ON ORTHOGONAL REVERSE DERIVATIONS OF SEMIPRIME RINGS

Abdul Rhman.H.Majeed -

Department of Mathematics, College of Science, University of Baghdad. Baghdad- Iraq

Abstract

 In this paper some results concerning two reverse derivations on semiprime rings are presented. These results are related to a result which is inspired by the classical result of E. Posner. This result is asserts that if *R* is a 2- torsion free semiprime ring, *f* and *h* are non-zero reverse derivations of *R*. Then *f h* can not be a non-zero derivation. A notion of orthogonal reverse derivations arises here.

Key word and phrases: prime ring, semi-prime ring, derivation, reverse derivation, orthogonal reverse derivation.

حول تعامد المشتقات المتعاكسة في الحلقات شبه الاولية

عبد الرحمن حميد مجيد

قسم الرياضيات, كلية العلوم,جامعة بغداد. بغداد- . العراق

الخلاصة

قدمنا في هذا البحث بعض ا لنتائج حول المشتقات المتعاكسة على الحلقات شبه الاولية.هذه النتائج لها علاقة بنتيجة بوسنر المعروفة. احدى هذه النتائج تتضمن ,اذاكانت R حلقةشبه اولية طليقة الالتواء من النمط 2 f ,و h مشتقات متعاكسة علىR . فان h f لايمكن ان تكون مشتقة غير صفرية.استخدمنا هنا مفهوم تعامد المشتقات.

 Throughout *R* will represent an associative ring, *R* is said to be 2 - torsion free if $2x = 0$, *x* $R \in \mathbb{R}$ implies $x = 0$. Recall that \mathbb{R} is prime if $x \mathbb{R}$ y $= 0$ implies $x = 0$ or $y = 0$, and *R* is semiprime if $x R x = 0$ implies $x = 0$. An additive mapping f : $R \rightarrow R$ is called a derivation if

 $f(xy)=f(x)y + xf(y)$ holds for all $x, y \in R$.

Breser and Vukman [1] have introduced the notion of a reverse derivation as, an additive mapping $f: R \rightarrow R$ satisfying

 $f(xy) = f(y) x + y f(x)$ holds for all $x, y \in R$.

1.Introduction Other properties of derivations and reverse derivations can be found in ([2], [3], [4],[5],[6]and[7])

> Two additive mapping *f*, *h*: $R \rightarrow R$ is said to be orthogonal if

f (*x*) *R* $h(y)=0=h(y)$ *R* $f(x)$ for all $x, y \in R$.

In [8] Brešar and Vukman introduced the notion of orthogonality for two derivations *f* and *h* on a semiprime ring, and they presented several necessary and sufficient conditions for *f* and *h* to be orthogonal and they gave the related result to a classical result of E. Posner [9],which state that, if *R* is prime ring of characteristic not 2,and *f, h* are non-zero derivations of *R*, then *fh* can't be a derivation. In [10] Argaç Nakajima and

Albaş introduced orthogonal generalized **3. The Results** derivations on a semiprime ring and they presented some results concerning two generalized derivations on a semiprime ring. Their results are a generalization of results of M. Brešar and J. Vukman in [8]. And in [11] Gölbaşi and Aydin, introduced the notion of orthogonal (σ, τ) – derivations and orthogonal generalized (σ, τ) – derivations. Their results abstracted some results of M. Brešar and J. Vukman[8].

In this paper, our aim is to introduce the notion of orthogonal for two reverse derivations *f* and *h* on a semiprime ring, and we presented several necessary and sufficient conditions for *f* and *h* to be orthogonal .Also we will give the same results of M. Brešar and J. Vukman [8] to orthogonal reverse derivations. We will show that if R is a 2 – torsion free semi-prime ring and *f*, *h* be reverse derivations of *R*. Then if *f* and *h* are orthogonal reverse derivations of *R*, then there exists an essential ideal *K* of *R* (i.e. $K \cap N$ \neq 0 for every ideal *N* of *R*), such that the restrictions of *f* and *h* to *N* are appropriate direct sums.

For a semiprime ring *R* and an ideal *U* of *R*, it is well- known that the left and right annihilators of *U* in *R* coincide.We denote the annihilator of *U* by Ann (*U*). Note that $U \cap$ Ann (*U*) = 0 and $U \oplus \text{Ann}(U)$ is an essential ideal of R.

2. Orthogonal reverse derivations

Now we present the definition of orthogonal reverse derivations as follows

Definition . Two reverse derivations *f* and *h* of *R* are called orthogonal if

$$
f(x) R h(y) = 0 = h (y) R f(x)
$$

for all $x, y \in R$. (1)

It is obvious that a non-zero reverse derivation can not be orthogonal on itself.

Let us consider an example of the non-zero orthogonal reverse derivations. Let *R1* and *R2* are prime rings, set $R = R_1 \oplus R_2$. Then *R* is semiprime ring .Let d_1 be a non-zero reverse derivation of R_1 . A mapping $d: R \rightarrow R$ defined by $d((r_1, r_2)) = (d_1(r_1), 0)$ is a nonzero reverse derivation of *R*. We write *d* as $d_1 \oplus 0$. Similarly, let g_2 be a nonzero reverse derivation of R_2 and define $g: R \rightarrow R$ by $g(r_1, r_2) = (0, g_2(r_2))$, thus $g=0_1 \oplus g_2$. Then *d* and *g* are orthogonal.

 The main goal of this section is to prove the following theorem, which corresponds to ([8], Theorem 1).

 Theorem 1. Let *R* be a 2-torsion free semiprime ring. Let *f* and *h* be reverse derivations of *R*. Then *f* and *h* are orthogonal if and only if one of the following conditions holds (*i*) $fh = 0$.

(*ii*) $h f = 0$.

(*iii*) $fh + hf = 0$.

(*iv*) *f h* is a derivation.

(*v*) $h f$ is a derivation.

(*vi*) $f(x)$ $h(x) = 0$, for all $x \in R$.

 $(vii) f(x) h(x) + h(x) f(x) = 0$, for all $x \in R$.

(*viii*) There exist ideals K_1 and K_2 of R such that:

(a) $K_1 \cap K_2 = 0$ and $K = K_1 \oplus K_2$ is an essential ideal of *R*.

(b) f maps R into K_l and h maps R into *K2*.

derivation of K_1 and $\theta_2: K_2 \to K_2$ is zero. If f_1 (c) The restriction of *f* to $K = K_1 \oplus K_2$ is a direct sum $f_1 \oplus \theta_2$, where $f_1: K_1 \to K_1$ is a reverse $= 0$ then $f = 0$.

(d) The restriction of h to $K = K_1 \oplus K_2$ is a direct sum $\theta_1 \oplus h_2$, where

 $0_1: K_1 \rightarrow K_1$ is zero and $h_2: K_2 \rightarrow K_2$ is a reverse derivation of K_2 . If $h_2 = 0$ then $h = 0$.

For the proof of the Theorem 1 we need the following lemmas:

free semiprime ring and a , b the elements of R . Then the following conditions are equivalent: **Lemma 1. ([8], Lemma 1).** Let *R* be a 2-torsion

(*i*) $ax b = 0$, for all $x \in R$. (*ii*) $b \times a = 0$, for all $x \in R$.

(*iii*) $a x b + b x a = 0$, for all $x \in R$.

If one of these conditions is fulfilled then $ab =$ $ba = 0$.

 $h(x) = 0$, for all $x \in R$. Then $f(x) R h(y) = 0$, for **Lemma 2. ([8], Lemma 2).** Let *R* be a semiprime ring. And suppose that additive mappings *f* and *h* of *R* into itself satisfy $f(x)$ *R* all $x, y \in R$.

ring. Let f and h be reverse derivations of R . $f(x) h (y) + h (x) f (y) = 0$, for all $x, y \in R$. **Lemma 3.** Let *R* be a 2-torsion free semiprime Then *f* and *h* are orthogonal if and only if **Proof.** Suppose that

 $f(x) h(y) + h(x) f(y) = 0$,

for all $x, y \in R$. (2) Take $y = xy$ in (2). Then we obtain $0 = \{ f(x) h(y) + h(x) f(y) \} x + f(x) y h(x) + h(x)$ By (2) we get $0 = f(x) h (xy) + h(x) f (xy)$ $\gamma f(x)$.

 $0 = f(x) y h(x) + h(x) y f(x).$

 $f(x) y h(x) = 0$, for all $x, y \in R$. And by Lemma 1, we get

 $f(x)$ *R* $h(x) = 0$, for all $x \in R$. Hence

Conversely, if f and h are orthogonal then by By Lemma 2 we see that *f* and *h* are orthogonal. Lemma1, we get

 $f(x) h(y) = h(x) f(y) = 0$, for all $x, y \in R$.

hus T

$$
f(x) h(y) + h(x) f(y) = 0, \text{ for all } x, y \in R.
$$

By a direct computation, we verify the following Let *f* and *h* be reverse derivations of any ring *R*. identities:

) *f* $(y) + x (fh)(y)$ for all $x, y \in R$. (3) (*f h*) (*x y*) = (*f h*) (*x*) *y* + *f* (*x*) *h* (*y*) +*h* (*x*

We now have enough information to prove Theorem 1.

orthogonal". Suppose that $fh = 0$. According to **Proof of Theorem 1.** (*i*) \Rightarrow "*f* and *h* are (3), we have

f (*x*) $h(y) + h(x) f(y) = 0$, for all $x, y \in R$. Hence *f* and *h* are orthogonal by Lemma 3.

i). We have $f(x)$ $y h(z) = 0$, for all $x, y, z \in R$. Hence

 $0 = f(f(x) \, v \, h(z))$

 $= f(y h(z)) f(x) + (y h(z)) f^{2}(x)$

$$
=fh(z)y f(x) + h(z)f(y)f(x) + y h(z)^{2}(x).
$$

The second and third summands are zero since f and *h* are orthogonal.

Therefore this relation is reduced to

 $(fh)(z)$ *y* $f(x) = 0$

where x , y , z are arbitrary elements in R , so take $x=h(z)$ in the above relation, we get

 $(fh)(z) R(fh)(z) = 0$, for all $z \in R$. Since *R* is semiprime, we get

 $(f h)(z) = 0$, for all $z \in R$.

 (ii) similar way used in the proof of (i) .

any reverse derivations, then we have by (3) and $(iii) \Rightarrow$ " *f* and *h* are orthogonal". If *f* and *h* are (4) that

 $(y) + x(f h) (y)(h f)(x) y + f(x) h (y) + h (x) f (y)$ Thus, if $f h + h f = 0$ then the above relation $2(f(x) h(y) + h(x) f(y)) = 0$, for all $x, y \in R$. $(f h + h f)(x y) = (f h)(x) y + f(x) h (y) + h(x) f$ *+ x* (*h f*) (*y)* $=(f h+h f)(x) y + 2f(x) h(y) + 2 h(x) f(y) + x (f h)$ $+ hf(y)$. reduces to Since *R* is 2–torsion free, we get $f(x) h(y) + h(x) f(y) = 0$, for all $x, y \in R$. By Lemma 3, we get *f* and *h* are orthogonal.

" *f* and *h* are orthogonal" \Rightarrow (*iii*). From (*i*) and (*ii*), Theorem 1, we get $fh + hf = 0$.

 $(iv) \Rightarrow f'$ and *h* are orthogonal". Since *f h* is a derivation we have

Comparing this expression with (3) , we obtain $f(x) h(y) + h(x) f(y) = 0$ Now apply Lemma 3. $(f h)(x y) = (f h)(x) y + x (f h)(y).$

 $(i) \Rightarrow (iv)$. Clear.

 $(v) \implies f'$ and *h* are orthogonal". Similar way use in the proof of (v) .

 $(ii) \Rightarrow (v)$. Clear.

 $(vi) \implies f'$ and *h* are orthogonal". A linearization of $f(x)$ $h(x) = 0$ gives for all $x, y \in R$. (5) $f(x) h(z) y + f(x) z h(y) + f(z) y h(x) + z f(y)$ By (5), $f(x) h(z) = -f(z) h(x)$ and $f(y) h(x) = -f(z)$ $-f(z) h(x) y + f(x) z h(y) + f(z) y h(x) - z f(x)$ for all $x, y, z \in R$. $f(x) h(y) + f(y) h(x) = 0$, Take $y = y z$ in (5), we obtain $h(x) = 0$, for all $x, y, z \in R$. (x) *h* (y) and so the above relation becomes $h(y) = 0$, Hence we have $f(z)$ [*y* , $h(x)$] + [$f(x)$, z] $h(y) = 0$, Where $[u, v]$ denotes the commutator $uv - vu$.

Replacing z by $f(x)$ in the above relation, we obtain

Letting $y = y w$ in the last relation results in $f^{2}(x)$ $y[w, h(x)] + f^{2}(x)[y, h(x)]$ *w f*²(*x*) [y, *h*(*x*)] = 0, for all *x*, *y* \in *R*. $0 = f^2(x) [y w, h(x)]$ $= f^2(x) z [w, h(x)].$

Hence from Lemma 2 we obtain that

$$
f \quad \begin{array}{c} 2(x) & R \quad [\quad w \quad , \quad h(y)] \quad = \quad 0, \\ \text{for all } x, y, w \in R \end{array}
$$

Replacing x by x u in (6) and using (3) yields that

 $(f^{2}(x) u + 2 f(x) f(u) + x f^{2}(u) R$ $w, h(y) = 0.$ By (6) the above relation reduces to 2 $f(x) f(u) R [w, h(y)] = 0.$ Since *R* is 2–torsion free, we have *f*(*x*) *f*(*u*) *R* [*w*, *h*(*y*)] = 0, for all $x \in R$. (7) Taking $x = x z$ in (7), we get $f(z)$ *x* $f(u)$ $R[w, h(y)] + z f(x) f(u) R[w,$ $h(y) = 0$, and by using (7), we get *f*(*z*) *x f*(*u*) *R* [*w*, *h*(*y*)] = 0. In particular, *f*(*x*) *R* [*w*, *h*(*y*)] *R f*(*x*) *R*[*w*, *h*(*y*)] = 0 since *R* is semiprime, which implies *f* (*x*) *R* [*w* , *h*(*y*)] = 0. But then also $[f(x), h(y)]$ *R* $[f(x), h(y)]$ =0, for all $x, y \in R$. Hence $f(x) h(y) = h(y) f(x)$, for all $x, y \in R$. Thus (5) can be written in the form

 $h(y) f(x) + f(y) h(x)=0$, for all $x, y \in R$. Now use Lemma 3.

" *f* and *h* are orthogonal " \Rightarrow (*vi*). If *f* and *h* are orthogonal then we have

 $f(x)$ R $h(x) = 0$, for all $x \in R$.

Then by Lemma 1, we get

 $f(x)$ $h(x) = 0$, for all $x \in R$.

(*vii*) \Rightarrow (*iv*). Take $y = x$ in (3). Then we see that

$$
(f h)(x2) = (f h)(x) x + f(x) h(x) +h(x) f(x) + x (f h) (x).
$$

Thus we have

 $(f h)(x^2) = (f h) (x)x + x(f h)(x)$, for all $x \in R$. The above relation implies that *f h* is a Jordan derivation. Then *f h* is a derivation by [[2], Theorem 1].

" *f* and *h* are orthogonal " \Rightarrow (*vii*). This follows immediately from Lemma 3.

(*viii*) \Rightarrow "*f* and *h* are orthogonal ". Clear.

From (1), we see that $h(x) \in K_2$, for all $x \in R$. " *f* and *h* are orthogonal " \Rightarrow (*viii*). Let *K₁* be an ideal of *R* generated by all $f(x)$, $x \in$ *R*, and let K_2 be *Ann* (K_1) , the annihilator of K_1 . Whenever K_l is an ideal in a semiprime ring we

have $K_1 \cap K_2 = 0$ and $K = K_1 \oplus K_2$ is an essential ideal. Thus (a) and (b) are proved.

Our next goal is to show that f is zero on K_2 . Take $k_2 \in K_2$. Then k_1 $k_2 = 0$, for all $k_1 \in K_1$. Hence

 $0 = f(k_1 k_2) = f(k_2) k_1 + k_2 f(k_1).$

 It is obvious from the definition of *K* that *f* leaves K_l invariant and, hence $k_2 f(k_l) =$ 0. Then the above relation reduces to $f(k_2)$ k_1 = 0. Since in a semiprime ring the left and right and two–sided annihilators of an ideal coincide, we then have $f(k_2) \in Ann(K_1) = K_2$. But on the other hand $f(k_2)$ belongs to the set of generating elements of K_1 . Thus $f(k_2) \in K_1 \cap K_2$ $= 0$, which means that *f* is zero on K_2 .

As we have mentioned above f leaves K_I invariant. Therefore we may define a mapping $f_1: K_1 \to K_1$ as a restriction of *f* to K_1 .

Suppose that $f_1 = 0$. Then *f* is zero on $K = K_1 \oplus$ *K2*.

Take $k \in K$ and $y \in R$, we have

 $f(y k) = f(k) y + k f(y)$

But $f(y | k) = f(k) = 0$ since $k y, k \in K$. Consequently $kf(y) = 0$, for all $y \in R$. Thus f $(y) \in Ann(K)$. But ideal *K* is essential and therefore *Ann* $(K) = 0$ by . Hence $f(y) = 0$, for all $v \in R$.

Then (c) is thereby proved.

 It remains to prove (d). First we show that *h* is zero on K_l . Take $x, y, z \in R$ and set $k_l =$ $z f(v) x$. Then

 $h (k_1) = h (x) (zf(y)) + x h (zf(y))$

 $= h(x) z f(y)+x(h f)(y)z+x f(y) h(z).$

Since *f* and *h* are orthogonal we have $h(x) z f$ $(y) = 0, f(y)h(z) = 0$ and $hf = 0$. Hence $h(k_1) = 0$. In a similar fashion we see that *h* (*z f* (y)) = 0, $h(f(y)x) = 0$ and $h(f(y))= 0$. Then *h* is zero on K_1 . Recall that *h* maps *R* into K_2 . In particular, it leaves K_2 invariant. Thus we may define $h_2: K_2 \to K_2$ as a restriction of *h* to K_2 . The proof that $h_2 = 0$ implies $h = 0$ is the same as the proof that $f_1 = 0$ implies $f = 0$. The proof of the theorem is complete.

 A well known result of E. Posner [9] states that if *R* is a prime ring of characteristic not equal 2, *f* and *h* are non-zero derivations of *R*, then *f h* can not be a non-zero derivation.

 The result which is inspired by a theorem of E. Posner, states that, if *R* is a 2–torsion free semiprime ring, *f* and *h* are non-zero reverse derivations of *R*. Then *f h* can not be a non-zero derivation. One can consider (*iv*) and (*i*), Theorem 1 as a proof of this result.

We now state some consequences of Theorem 1.

Corollary 1. Let *R* be a prime ring of characteristic not equal 2. Let *f* and *h* be reverse derivations of *R*. If *f* and *h* are satisfy one of the conditions of Theorem 1, then either $f = 0$ or $h = 0$.

Since a non-zero reverse derivation can not be orthogonal on itself we see that (*iv*) of Theorem 1 yields the following result.

Corollary 2. Let R be a 2 – torsion free semiprime ring and let *f* be a reverse derivation of *R*. If f^2 is also a derivation, then $f = 0$.

Similarly, using (*vi*) of Theorem 1, we obtain

Corollary 3. Let *R* be a 2–torsion free semiprime ring and let *f* be a reverse derivation of *R*. If $f(x)^2 = 0$ for all $x \in R$, then $f = 0$.

It is natural to ask if there is any connection between reverse derivations *f* and *h* of a ring *R*. If $f^2 = h^2$ or if $f(x)^2 = h(x)^2$, for every $x \in$ *R*.Theorem 1 enables the consideration of these problems.

In the following theorems, we answer this question.

Theorem 2. Let *R* be a 2-torsion free semiprime ring. Let *f* and *h* be reverse derivations of *R*. Suppose that $f^2 = h^2$, then $f + h$ and $f - h$ are orthogonal. Thus, there exist ideals K_1 and K_2 of *R* such that $K = K_1 \oplus K_2$ is an essential direct sum in R , $f = h$ on K_l and $f = -h$ on K_2 .

Proof. From $f^2 = h^2$ it follows immediately that

 $(f+h)(f-h)+(f-h)(f+h)=0.$

Hence $f + h$ and $f - h$ are orthogonal by *(iii)*, Theorem 1. Another part of the Theorem 2, follows from (*viii*),Theorem 1.

Corollary 4. Let *R* be a prime ring of characteristic not equal 2. Let *f* and *h* be derivations of *R*. If $f^2 = h^2$ then either $f = -h$ or $f = h$.

Theorem 3. Let *R* be a 2–torsion free semiprime ring. Let *f* and *h* be reverse derivations of *R* . If $f(x)^2 = h(x)^2$, for all $x \in R$, then $f + h$ and $f - h$ are orthogonal. Thus, there exist ideals K_I and K_2 of *R* such that $K = K_1 \oplus K_2$ is an essential direct sum in R , $f = h$ on K_1 and $f = -h$ on K_2 .

Proof. Note that $(f+h)(x)$ $(f-h)(x) + (f-h)(x)$ $f(x)$ $(f + h)(x) = 0$, for all $x \in R$. Now apply (*vii*) and (*viii*), Theorem 1.

 characteristic not equal 2. Let *f* and *h* be reverse **Corollary 5.** Let *R* be a prime ring of derivations of *R*. If $f(x)^2 = h(x)^2$, for all $x \in R$, then either $f = -h$ or $f = h$.

References

- 1. Brešar, M. and Vukman,J. **1989.** On some additive mappings in rings with involution, *Aequations Math*., **38** :178-185.
- 2. Brešar,M. **1988.** Jordan derivations on semiprime rings, *Proc. Amer. Math. Soc*. **104 :**1003 – 100.
- 3. Brešar ,M. **1993**. Centralazing mappings and derivations in prime rings, *J. Algebra* **156**:385-394.
- 4. Brešar ,M. and Mathieu,M. **1995.** Derivations mappings into the radicall, III, *J.Funct. Anal*. **133**:21-29.
- 5. Lee**,**T. K. **1997**. Derivations and centralizing mappings in prime rings, *Taiwanese J. Math*. **1**:333-342.
- 6. Bergen,J. **1983.** Derivations in prime rings, *Canad. Math. Bull*. **26** :267 – 270.
- 7. Kharchenko, V. K. **1991.** Automorphisms and derivations of associative rings, Kluwer Academic Publishers .
- 8. Brešar, M. and J. Vukman, **1991.** Orthogonal Derivations and an Extension of a Theorem of Posner, *Radovi Matematički* **5**:237 – 246.
- 9. Posner*,*E. **1957.** Derivations in prime rings*, Proc. Amer. Math. Soc*. **8***:*1093 - 1100.
- 10. Argaç, N.; Nakajima, A. and Albaş*,*E. **2004**.On Orthogonal generalized derivations of semiprime rings*, Turk J. Math*. **28** *:*185 – 194.
- 11. Gölbaşi, Ö. and Aydin,N. **2007.** Orthogonal Generalized (σ, τ) -derivations of semiprime rings*, Sibirsk. Mat. Zh*. **48**(6):1222 – 1227.