼̃ ≠ ℐ̃𝒏. Define 𝜉 as before in (1), then 𝛼̃𝜉 =
𝜉𝛼̃ = 𝛼̃, and 𝒥̃𝒏,𝟎 is a two-sided ideal of 𝒯̃𝒏,𝟎. 

Proof: Let 𝛼̃ ∈ 𝒥̃𝒏,𝟎 such that 𝛼̃ is not an idempotent with  |𝐼𝑚𝛼̃| = |𝐷𝑜𝑚𝛼̃| = 𝑛 and 𝛼̃ ≠

ℐ̃𝒏, 

and let  𝜉 ∈ 𝒯̃𝒏,𝟎. From the hypotheses and the definition of 𝜉 it is easy to show that 𝜉 =  ℐ̃𝒏 

the identity transformation of 𝒯̃𝒏,𝟎. Hence, (𝑖𝛼̃)𝜉 = 𝑖(𝛼̃𝜉) = 𝑖(𝜉𝛼̃) = (𝑖𝜉)𝛼̃ . That means 𝒥̃𝒏,𝟎 

is a two-sided ideal of 𝒯̃𝒏,𝟎. 
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The number of elements in a two-sided ideal  𝒥̃𝒏,𝟎 of 𝒯̃𝒏,𝟎 will be counted by the following 

lemma: 

Lemma 3.5: The number 𝒩(𝛼̃, 𝒥̃𝒏,𝟎) of elements in a two-sided ideal  𝒥̃𝒏,𝟎 of 𝒯̃𝒏,𝟎 is  

𝒩(𝛼̃, 𝒥̃𝒏,𝟎) = ∑ (𝑛
𝑘

)(𝑘 + 1)𝑛−𝑘 + (𝑛! − 1)𝑛
𝑘=0 , 

where  |𝐼𝑚𝛼̃| = 𝑘. 
Proof: Let 𝛼̃ ∈ 𝒥̃𝒏,𝟎 such that  |𝐼𝑚𝛼̃| = 𝑘, where 0 ≤ 𝑘 ≤ 𝑛. Let 𝜉 ∈ 𝒯̃𝒏,𝟎 defined by (1). 

From Lemma 3.2 and Lemma 3.4, there are two cases for 𝒥̃𝒏,𝟎 to be a two-sided ideal: 

 

Case 1: This case comes from Lemma 3.2. It is already known from Corollary 2.2 that there  

are ∑ (𝑛
𝑘

)(𝑘 + 1)𝑛−𝑘𝑛
𝑘=0 , idempotent elements in  𝒯̃𝒏,𝟎, which is the number of elements in  

𝒥̃𝒏,𝟎, as every element in 𝒥̃𝒏,𝟎 is an idempotent, in this case. 

Case 2: This case comes from Lemma 3.4, where 𝛼̃ ∈ 𝒥̃𝒏,𝟎 is not an idempotent and  

|𝐼𝑚𝛼̃| =  |𝐷𝑜𝑚𝛼̃| = 𝑛 with 𝛼̃ ≠  ℐ̃𝒏. Clearly, 𝛼̃ ∈ 𝑆̃𝒏,𝟎, where 𝑆̃𝒏,𝟎 is a symmetric group (a 

group of units of  𝒯̃𝒏,𝟎). Since there are 𝑛! elements in 𝑆̃𝒏,𝟎 [8], and as 𝛼̃ ≠ ℐ̃𝒏, then there are 

(𝑛! − 1) elements of 𝛼̃ ∈ 𝒥̃𝒏,𝟎 in this case. 

 

By putting the two cases together, having the number of elements in a two-side ideal 𝒥̃𝒏,𝟎. 

 

Lemma 3.6: The number 𝒩(𝛼̃, 𝒥̃′𝒏,𝟎) of elements in a left ideal 𝒥̃′𝒏,𝟎 of  𝒯̃𝒏,𝟎 is   

𝒩(𝛼̃, 𝒥̃′𝒏,𝟎) =   (𝑛 + 1)𝑛 − 𝒩(𝛼̃, 𝒥̃𝒏,𝟎). 

Proof: Let  𝒥̃′𝒏,𝟎 be a left ideal, and let 𝛼̃ ∈ 𝒥̃′𝒏,𝟎 such that 𝛼̃ is not an idempotent and 

|𝐼𝑚𝛼̃| = 𝑘, |𝐷𝑜𝑚𝛼̃| = ℓ where 1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑘 ≤ ℓ ≤ 𝑛 − 1. Since 𝒫𝒯𝒏 ≅ 𝒯̃𝒏,𝟎 there 

are (𝑛 + 1)𝑛 elements in  𝒯̃𝒏,𝟎. Then, the result is obtained by subtracting the value of a two-

sided ideal in Lemma 3.5 from the above value. 

 

It is helpful to illustrate the formula in Lemma 3.6 by having the following example: 

 

Example 3.7: For counting the elements in a left ideal 𝒥̃′𝒏,𝟎  of  𝒯̃𝒏,𝟎, where 𝒏 = 3. Let 𝜉 ∈

𝒯̃𝒏,𝟎 be defined by (1). In the binging, we will find the number of elements in a two-sided 

ideal 𝒥̃𝟑,𝟎. As known from Lemma 3.2 and Lemma 3.4, there are two cases for 𝒥̃𝟑,𝟎 to be a 

two-sided ideal: 

 

Case 1: This case comes from Lemma 3.2, which is if 𝛼̃ ∈ 𝒥̃𝟑,𝟎 and 𝛼̃ is an idempotent such 

that  |𝐼𝑚𝛼̃| = 𝑘, |𝐷𝑜𝑚𝛼̃| = ℓ where 0 ≤ 𝑘 ≤ 𝑛 and 𝑘 ≤ ℓ ≤ 𝑛. By Corollary 2.2, there are 

23 idempotents in 𝒥̃𝟑,𝟎. These idempotents are divided into 4 cases: 

 

Case I: If  |𝐼𝑚𝛼̃| = 𝑘 = 1.  There are 3 positions for  |𝐷𝑜𝑚𝛼̃| = ℓ, that are either 1, 2, or 3. 

1. If |𝐷𝑜𝑚𝛼̃| = ℓ=1. There are 3 idempotents in  𝒥̃𝟑,𝟎 having 𝑘 = ℓ = 1, and they are 

𝛼̃ 1 = (
0 1 2
0 1 0

    
3
0

),      𝛼̃ 2 = (
0 1 2
0 0 2

    
3
0

),      𝛼̃ 3 = (
0 1 2
0 0 0

    
3
3

). 

Then for all 𝛼̃ ∈ 𝒥̃𝟑,𝟎  having  𝑘 = ℓ = 1, and from (1) we have 𝛼̃𝜉 = 𝜉𝛼̃ = 𝛼̃.  

Therefore, there are 3 idempotents in  𝒥̃𝟑,𝟎 in terms of  𝜉 ∈ 𝒯̃𝟑,𝟎. 

2. If |𝐷𝑜𝑚𝛼̃| = ℓ=2. There are 6 idempotents in  𝒥̃𝟑,𝟎 having |𝐼𝑚𝛼̃| = 1, |𝐷𝑜𝑚𝛼̃| = 2  

and they are as follows: 

𝛼̃ 4 = (
0 1 2
0 1 1

    
3
0

),      𝛼̃ 5 = (
0 1 2
0 1 0

    
3
1

),      𝛼̃ 6 = (
0 1 2
0 2 2

    
3
0

), 
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𝛼̃ 7 = (
0 1 2
0 0 2

    
3
2

),      𝛼̃ 8 = (
0 1 2
0 3 0

    
3
3

),      𝛼̃ 9 = (
0 1 2
0 0 3

    
3
3

). 

Then for all 𝛼̃ ∈ 𝒥̃𝟑,𝟎  having  𝑘 = 1,  ℓ = 2,  and from (1) we have 𝛼̃𝜉 = 𝜉𝛼̃ = 𝛼̃.  

That means there are 6 idempotents in  𝒥̃𝟑,𝟎 in terms of  𝜉 ∈ 𝒯̃𝟑,𝟎. 

3. If |𝐷𝑜𝑚𝛼̃| = ℓ=3. In this case, there are 3 idempotents in  𝒥̃𝟑,𝟎 having |𝐼𝑚𝛼̃| = 1, 

|𝐷𝑜𝑚𝛼̃| = 3, which are as follows: 

𝛼̃ 10 = (
0 1 2
0 1 1

    
3
1

),      𝛼̃ 11 = (
0 1 2
0 2 2

    
3
2

),      𝛼̃ 12 = (
0 1 2
0 3 3

    
3
3

). 

For all 𝛼̃ ∈ 𝒥̃𝟑,𝟎  having  𝑘 = 1,  ℓ = 3,  and from (1) we have 𝛼̃𝜉 = 𝜉𝛼̃ = 𝛼̃. From that, there 

are 3 idempotents in  𝒥̃𝟑,𝟎 having |𝐼𝑚𝛼̃| = 1, |𝐷𝑜𝑚𝛼̃| = 3 in terms of  𝜉 ∈ 𝒯̃𝟑,𝟎. 
 

Case II: If  |𝐼𝑚𝛼̃| = 𝑘 = 2. There are 2 cases for  |𝐷𝑜𝑚𝛼̃| = ℓ, and they are either 2 or, 3. 

1. If |𝐷𝑜𝑚𝛼̃| = ℓ=2. In this case, there are 3 idempotents in 𝒥̃𝟑,𝟎 having |𝐼𝑚𝛼̃| = 2, 

|𝐷𝑜𝑚𝛼̃| = 2, and they are  

𝛼̃ 13 = (
0 1 2
0 1 2

    
3
0

),      𝛼̃ 14 = (
0 1 2
0 1 0

    
3
3

),      𝛼̃ 15 = (
0 1 2
0 0 2

    
3
3

). 

It is clear that for all 𝛼̃ ∈ 𝒥̃𝟑,𝟎  having  𝑘 = ℓ = 2,  and from (1) we have 𝛼̃𝜉 = 𝜉𝛼̃ = 𝛼̃. That 

means there are 3 idempotents in  𝒥̃𝟑,𝟎 in terms of  𝜉 ∈ 𝒯̃𝟑,𝟎. 

2. If |𝐷𝑜𝑚𝛼̃| = ℓ=3. In this case, there are 6 idempotents in 𝒥̃𝟑,𝟎 having |𝐼𝑚𝛼̃| = 2, 

|𝐷𝑜𝑚𝛼̃| = 3, and they are  

𝛼̃ 16 = (
0 1 2
0 1 2

    
3
2

),      𝛼̃ 17 = (
0 1 2
0 1 2

    
3
1

),      𝛼̃ 18 = (
0 1 2
0 1 3

    
3
3

), 

 

𝛼̃ 19 = (
0 1 2
0 1 1

    
3
3

),      𝛼̃ 20 = (
0 1 2
0 2 2

    
3
3

),      𝛼̃ 21 = (
0 1 2
0 3 2

    
3
3

). 

Clearly, for all 𝛼̃ ∈ 𝒥̃𝟑,𝟎  having  𝑘 = 2, ℓ = 3,  and from (1) we have 𝛼̃𝜉 = 𝜉𝛼̃ = 𝛼̃. That 

means there are 6 idempotents in  𝒥̃𝟑,𝟎 in terms of  𝜉 ∈ 𝒯̃𝟑,𝟎. 

Case III: If  |𝐼𝑚𝛼̃| = 𝑘 = 3. There is just one case for |𝐷𝑜𝑚𝛼̃|, which is ℓ = 3. 
Here, there is only one idempotent in 𝒥̃𝟑,𝟎, which is  

ℐ̃𝟑,𝟎 = (
0 1 2
0 1 2

    
3
3

), 

the identity transformation of 𝒯̃𝟑,𝟎. As 𝐼𝑚ℐ̃𝒏 = {1, 2, 3}, it is clear from (1) that 𝜉 = ℐ̃𝟑,𝟎, 

and then 𝜉ℐ̃𝟑,𝟎 = ℐ̃𝟑,𝟎𝜉 = ℐ̃𝟑,𝟎. This means there is only one element in  𝒥̃𝟑,𝟎 in terms of  𝜉 

having 3 elements in its image and in its domain. 

Case IV: If  |𝐼𝑚𝛼̃| = 𝑘 = 0. Here, there is also one matter for |𝐷𝑜𝑚𝛼̃| = ℓ, that is ℓ = 0. 
 There is only one idempotent in 𝒥̃𝟑,𝟎 such that  𝑘 = ℓ = 0, that is, the zero element  

0̃ = (
0 1 2
0 0 0

    
3
0

) = 𝑐̃0, 

where 𝑐̃0 is a constant function with image zero. 

As |𝐼𝑚0̃| = |𝐷𝑜𝑚0̃| = 0, then giving from the definition of  𝜉 that 

𝜉 = (
0 1 2
0 0 0

    
3
0

). 

That means 𝜉 = 0̃, and there is only one element in  𝒥̃𝟑,𝟎 with  𝑘 = ℓ = 0 in terms of 𝜉 ∈

𝒯̃𝟑,𝟎. 

Deducing from Case 1 that there are 23 elements in a two-sided ideal 𝒥̃𝟑,𝟎. 

Case 2: If 𝛼̃ ∈ 𝒥̃𝟑,𝟎, and 𝛼̃ is not an idempotent where  |𝐼𝑚𝛼̃| = |𝐷𝑜𝑚𝛼̃| = 3, and 𝛼̃ ≠ ℐ̃𝟑,𝟎. 

Clearly, 𝛼̃ ∈ 𝑆̃𝟑,𝟎. It is well-known that there are 3! elements in 𝑆̃𝟑,𝟎, [8]. But 𝛼̃ ≠ ℐ̃𝟑,𝟎, this 

gives   3! − 1 = 6 − 1 = 5 elements in 𝒥̃𝟑,𝟎. Now, from the definition of 𝜉 (1),  implies 

𝜉 = (
0 1 2
0 1 2

    
3
3

) = ℐ̃𝟑,𝟎, 
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this gives  𝛼̃𝜉 = 𝜉𝛼̃ = 𝛼̃. That means there are 5 elements in 𝒥̃𝟑,𝟎 in terms of 𝜉 ∈ 𝒯̃𝟑,𝟎. 

Deducing from Case 1 and Case 2 that there are 23+5=28 elements in a two-sided ideal  𝒥̃𝟑,𝟎. 
Observe that the same result was obtained using the formula in Lemma 3.5. 

Now, as known, there are (𝑛 + 1)𝑛 elements in  𝒯̃𝒏,𝟎, hence there are  (3 + 1)3 = 64 

elements in 𝒯̃𝟑,𝟎. 

By subtracting the value of a two-sided ideal 𝒥̃𝟑,𝟎 from 64, obtain 64 − 28 = 36, which 

represents the number of elements in a left ideal  𝒥̃′𝟑,𝟎. By applying Lemma 3.6, we have the 

similar result. 

 

4. Ideals of partial transformation monoids 𝓟𝓣𝐅𝒏(𝐆) 

     This section aims to study and describe the ideals of partial transformation semigroup 

𝒫𝒯𝐹𝑛(𝐺), where  𝐺 is a finite group and  𝐹𝑛(𝐺) =∪̇𝑖=1
𝑛 𝐺𝑥𝑖

 is rank (𝑛)  free left 𝐺-act. 

Denoting the semigroup of all morphisms  𝑨 ⟶ 𝑩, where 𝑨 and 𝑩 are subalgebras of 𝐹𝑛(𝐺) 

by   𝒫𝒯𝑭𝒏(𝑮). 

If  𝛼 ∈  𝒫𝒯𝑭𝒏(𝑮) then    

𝛼 = (
𝑥𝑖1

… 𝑥𝑖𝑡

𝑔𝑖1

𝛼 𝑥𝑖1𝛼̃
… 𝑔𝑖𝑡

𝛼𝑥𝑖𝑡𝛼̃
), 

where 𝛼̃ ∈  𝒫𝒯𝒏 , 𝑔𝑖1

𝛼 , … , 𝑔𝑖𝑡    

𝛼 ∈ 𝐺 , and  𝑥𝑖𝑙
𝛼 = 𝑔𝑖𝑙    

𝛼 𝑥𝑖𝑙𝛼̃
. Furthermore, for every selection of 

𝜇 ∈  𝒫𝒯𝒏 with 𝐷𝑜𝑚𝜇 = {𝑗1, … , 𝑗𝑘}, where 1 ≤ 𝑗1 < ⋯ < 𝑗𝑘 ≤ 𝑛 , 𝑘 ≥ 0 and ℎ𝑗1

𝜇
, … , ℎ𝑗𝑘

𝜇
∈ 𝐺 

gives  

 

𝜇 = (
𝑥𝑗1

… 𝑥𝑗𝑘

ℎ𝑗1

𝜇
𝑥𝑗1𝜇̃

… ℎ𝑗𝑘

𝜇
𝑥𝑗𝑘𝜇̃

) ∈  𝒫𝒯𝑭𝑛(𝑮). 

 If  𝐺 = {𝑒} (i.e., 𝐺 is a trivial set) that implies 𝒫𝒯𝑭𝒏(𝑮) is isomorphic to  𝒫𝒯𝒏, and if 𝐺 ≠ {𝑒} 

then 𝒫𝒯𝑭𝒏(𝑮) isomorphic to 𝐸𝑛𝑑𝐹𝑛(𝐺)0, the endomorphism monoid of free left 𝐺-act that is 

given by 𝐹𝑛(𝐺)0 = 𝐹𝑛(𝐺) ∪̇ {0}, when {0} is a trivial left 𝐺-act. Notice, when 𝛼 ∈
 𝐸𝑛𝑑𝐹𝑛(𝐺)0 then  

𝑥𝑖𝛼 = 𝑔𝑖
𝛼𝑥𝑖𝛼̃

, 

for some 𝑔𝑖
𝛼 ∈ 𝐺, such that 𝑔𝑖

𝛼 is defined uniquely if 𝑖𝛼̃ ≠ 0, ∀ 𝑖 when 𝑖 ∈ {1,2, … , 𝑛} . 

Observe that, as 0𝛼̃ = 0 so that 𝛼̃ ∈ 𝒯̃𝒏,𝟎. It was already proved that  𝒫𝒯𝑭𝒏(𝑮) is embedded via 

𝜓 in  

𝐺0 ≀𝑛+1 𝒯𝒏,𝟎, where 𝐺0 is a group adjoining with 0 and 𝐼𝑚𝜓 = 𝐾̃𝑛(𝐺)0 such that 𝐾̃𝑛(𝐺)0 =

{(0, 𝑔1, … , 𝑔𝑛, 𝛼̃): 𝑖𝛼̃ = 0 if and only if  𝑔𝑖 = 0, where 1 ≤ 𝑖 ≤ 𝑛 and   𝛼̃ ∈ 𝒯̃𝒏,𝟎}. See [36] 

and the references therein. 

 

 From the definition of 𝐾̃𝑛(𝐺)0 , now having 

Lemma 4.1: The number of elements in 𝐾̃𝑛(𝐺)0 is equal to |𝐺|𝑛(𝑛 + 1)𝑛. 
Proof: There are |𝐺|𝑛 choices for arbitrary elements 𝑔𝑖 ∈ 𝐺,  1 ≤ 𝑖 ≤ 𝑛. Further, as 𝛼̃ ∈ 𝒯̃𝒏,𝟎 

and there are (𝑛 + 1)𝑛 elements in 𝒯̃𝒏,𝟎, then there are |𝐺|𝑛(𝑛 + 1)𝑛 elements in 𝐾̃𝑛(𝐺)0. 
 

The following lemma has already been proved in [36] (see the references). 

Lemma 4.2: Assume that  𝐼 be an ideal of 𝐾̃𝑛(𝐺)0 such that 

𝐼′={𝛼̃: there exists  (0, 𝑔1, … , 𝑔𝑛, 𝛼̃) ∈ 𝐼}. 

So that  𝐼′ is an ideal of 𝒯̃𝒏,𝟎. 

Conversely, if 𝐽 is an ideal of 𝒯̃𝒏,𝟎, then when  

𝐽′ = {(0, 𝑔1, … , 𝑔𝑛, 𝛼̃) ∈ 𝐾̃𝑛(𝐺)0: 𝛼̃ ∈ 𝐽 }, 
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obtaining 𝐽′ is an ideal of 𝐾̃𝑛(𝐺)0. 

 

Theorem 4.3:  Let 𝐼𝑛(𝐺)0 be a two-sided ideal of  𝐾̃𝑛(𝐺)0. Let 𝛼̃ ∈ 𝒥̃𝒏,𝟎 be an idempotent 

such that  |𝐼𝑚𝛼̃| = 𝑘, |𝐷𝑜𝑚𝛼̃| = ℓ, where  1 ≤ 𝑘 ≤ 𝑛 , 𝑘 ≤ ℓ ≤ 𝑛 and 𝒥̃𝒏,𝟎 be a two-sided 

of 𝒯̃𝒏,𝟎. 

Then (0, 𝑔1, … , 𝑔𝑛, 𝛼̃) ∈ 𝐼𝑛(𝐺)0 if and only if (0, 𝑔′1, … , 𝑔′𝑛, 𝛼̃) ∈ 𝐼𝑛(𝐺)0 for any 𝑔′𝑖 ∈
𝐺0 with 𝑔′𝑖 = 0 if and only if 𝑖𝛼̃ = 0. 
Proof: Let  (0, 𝑔1, … , 𝑔𝑛, 𝛼̃) ∈ 𝐼𝑛(𝐺)0, such that 𝛼̃ be given as above. Define 𝜉 ∈ 𝒯̃𝒏,𝟎 by (1). 

Let 𝑔′1, … , 𝑔′
𝑛

∈ 𝐺0 be 𝑔′𝑖 = 0 if and only if 𝑖𝛼̃ = 0. Hence, (0, 𝑔1
−1𝑔′1, … , 𝑔𝑛

−1𝑔′𝑛, 𝜉) ∈

𝐾̃𝑛(𝐺)0, where 0−1 = 0. As 𝐼𝑛(𝐺)0 is a two-sided ideal of  𝐾̃𝑛(𝐺)0  then  

(0, 𝑔1, … , 𝑔𝑛, 𝛼̃)(0, 𝑔1
−1𝑔′1, … , 𝑔𝑛

−1𝑔′𝑛, 𝜉) = (0, 𝑔1𝑔1𝛼̃
−1𝑔′1𝛼̃, … , 𝑔𝑛𝑔𝑛𝛼̃

−1𝑔′𝑛𝛼̃ , 𝛼̃𝜉). 

Now, since 𝛼̃ is an idempotent,  implies 𝑔𝑖𝑔𝑖𝛼̃
−1𝑔′𝑖𝛼̃ = 𝑔𝑖𝑔𝑖

−1𝑔′𝑖 = 𝑔′𝑖, for all 𝑖 ∈ {1, … , 𝑛}, 

and as 𝛼̃𝜉 ∈  𝒥̃𝒏,𝟎, then from Lemma 3.2, obtain 𝛼̃𝜉 = 𝜉𝛼̃ = 𝛼̃. Therefore,   

(0, 𝑔1, … , 𝑔𝑛, 𝛼̃)(0, 𝑔1
−1𝑔′

1
, … , 𝑔𝑛

−1𝑔′
𝑛

, 𝜉) = (0, 𝑔′
1

, … , 𝑔′
𝑛

, 𝛼̃) ∈ 𝐼𝑛(𝐺)0. 

Furthermore,   (0, 𝑔′1, 𝑔1
−1  … , 𝑔′𝑛𝑔𝑛

−1, 𝜉) ∈ 𝐾̃𝑛(𝐺)0, such that 0−1 = 0. As 𝐼𝑛(𝐺)0 

is a two-sided ideal then  

(0, 𝑔′1𝑔1
−1 , … , 𝑔′𝑛𝑔𝑛

−1, 𝜉)(0, 𝑔1, … , 𝑔𝑛, 𝛼̃) = (0, 𝑔′1𝑔1
−1𝑔1𝜉 , … , 𝑔′𝑛𝑔𝑛

−1𝑔𝑛𝜉 , 𝜉𝛼̃). 

Notice, if 𝑖𝛼̃ ≠ 0, then 𝑔′𝑖 ≠ 0, and from the definition of 𝜉  gives 𝑖𝜉 = 𝑖. So,  

𝑔′𝑖𝑔𝑖
−1𝑔𝑖𝜉 = 𝑔′𝑖𝑔𝑖

−1𝑔𝑖 = 𝑔′𝑖, for all 𝑖 ∈ {1, … , 𝑛}. If 𝑖𝛼̃ = 0, then 𝑔′𝑖 = 0 = 𝑔′𝑖𝑔𝑖
−1𝑔𝑖𝜉 . 

Since 𝜉𝛼̃ ∈  𝒥̃𝒏,𝟎 and from Lemma 3.2, implies 𝜉𝛼̃ = 𝛼̃𝜉 = 𝛼̃, this gives 

(0, 𝑔′1𝑔1
−1 , … , 𝑔′𝑛𝑔𝑛

−1, 𝜉)(0, 𝑔1, … , 𝑔𝑛, 𝛼̃) = (0, 𝑔′
1

, … , 𝑔′
𝑛

, 𝛼̃) ∈ 𝐼𝑛(𝐺)0. 

 

  Corollary 4.4:  Let 𝐼𝑛(𝐺)0 be a right (left) ideal of  𝐾̃𝑛(𝐺)0, and  let 𝛼̃ ∈ 𝒥̃𝒏,𝟎 be an 

idempotent such that  |𝐼𝑚𝛼̃| = 𝑘, |𝐷𝑜𝑚𝛼̃| = ℓ, where  1 ≤ 𝑘 ≤ 𝑛 , 𝑘 ≤ ℓ ≤ 𝑛 and 𝒥̃𝒏,𝟎 is a 

two-sided of 𝒯̃𝒏,𝟎.Then (0, 𝑔1, … , 𝑔𝑛, 𝛼̃) ∈ 𝐼𝑛(𝐺)0 if and only if (0, 𝑔′1, … , 𝑔′𝑛, 𝛼̃) ∈ 𝐼𝑛(𝐺)0 

for any 𝑔′𝑖 ∈ 𝐺0 with 𝑔′𝑖 = 0 if and only if 𝑖𝛼̃ = 0. 
Proof: Clear form Theorem 4.3. 

 

It is worth mentioning that if 𝛼̃ is not an idempotent, then Theorem 4.3 works only if 𝐼𝑛(𝐺)0 

is a left ideal, and this can be illustrated by the following lemma: 

 

Lemma 4.5: Suppose  𝐼′𝑛(𝐺)0 is a left ideal of  𝐾𝑛(𝐺)0.Then (0, 𝑔1, … , 𝑔𝑛, 𝛼̃) ∈ 𝐼′𝑛(𝐺)0 if 

and only if (0, 𝑔′1, … , 𝑔′𝑛, 𝛼̃) ∈ 𝐼′𝑛(𝐺)0 for any 𝑔′𝑖 ∈ 𝐺0 with 𝑔′𝑖 = 0 if and only if 𝑖𝛼̃ = 0, 
and 𝛼̃ ∈ 𝒯̃𝒏,𝟎, such that 𝛼̃ is not an idempotent.  

Proof: See [36]. 

 

Theorem 4.6: Let 𝐺 ≠ {0}. The number 𝐸(𝑛, 𝐼𝑛(𝐺)0) of idempotents in a two-sided ideal 

𝐼𝑛(𝐺)0 of the set 𝐾̃𝑛(𝐺)0is  

𝐸(𝑛, 𝐼𝑛(𝐺)0) = [∑ ∑ (
𝑛

ℓ
) (

ℓ

𝑘
) 𝑘ℓ−𝑘|𝐺|ℓ−𝑘

𝑛

ℓ=𝑘

𝑛

𝑘=1

] + 1, 

where  |𝐼𝑚𝛼̃| = 𝑘, |𝐷𝑜𝑚𝛼̃| = ℓ where 1 ≤ 𝑘 ≤ 𝑛, and 𝑘 ≤ ℓ ≤ 𝑛. 

Proof: We want to count all the possibilities for an element = (0, 𝑔1, … , 𝑔𝑛, 𝛼̃) ∈ 𝐼𝑛(𝐺)0 , 

where  𝛼̃ ∈ 𝒥̃𝒏,𝟎  be an idempotent. It is clear that  𝐴 is an idempotent if and only if  𝛼̃ is an 

idempotent, and for all 1 ≤ 𝑖 ≤ 𝑛, 𝑖𝛼̃ ≠ 0, 𝑔𝑖𝑔𝑖𝛼̃ = 𝑔𝑖 and 𝑔𝑖𝛼̃ = 1. As 𝛼̃ ∈ 𝒥̃𝒏,𝟎 is an 

idempotent, then the number of idempotent elements in 𝐼𝑛(𝐺)0 will equal to all the 

idempotent elements in 𝐾̃𝑛(𝐺)0, [36] (see the references there). 
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Corollary 4.7: Let 𝐺 ≠ {𝑒}. The number of elements in a two-sided ideal 𝐼𝑛(𝐺)0 of  𝐾̃𝑛(𝐺)0 

is equal to the number of its idempotent. 

Proof: As all the elements in 𝐼𝑛(𝐺)0 is an idempotent, so it was done.  

 

Theorem 4.8: Let 𝐺 ≠ {𝑒}. The number 𝒩(𝑛, 𝐼′𝑛(𝐺)0) of elements in a left ideal 𝐼′𝑛(𝐺)0 of  

𝐾̃𝑛(𝐺)0 is 

𝒩(𝑛, 𝐼′𝑛(𝐺)0) = |𝐺|𝑛(𝑛 + 1)𝑛 − 𝐸(𝑛, 𝐼𝑛(𝐺)0). 
Proof: Let 𝛼̃ ∈ 𝒯̃𝒏,𝟎, such that 𝛼̃ is not an idempotent. In virtue of Lemma 4.1, the number of 

elements in 𝐾̃𝑛(𝐺)0 is  |𝐺|𝑛(𝑛 + 1)𝑛, then by subtracting the number of elements of 𝐼𝑛(𝐺)0 

in Corollary 4.7 from  |𝐾̃𝑛(𝐺)0|, we get the result.  

 

Example 4.9: Let 𝐺 = {1, 𝑎}. Wanting to calculate the number of elements of a left ideal 

𝐼′3(𝐺)0 of the set  𝐾̃3(𝐺)0.  

 To apply the formula in Theorem 4.8, first, needing to count the number of elements in a 

two-sided ideal 𝐼3(𝐺)0.  

 Deducing from Corollary 4.7 that the number of elements in a two-sided ideal 𝐼3(𝐺)0 of  

𝐾̃3(𝐺)0 is equal to the number of its idempotents. So, for counting the number of idempotents 

in 𝐼3(𝐺)0, remember that (if 𝐴 ∈ 𝐼3(𝐺)0 ⊆  𝐾̃3(𝐺)0, means from the definition of 𝐾̃3(𝐺)0 that 

𝐴 = (0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃), where 𝑔1,  𝑔2, 𝑔3 ∈ 𝐺, and 𝛼̃ ∈ 𝒥̃𝟑,𝟎 such that 𝛼̃ is an  idempotent and 

𝒥̃𝟑,𝟎 is a two-sided ideal of  𝒯̃𝟑,𝟎). It is clear that  

𝐺3 = {(1, 1, 1), (𝑎, 𝑎, 𝑎), (𝑎, 1, 1), (1, 𝑎, 1), (1,1, 𝑎), (𝑎, 𝑎, 1), (𝑎, 1, 𝑎), (1, 𝑎, 𝑎)}. 

So, |𝐺|3 = |𝐺3| = 23 = 8. 
Suppose |𝐼𝑚𝛼̃| = 𝑘, |𝐷𝑜𝑚𝛼̃| = ℓ such that 1 ≤ 𝑘 ≤ 𝑛, 𝑘 ≤ ℓ ≤ 𝑛.  

From Example 3.7, there are 23 idempotents in 𝒥̃𝟑,𝟎 in terms of 𝜉 ∈  𝒯̃𝟑,𝟎, and those elements 

are divided into 4 cases, all of which correspond to |𝐼𝑚𝛼̃| = 𝑘.  Also, there are 4  cases to 

find the idempotents in 𝐼3(𝐺)0 all of them also corresponds to 𝑘. 
Case I: If  |𝐼𝑚𝛼̃| = 𝑘 = 1.  Three cases for  |𝐷𝑜𝑚𝛼̃| = ℓ, that are either 1, 2, or 3. 

Case A: If  |𝐷𝑜𝑚𝛼̃| = ℓ = 1.  From Example 3.7 that there are 3 idempotents in  𝒥̃𝟑,𝟎 in 

terms of  𝜉 ∈ 𝒯̃𝟑,𝟎 where 𝑘 = ℓ = 1. Observe that, in this case,  there are 3 ways to choose 

𝐼𝑚𝛼̃ for each of these, there is only one way to select  𝐷𝑜𝑚𝛼̃. Notice that if 

(0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃1) ∈ 𝐼3(𝐺)0, then  𝑔1 = 1, and from the definition of 𝐾̃3(𝐺)0  implies  𝑔2 =
 𝑔3 = 0, as 2, 3 ∉ 𝐷𝑜𝑚𝛼̃1. So, that there is only one idempotent in 𝐼3(𝐺)0 of the form  
(0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃1) that is  (0, 1, 0, 0, 𝛼̃1). Similarly, when the idempotents have the form  

(0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃2) or, (0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃3). So, there will be three idempotents in 𝐼3(𝐺)0 where 

𝑘 = ℓ = 1. 

Case B: If  |𝐷𝑜𝑚𝛼̃| = ℓ = 2.  know from Example 3.7 that there are 6 idempotents in  𝒥̃𝟑,𝟎 

in terms of  𝜉 ∈ 𝒯̃𝟑,𝟎. Notice that there are 3 ways to choose 𝐼𝑚𝛼̃ for each of these, there are 

two ways to select  𝐷𝑜𝑚𝛼̃. Now, if 𝐼𝑚𝛼̃ = {1}, and if (0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃4) ∈ 𝐼3(𝐺)0,  then  

𝑔1 = 1 and as  2 ∈ 𝐷𝑜𝑚𝛼̃4, there are two choices for  𝑔2 which are either 1 or 𝑎. 

Moreover, by the definition of 𝐾̃3(𝐺)0  having  𝑔3 = 0, as 3 ∉ 𝐷𝑜𝑚𝛼̃4. From that, there are 2 

idempotents in 𝐼3(𝐺)0 of the form (0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃4) and they are (0, 1, 1, 0, 𝛼̃4), 
(0, 1, 𝑎, 0, 𝛼̃4). Similarly, if the idempotent has the form (0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃5). Hence, there are 4 

idempotents in 𝐼3(𝐺)0 where 𝑘 = 1, ℓ = 2, and 𝐼𝑚𝛼̃ = {1}.  

As there are 3 ways to choose 𝐼𝑚𝛼̃, then there are 3 × 4 = 12 idempotents in this position. 

Case C: If  |𝐷𝑜𝑚𝛼̃| = ℓ = 3. It is obvious from Example 3.7 that there are 3 ways to choose 

𝐼𝑚𝛼̃, for each of these, there is only one way to select  𝐷𝑜𝑚𝛼̃. In each way of choosing 𝐼𝑚𝛼̃ 
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there are 4 idempotents in 𝐼3(𝐺)0 of the form (0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃) such that, 𝑔𝑗 = 1, where 𝑗 ∈

𝐼𝑚𝛼̃,  hence by the definition of 𝐾̃3(𝐺)0  obtain 𝑔𝑖 = 0  ∀𝑖 ∉ 𝐷𝑜𝑚𝛼̃. 

As there are 3 ways to choose 𝐼𝑚𝛼̃, there are 3 × 4 = 12 idempotents in this case. 

Now, by putting everything of case 𝑘 = 1, there are  3 + 12 + 12 = 27 idempotents in this 

matter. 

Case II: If  |𝐼𝑚𝛼̃| = 𝑘 = 2. In this case, there are two cases for |𝐷𝑜𝑚𝛼̃|, which are either 2 

or, 3. 

Case A: If  |𝐷𝑜𝑚𝛼̃| = ℓ = 2. From Example 3.7,  there are 3 idempotents in  𝒥̃𝟑,𝟎 in terms of  

𝜉 ∈ 𝒯̃𝟑,𝟎 and they are  

𝛼̃ 13 = (
0 1 2
0 1 2

    
3
0

),      𝛼̃ 14 = (
0 1 2
0 1 0

    
3
3

),      𝛼̃ 15 = (
0 1 2
0 0 2

    
3
3

). 

It is clear that there are three ways for choosing 𝐼𝑚𝛼̃, and for each way, there is only one way 

to select  𝐷𝑜𝑚𝛼̃. Now, if (0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃13) ∈ 𝐼3(𝐺)0. Then,  𝑔1 =  𝑔2 = 1 as 1, 2 ∈
𝐷𝑜𝑚𝛼̃13. As well as 𝑔3 = 0 since 𝑔3 ∉  𝐷𝑜𝑚𝛼̃13. Hence, there is only one idempotent in 

𝐼3(𝐺)0 of the form (0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃13), which is (0, 1, 1, 0, 𝛼̃13). 
In the same way, there is only one idempotent in 𝐼3(𝐺)0 of the form (0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃14) and 
(0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃15).  
Now, since there are three ways for selecting  𝐼𝑚𝛼̃ then  3 × 1 = 3 idempotents in this case. 

Case B: If  |𝐷𝑜𝑚𝛼̃| = ℓ = 3. It has been known from Example 3.7 that there are six 

idempotents in  𝒥̃𝟑,𝟎 in terms of  𝜉 ∈ 𝒯̃𝟑,𝟎. Observe that, in this matter, there are 3 ways to 

select  𝐼𝑚𝛼̃, and for each of these, there are 2 ways to select  𝐷𝑜𝑚𝛼̃. Furthermore, in each 

way of selecting  𝐷𝑜𝑚𝛼̃ there are 2 idempotents in 𝐼3(𝐺)0 having the form (0, 𝑔1,  𝑔2, 𝑔3, 𝛼̃) 

such that 𝑔𝑗 = 1, where 𝑗 ∈ 𝐼𝑚𝛼̃, and 𝑔𝑖 = 0 for all 𝑖 ∉ 𝐷𝑜𝑚𝛼̃ by the virtue of the definition 

of 𝐾̃3(𝐺)0. Hence, there are 2 × 2 = 4 idempotents in 𝐼3(𝐺)0 in every way of selecting  𝐼𝑚𝛼̃. 

Since we have 3 ways of choosing 𝐼𝑚𝛼̃, therefore, there are  3 × 4 = 12 idempotents in this 

case. 

By putting all the cases corresponding to 𝑘 = 2 together, obtaining 3 + 12 = 15 idempotents 

in 𝐼3(𝐺)0.  

Case III: If  |𝐼𝑚𝛼̃| = 𝑘 = 3.  There is only one case for  |𝐷𝑜𝑚𝛼̃| = ℓ, that is ℓ = 3. From 

Example 3.7, there is only one idempotent in 𝒥̃𝟑,𝟎 in terms of  𝜉 ∈ 𝒯̃𝟑,𝟎 having three elements 

in its image and in its domain, which is  

 

ℐ̃𝟑,𝟎 = (
0 1 2
0 1 2

    
3
3

). 

There is only one idempotent in 𝐼3(𝐺)0of the form (0, 𝑔1,  𝑔2, 𝑔3, ℐ̃𝟑,𝟎) and that it is  

(0, 1, 1, 1, ℐ̃𝟑,𝟎). Therefore,  𝑔𝑗 = 1, where 𝑗 ∈ 𝐼𝑚𝛼̃. 

Case IV: If  |𝐼𝑚𝛼̃| = 𝑘 = 0.  There is only one matter for  |𝐷𝑜𝑚𝛼̃| = ℓ, that is  |𝐷𝑜𝑚𝛼̃| =
ℓ = 0. 
Obviously, there is one idempotent in 𝒥̃𝟑,𝟎 in terms of  𝜉 ∈ 𝒯̃𝟑,𝟎 having  |𝐼𝑚𝛼̃| = |𝐷𝑜𝑚𝛼̃| =

0, which is  

𝑐̃0 = (
0 1 2
0 0 0

    
3
0

). 

From that,  there is only one idempotent in 𝐼3(𝐺)0 of the form (0, 𝑔1,  𝑔2, 𝑔3, 𝑐̃0), which is  

(0, 0, 0, 0, 𝑐̃0), this is by using the definition of 𝐾3(𝐺)0 such that have 𝑔𝑖 = 0 for all 𝑖 ∉
𝐷𝑜𝑚𝛼̃. 

 For counting all the idempotents in 𝐼3(𝐺)0  need to count all the idempotents in the four 

cases to have 27 + 15 + 1 + 1 = 44 idempotents in 𝐼3(𝐺)0. So, there are 44 elements in a 

two-sided ideal 𝐼3(𝐺)0 of 𝐾̃3(𝐺)0. The result will be obtained using the formula in Theorem 

4.6. Now, we are ready to use the formula Theorem 4.8 for counting the number of elements 
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in a left 𝐼′3(𝐺)0 of 𝐾̃3(𝐺)0. From Corollary 4.1, know  |𝐾̃3(𝐺)0| = |𝐺|3(3 + 1)3 =
23(3 + 1)3 = 512. 

By subtracting the number of elements in a two-sided ideal 𝐼3(𝐺)0 from the above result, 

obtaining 512 − 44 = 468 elements in a left 𝐼′3(𝐺)0 of 𝐾̃3(𝐺)0. 
 

5. Conclusions  

     The ideals of partial transformations semigroup 𝒫𝒯𝒏 were considered such that there are 

two kinds of ideals in  𝒫𝒯𝒏 . Firstly, (a two-sided ideal  𝒥̃𝒏,𝟎) which have two cases if 

𝛼̃ ∈ 𝒥̃𝒏,𝟎, such that 𝛼̃ is an idempotent and |𝐼𝑚𝛼̃| = 𝑘, |𝐷𝑜𝑚𝛼̃| = ℓ where 0 ≤ 𝑘 ≤ 𝑛 and 

𝑘 ≤ ℓ ≤ 𝑛, and if  𝛼̃ ∈ 𝒥̃𝒏,𝟎 such that 𝛼̃ is not an idempotent with  |𝐼𝑚𝛼̃| = |𝐷𝑜𝑚𝛼̃| = 𝑛 and 

𝛼̃ ≠ ℐ̃𝒏. Secondly, (left ideal  𝒥′̃𝒏,𝟎), where  𝛼̃ ∈ 𝒥̃′𝒏,𝟎 such that 𝛼̃ is not an idempotent and 

|𝐼𝑚𝛼̃| = 𝑘, |𝐷𝑜𝑚𝛼̃| = ℓ where 1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑘 ≤ ℓ ≤ 𝑛 − 1.  As well as the number 

of elements of a two-sided ideal  𝒥̃𝒏,𝟎 and a left ideal  𝒥′̃𝒏,𝟎 were calculated. Proceeded by 

describing the ideals of partial transformation monoid of a free (left) 𝐺 -act on 𝑛-generators, 

𝒫𝒯𝑭𝒏(𝑮) where 𝐺 is a finite group and 𝐹𝑛(𝐺) =∪̇𝑖=1
𝑛 𝐺𝑥𝑖. The extension of the current work to 

cover the problem of finding the number of nilpotent elements of a two-sided ideal 𝐼𝑛(𝐺)0 

and a left ideal  𝐼′𝑛(𝐺)0 of  𝐾̃𝑛(𝐺)0, is deferred as a future work. 
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