

UNSTEADY FREE CONVECTION FLOW OF THIRD GRAD ELECTRICALLY CONDUCTING FLUID PAST AN INFINITE VERTICAL PLATE

Sundos Bader Habeeb

Department of Mathematics, College of Science, University of Baghdad. Baghdad-Iraq.

Abstract

In this paper the problem of, unsteady, hydromagnatic free convective flow of viscous incompressible and electrically conducting third order fluids past in infinite vertical Porous plate in the presence of constant suction and heat absorbing sinks is considered. It is found that the velocity and temperature distribution equations are controlled by different dimensionless parameters, namely, Grashof number Gr, prandtl number pr, Eckert number Ec, sink strength s, material moduli β and coecostic parameter α . An analytic solution for each of the velocity and the temperature distribution is obtained. The velocity and temperature distributions are shown graphically taking many cases of Gr, pr, Ec, s, β and α .

,s β ,Gr, pr,Ec

Introduction

The problem of free convection flow of an electrically conducting third order fluid past a vertical plate under the influence of a magnetic field attracted many scientists, in view of its application in astrophysics, geophysics, engineeering and aerodynamics...etc.

The unsteady free convection flow past an infinite plate with constant suction and heat

sources has been studied by Pop and Soundalgekar (1970) [1]. The effect of magnetic field on the convective flow of electrically conducting fluid past a semi-infinite flat plate has been analyzed by Gupta (1971) [7], Nanda and Mohanty (1977) [7]. Sacheti, Chardran and

.α

Singh (144i) [i] have obtained an exact solution for the unsteady MHD problem Sahoo, Datta

and Biswal $({}^{\tau} \cdot \cdot {}^{\tau})$ [°] have been studied the heat transfer in mercuy $(pr=\cdot \cdot {}^{\tau} \circ)$ and electrolytic solution $(pr=\cdot \cdot)$ past an infinite porous plate with constant suction in the presence of uniform magnetic field and heat sink.

Sharma el. at $({}^{\cdot}\cdots{}^{\cdot})$ [${}^{\top}$] has been studied unsteady MHD flow and heat transfer over continuous porous moving horizontal surface in the presence of an oscillating free stream and heat Source-Noushima et-al $({}^{\cdot}\cdots{}^{\wedge})$ [${}^{\vee}$] had extended the above problem to viscoelastic fluid. Mostafa, Rafiuddin and Ramaria $({}^{\cdot}\cdots{}^{\wedge})$ [${}^{\wedge}$] have been studied unsteady MHD to extend the work of (Noushima et-al) with variable suction.

Finally, in this paper we will study unsteady free convection flow of third grade electrically conducting fluid, an analytic solution for each of the velocity and temperature distribution are obtained.

The governing equation

The Cauchy stress tenser T of a third grade fluid is defined by the Rivlin-Ericksen constitutive equation (Rivlin and Ericksen (1900)[9]

$$T = -pI + \mu A_1 + \alpha_1 A_2 + \alpha_2 A_1^2 + B_3 (trA_1^2)A_1$$

Where:

P is pressure, *I* is the identity tensor, μ is coefficient of shear viscosity, while α_1, α_1 and β_r are the material constants which are satisfy $\mu \ge \cdot, \alpha_j \ge \cdot, \beta_r \ge \cdot$ and $\alpha_1 + \alpha_r = \cdot$

 A_{λ} and A_{τ} are the first and second Rivlin-Ericksen tensors defined as

$$A_1 = \nabla V + \nabla V^T$$

$$A_{2} = \frac{\partial A_{1}}{\partial t} + V - \nabla A_{1} + A_{1} \nabla V + \nabla V^{T} A_{1}$$

Where: V is the velocity vector.

Let the x-axis be taken in the vertically upward direction along the infinite vertical plate and yaxis normal to it, neglecting the inducted magnetic field and applying Boussinesq's approximation, In this case the continuity equation is:

$$\frac{\partial v^*}{\partial y^*} = 0 \tag{1}$$

$$v^* = -v_0 \quad \text{(constant)} \tag{(Y)}$$

The momentum equation is:

$$p\left(\frac{\partial u^*}{\partial t^*} + v^* \frac{\partial u^*}{\partial y^*}\right) = \mu \frac{\partial^2 u^*}{\partial y^{*2}} + \alpha_1 \left(\frac{\partial^3 u^*}{\partial y^{*2} \partial t^*} + v^* \frac{\partial^3 v^*}{\partial y^{*2}}\right) + 6\beta_3 \left(\frac{\partial u^*}{\partial y^*}\right)^2 \frac{\partial^2 u^*}{\partial y^{*2}} + p_g \beta_g \left(T^* - T_0\right)$$
(3)

An the energy equation

$$\frac{\partial \theta^*}{\partial t^*} + v^* \frac{\partial \theta^*}{\partial y^*} = k \frac{\partial^2 \theta^*}{\partial y^{*2}} + s^* \left(\theta^* - \theta_\infty^* \right) \\ + \frac{v}{c_p} \left(\frac{\partial u^*}{\partial y^*} \right)^2$$
(4)

The associated boundary condition, of the problems are

$$u^* = 0, \ \theta^* = 1 \ at \ y^* = 0$$
 (°-a)

$$u^* \to 0$$
, $\theta^* \to 1$ at $y^* \to \infty$ (°-b)

Method of Solution

To write the governing equation in dimensionless form, we introduce the following dimensionless quantities:

$$y = \frac{v_0 y^*}{v}, t = \frac{v_0^{*^2}}{v} t^*, u = \frac{u^*}{v_0^*}, Gr = \frac{v_g \beta_3(\theta_w^* - \theta_\infty^*)}{v_0^2},$$
$$pr = \frac{v}{k}, Ec = \frac{v_0^2}{c_p(\theta_w^* - \theta_\infty^*)}, \ \theta = \frac{(\theta^* - \theta_\infty^*)}{(\theta_w^* - \theta_\infty^*)},$$
$$(6)$$
$$\alpha = \frac{\alpha_1 v_0^2}{v^2}, \beta = \frac{\beta_3 v_0^4}{v^3}, \rho = \frac{v}{\mu} \text{ and } s = \frac{s^* v}{v_0^2}$$

Where *pr*, *Gr*, *s* and *Ec* are the prandlt number, Grashof number, sink strength and Eckert number respectively.

In the view of eqs (°) and ($^{\uparrow}$), the governing equations ($^{\uparrow}$) and eqs ($^{\circ}$) can be written in dimensionless form as

$$\frac{\partial u}{\partial t} - \frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial y^2} + \alpha \left(\frac{\partial^3 u}{\partial y^2 \partial t} - \frac{\partial^3 u}{\partial y^3} \right) +$$
(Y)
$$6 \beta \left(\frac{\partial u}{\partial y} \right)^2 \left(\frac{\partial^2 u}{\partial y^2} \right) + Gr \theta$$
$$pr \frac{\partial \theta}{\partial t} - pr \frac{\partial \theta}{\partial y} = \frac{\partial^2 \theta}{\partial y^2} + pr s \theta + pr E \left(\frac{\partial u}{\partial y} \right)^2$$
(A)

The corresponding boundary conditions, in nondimensional form, are:

$$u = 0$$
, $\theta = 1$ at $y = 0$ (9-a)

and

$$u \to 0 , \theta \to 1 \text{ as } y \to \infty$$
 (9-b)

To solve eqs ($^{\vee}$) and ($^{\wedge}$), we assume

$$u(y,t) = u_0(y) + \epsilon e^{i\omega t} u_1(y) \qquad (1 - a)$$

and

$$\theta(y,t) = \theta_0(y) + \epsilon e^{i\omega t} \theta_1(y) \qquad (1 - b)$$

The substituting of eq $(1 \cdot .a, b)$ into equations (V) and (A) and equating the coefficients of $o (\in)$, gives:

zero order equation

$$-u_{0}' = u_{0}'' + Gr \theta_{0} - \alpha u_{0}''' + 6\beta u_{0}'' u_{0}'^{2} \qquad (1)$$

$$- \operatorname{pr} \theta_{0}^{'} = \theta_{0}^{'} + \operatorname{pr} s \theta_{0} + \operatorname{pr} E c \ u_{0}^{'2}$$

$$(17)$$

first order equation

$$i\omega u_{1} - u_{1}' = u_{1}'' + Gr \ \theta_{1} + \alpha \ i\omega u_{1}'' - \alpha \ u_{1}''' + 6\beta \left(u_{0}^{'2} \ u_{1}'' + 2u_{0}'' \ u_{0}' \ u_{1}' \right)$$

$$pr \ i\omega \ \theta_{1} - pr \ \theta_{1}' = \theta_{1}'' + pr \ s \ \theta_{1}$$

$$+ 2 pr \ Ec \ u_{0}' \ u_{1}'$$
(15)

and the boundary conditions are :

$$u_0 = 0, u_1 = 0, \theta_0 = 1, \theta_1 = 0 \text{ at } y \to 0$$
$$u_0 \to 0, u_1 \to 0, \theta_0 \to 0, \theta_1 \to 0 \text{ at } y \to \infty$$

Equations(11-12) are nonlinear third order we are using multiparameters perturbation technique and assuming *Ec* is very small, therefore *u*., u_1 , θ , θ can be expanded in term of *Ec* , as follows:

$$\begin{array}{c} \mathbf{u}_{0} = \mathbf{u}_{01} + \operatorname{Ec} \ \mathbf{u}_{02} \ , \ \mathbf{u}_{1} = \mathbf{u}_{11} + \operatorname{Ec} \ \mathbf{u}_{12} \\ \theta_{0} = \theta_{01} + \operatorname{Ec} \ \theta_{02} \ , \ \theta_{1} = \theta_{11} + \operatorname{Ec} \ \theta_{12} \end{array} \right\} (1\circ)$$

Putting the last equation into equations $(1)-1 \epsilon$ and equating the power of Ec, we obtain Zero order of Ec

$$- pr \,\theta_{01}^{'} = \theta_{01}^{''} + pr \,s \,\theta_{01} \tag{11}$$

$$- pr \theta_{02}' = \theta_{02}'' + pr s \theta_{02} + pr u_{01}'^{2}$$
(19)

$$-\dot{u_{01}} = u_{01}^{"} + Gr \,\theta_{01} - \alpha \,u_{01}^{"} + 6B \,u_{01}^{"} \,u_{01}^{'2} \quad (1^{N})$$
$$-\dot{u_{02}} = u_{02}^{"} + Gr \,\theta_{02} - \alpha \,u_{02}^{"} + \qquad (1^{9})$$

$$6B(u_{02}^{"}u_{02}^{'2}+2u_{01}^{"}u_{01}^{'}u_{02}^{'})$$

First order of *Ec*

$$pri\omega\theta_{11} - pr\theta_{11}' = \theta_{11}'' + prs\theta_{11} \qquad (\Upsilon \cdot)$$

$$pri\omega\theta_{12} - pr\theta_{12} = \theta_{12} + prs\theta_{12}$$

$$+ 2pru\dot{u}_{01}u\dot{u}_{11}$$
(1)

$$i \omega u_{11} - u'_{11} = u''_{11} + Gr \,\theta_{11} + \alpha \, i \,\omega \, u''_{11}$$

- $\alpha \, u'''_{11} + 6B \,(u'^2_{01} \, u'_{11} + 2u''_{01} \, u'_{01} \, u'_{11})$
 $i \omega u_{12} - u'_{12} = u''_{12} + Gr \,\theta_{12} + \alpha \, i \,\omega \, u''_{12}$
(YY)

$$-\alpha u_{12}^{""} + 6B(u_{01}^{'2}u_{12}^{"} + 2u_{01}^{'}u_{02}^{"}u_{11}^{"})$$

$$+ 2u_{01}^{"}u_{01}^{'}u_{12}^{'} + u_{02}^{"}u_{01}^{'}u_{11}^{'} + u_{02}^{'}u_{01}^{"}u_{11}^{'})$$

$$(\gamma\gamma)$$

For small value of β , we can write

$$\left. \begin{array}{c} \theta_{01} = \theta_{011} + \beta \ \theta_{012} \ , \ \theta_{02} = \theta_{021} + \beta \ \theta_{022} \\ u_{01} = u_{011} + \beta \ u_{012} \ , \ u_{02} = u_{021} + \beta \ u_{022} \\ \theta_{11} = \theta_{111} + \beta \ \theta_{112} \ , \ \theta_{12} = \theta_{121} + \beta \ \theta_{122} \end{array} \right\}$$
(Y £)

 $u_{11} = u_{111} + \beta u_{112}, \quad u_{12} = u_{121} + \beta u_{122}$ From equations (17-77), we get Zero order of *B*

$$- pr \theta_{011}^{'} = \theta_{011}^{''} + pr s \theta_{011}$$
 (Y°)

$$-pr\theta_{012}' = \theta_{012}'' + prs\theta_{012}$$
(17)

$$- pr \theta'_{021} = \theta''_{021} + pr s \theta_{021} + pr u'_{011}^{2}$$

$$- pr \theta'_{022} = \theta''_{022} + pr s \theta_{022} + 2 pr u'_{011} u'_{012}$$
(YV)

$$-u_{011}^{'} = u_{011}^{''} + Gr \,\theta_{011} - \alpha \,u_{011}^{'''}$$

$$-u_{012}^{'} = u_{012}^{''} - \alpha \,u_{012}^{'''} + Gr \,\theta_{012}$$

$$+ 6(u_{011}^{''} \,u_{011}^{'2})$$

$$(\mathbf{\tilde{\cdot}})$$

$$-\dot{u_{021}} = \ddot{u_{021}} + Gr \,\theta_{021} - \alpha \,u_{021}^{"'} \qquad (\ref{1})$$

$$-\dot{u_{022}} = \ddot{u_{022}} + Gr \,\theta_{022} - \alpha \,u_{022}^{"''}$$

$$+ 6(\ddot{u_{021}} \,u_{011}^{'2} + 2 \,\ddot{u_{011}} \,u_{011}^{'} \,u_{021}^{'})$$

$$(\ref{1})$$

First order of β

$$pri\omega\theta_{111} - pr\theta_{111} = \theta_{111} + prs\theta_{111} \qquad (\gamma\gamma)$$

$$pri\omega\theta_{112} - pr\theta_{112}' = \theta_{112}'' + prs\theta_{112}$$
 (**)

$$pri \omega \theta_{121} - pr \theta_{121} = \theta_{121}^{"} + pr s \theta_{121} + 2 pr u_{011} u_{111}^{"}$$

$$("\circ)$$

$$pri\omega\theta_{122} - pr\theta'_{122} = \theta''_{122} + prs\theta'_{122}$$

+ 2pr(u'_{011}u'_{112} + u'_{012}u'_{111}) (°7)

Habeeb 701

$$i\omega u_{111} - u_{111} = u_{111}^{"} + Gr \theta_{111}$$

$$+ \alpha i \omega u_{111}^{"} - \alpha u_{111}^{"}$$
(^{YV})

$$i\omega u_{112} - u_{112} = u_{112}^{"} + \alpha i \omega u_{112}^{"} - \alpha u_{112}^{"} + 6(u_{011}^{'2} u_{111}^{"} + 2u_{011}^{"} u_{011}^{'} u_{111}^{'})$$
(^rA)

$$i\omega u_{121} - u_{121} = u_{121} + Gr \theta_{121} + \alpha i \omega u_{121} - \alpha u_{121}^{"}$$
(^(°))

$$i \omega u_{122} - u_{122} = u_{122}^{"} + Gr \theta_{122} + Gr \theta_{122} + \alpha i \omega u_{122}^{"} - \alpha u_{122}^{"} + 6(u_{011}^{'2} u_{121}^{"} + 2u_{011}^{'} u_{021}^{'} u_{111}^{"} + 2u_{011}^{"} u_{011}^{'} u_{121}^{'} + u_{021}^{"} u_{011}^{'} u_{111}^{'} + 2u_{011}^{"} u_{011}^{'} u_{111}^{'})$$

$$(\sharp \cdot)$$

Finally if α is very small, we can write

$$\begin{array}{ll}
\theta_{011} = q + \alpha q_{0} & u_{011} = w + \alpha v \\
\theta_{012} = p + \alpha p_{0} & u_{012} = f + \alpha g \\
\theta_{021} = q_{1} + \alpha q_{2} & u_{021} = w_{1} + \alpha v_{1} \\
\theta_{022} = p_{1} + \alpha p_{2} & u_{022} = f_{1} + \alpha g_{1} \\
\theta_{111} = q_{3} + \alpha q_{4} & u_{111} = w_{2} + \alpha v_{2} \\
\theta_{112} = p_{3} + \alpha p_{4} & u_{112} = f_{2} + \alpha g_{2} \\
\theta_{121} = q_{5} + \alpha q_{6} & u_{121} = w_{3} + \alpha v_{3} \\
\theta_{122} = p_{5} + \alpha p_{6} & u_{122} = f_{3} + \alpha g_{3}
\end{array}$$
(1)

And from equations $(\gamma \circ - \gamma \circ)$, we get zero order of a

$$-prq = q'' + prsq \qquad (\xi\gamma)$$

$$-pr p = p'' + pr s p \tag{ξ^{γ}}$$

$$- pr q'_{1} = q''_{1} + pr s q_{1} + pr w'^{2}$$
 (55)

$$-w' = w'' + Grq \tag{20}$$

$$-f' = f'' + Gr \, p + 6(w'' \, w'^2) \tag{(57)}$$

$$-w_1 = w_1 + Gr q_1 \tag{(2Y)}$$

$$- pr p'_{1} = p''_{1} + pr s p_{1} + 2 pr w' f' \qquad (\sharp \Lambda)$$

$$-f'_{1} = f''_{1} + Gr p_{1} + 6(w''_{1} w'^{2} + 2w'' w' w'_{1})$$
(29)

$$pri\omega q_3 - prq_3' = q_3'' + prsq_3 \qquad (\circ \cdot)$$

$$pri\omega p_3 - pr p'_3 = p''_3 + prs p_3$$
 (°1)

$$pri \omega q_5 - pr q'_5 = q'_5 + pr s q_5$$

$$+ 2 pr w' w'_2$$
(°7)

$$pri\omega p_{5} - pr p_{5}' = p_{5}'' + pr s p_{5}''$$

$$+ 2pr(w' f_{2}' + f' w_{2}')$$
(°7)

$$i\omega w_2 - w_2' = w_2' + Gr q_3$$
 (°2)

$$i\omega f_{2} - f_{2} = f_{2}^{"} + 6(w^{2} w_{2}^{"}) + 2w^{"} w' w_{2})$$

$$i\omega w_{3} - w_{3} = w_{3}^{"} + Gr q_{5}$$
(°°)

$$i\omega f_{3} - f_{3}' = f_{3}'' + Gr p_{5} + 6[w^{2} w_{3}'' + 2w'w_{1}'w_{2}'' + 2w''w_{3}' + w_{1}''w'w_{2}' + w_{1}'w'w_{2}'' + w_{1}'w'w_{2}'' + w_{1}'w''w_{2}'']$$

$$(\circ^{\vee})$$

First order of α

$$- pr q_0 = q_0^{"} + pr s q_0 \qquad (\circ \wedge)$$

$$- pr p_0 = p_0^{"} + pr s p_0 \tag{29}$$

$$- pr q'_{2} = q''_{2} + pr s q_{2} + 2 pr w'v'$$
(1.)
$$- pr p'_{2} = p''_{2} + pr s p_{2} + 2 pr(w' q')$$

$$-pr p_2 = p_2 + pr s p_2 + 2pr(w g$$
(1))

$$+v f$$
)

$$-v' = v'' + Gr q_0 - w'''$$
(11)

$$-g = g - f + Gr p_0 + 6[w^2 v'' + 2w' v' w'']$$
(17)

$$- v'_{1} = v'_{1} + Gr q_{2} - w''_{1}$$

$$(\forall \varepsilon)$$

$$- g'_{1} = g''_{1} + Gr p_{2} - f'''_{1} + 6[(w'^{2} v''_{1} + 2w'v'w'_{1}) + 2(w''w'v'_{1} + v''w'w'_{1} + v'w''w'_{1})]$$

$$(\forall \circ)$$

$$pri \omega q_{4} - pr q_{4}^{'} = q_{4}^{''} + prs q_{4}$$
(11)

$$pri \omega p_{4} - pr p_{4}^{'} = p_{4}^{''} + prs p_{4}$$
(17)

$$pri \omega q_{6} - pr q_{6} = q_{6}^{"} + pr s q_{6}$$

+ 2 pr(w'v_{2} + v'w_{2}) (1A)

$$pri\omega p_{6} - pr p_{6}' = p_{6}'' + prs p_{6}''$$

$$+ 2pr[w'g_{2}' + v'f_{2}' + f'v_{2}' + g'w_{2}']$$
(19)

$$i\omega v_2 - v_2 = v_2^{"} + Gr q_4 + i\omega w_2^{"} - w_2^{"}$$
 (V•)

$$i\omega g_{2} - g_{2}^{'} = g_{2}^{"} + i\omega f_{2}^{"} - f_{2}^{""} + 6[w^{2}v_{2}^{"} + 2w^{'}v_{2}^{"} + 2w^{"}w^{'}v_{2}^{'}$$
(^{Y1})

$$+ v'' w' w_{2} + v' w'' w_{2}] i \omega v_{3} - v_{3} = v_{3}'' + Gr q_{6} + i \omega w_{3}'' - w_{3}'''$$
 (YY)

$$i\omega g_{3} - g_{3}^{'} = g_{3}^{"} + Gr p_{6} + i\omega f_{3}^{"} - f_{3}^{"'} + 6[w^{'2}v_{3}^{"} + 2w^{'}v^{'}w_{3}^{"} + 2(w^{'}w_{1}^{'}v_{2}^{"} + v^{'}w_{1}^{'}w_{2}^{"} + v_{1}^{'}w^{'}w_{2}^{"}) + 2(w^{''}w^{'}v_{3}^{'} + v^{''}w^{'}w_{3}^{'} + v_{1}^{''}w^{'}w_{2}^{'} + 2(w^{''}w_{1}^{''}w_{2}^{'} + v_{1}^{''}w_{3}^{''} + v_{1}^{''}w_{3}^{''} + v_{1}^{''}w_{3}^{''} + v_{1}^{''}w_{3}^{''} + v_{1}^{''}w_{3}^{''} + v_{1}^{''}w_{2}^{''} + v_{1}^{''}w_{3}^{''} + v_{1}^{''}w_{2}^{''} + v_{1}^{''}w_{2}^{''} + v_{1}^{''}w_{2}^{''} + v_{1}^{''}w_{3}^{''} + v_{1}^{''}w_{2}^{''} + v_{1}^{''}w_{3}^{''} + v_{1}^{''}w_{3}^{'''} + v_{1}^{''}w_{3}^{''} + v_{1}^{''}w_{3}^{'''} + v_{1}^{''}w_{3}^{'''} + v_{1}^{''}w_{3}^{'''} + v_{1}^{'''}w$$

Solving these differential equations $(\sharp \Upsilon - \Upsilon \Upsilon)$ with the aid of the corresponding boundary conditions and then substituting these solutions into relation $(\Upsilon \circ, \Upsilon \xi, \xi \Upsilon)$, we obtain the velocity distribution u and temperature distribution θ as

$$u = \frac{A_{1}Gr}{pr^{3/2}(-2+pr+\sqrt{pr}\sqrt{pr-4s})^{4}}e^{-y} + \frac{4Gr\alpha}{\sqrt{pr}(\sqrt{pr}+\sqrt{pr-4s})}e^{-y}y + (A_{2}Gr+\alpha Gr^{3}) + (A_{2}Gr+\alpha Gr^{3}) + A_{4}e^{\frac{1}{2}(4+pr-\sqrt{pr}\sqrt{pr-4s})y} + \frac{\beta\left(Gr^{3}\alpha A_{3}e^{-3y} + A_{4}e^{\frac{1}{2}(4+pr-\sqrt{pr}\sqrt{pr-4s})y}\right) + \frac{2}{3}Gr^{2}\alpha(A_{5}e^{\frac{1}{2}(-8+3pr+3\sqrt{pr}\sqrt{pr-4s})y} + \frac{A_{6}e^{(-1-pr-\sqrt{pr}\sqrt{pr-4s})y}}{(-2+pr+\sqrt{pr}\sqrt{pr-4s})^{4}(pr+\sqrt{pr}\sqrt{pr-4s})^{3}} + (\frac{32pr^{3}\sqrt{pr-4s}s}{\sqrt{pr}(-2+pr+\sqrt{pr}\sqrt{pr-4s})} + A_{7})e^{-y}y^{2}) + Ed\left(\left(A_{8}e^{-y}y+A_{9}e^{\frac{1}{2}(pr+\sqrt{pr}\sqrt{pr-4s})y}\right) + \alpha(A_{10}e^{-y}y^{2})\right) \\ \beta\left(A_{11}e^{\frac{1}{2}(-4-pr+\sqrt{pr}\sqrt{pr-4s})y} + A_{12}e^{\frac{1}{2}(-2+pr+\sqrt{pr}\sqrt{pr-4s})y} + A_{13}e^{\frac{1}{2}(-12+7pr+7\sqrt{pr}\sqrt{pr-4s})y}\right) + e^{i\omega t}$$

$$\begin{cases} (\frac{(2(e^{\frac{1}{2}(1+\sqrt{1+4i\omega})y} - e^{\frac{1}{2}\sqrt{pr}(\sqrt{pr} + \sqrt{pr} - 4s + 4i\omega})y)}{(pr^{2} + pr(-1 - 2s + 2i\omega) - \sqrt{pr}\sqrt{pr} - 4s + 4i\omega} + pr^{3/2} \\ + \alpha(A_{14}e^{\frac{1}{2}(1+\sqrt{1+4i\omega})y} + A_{15}e^{-\frac{1}{2}\sqrt{pr}(\sqrt{pr} + \sqrt{pr} - 4s + 4i\omega})y)}) \\ + \beta(A_{16}e^{\frac{1}{2}(5+\sqrt{1+4i\omega})y} + \alpha A_{17})e^{\frac{1}{2}(3-pr} - \sqrt{pr} - 4s + 4i\omega)y} + \\ (A_{18} + \alpha A_{19})e^{\frac{1}{2}(-2-\sqrt{pr}(\sqrt{pr} - 4s + \sqrt{pr} - 4s + 4i\omega))y} \\ + A_{20}e^{(-1+\frac{1}{2}(pr + \sqrt{pr}\sqrt{pr} - 4s) + \frac{1}{2}(-1 - \sqrt{1+4i\omega}))y} + \\ (A_{21} + \alpha A_{22})e^{\frac{1}{2}(-2 + \sqrt{pr}(\sqrt{pr} - 4s) - \sqrt{pr} - 4s + 4i\omega})y} \\ + (A_{23} + \alpha A_{24})e^{\frac{1}{2}(-3+pr + (\sqrt{pr} - 4s + \sqrt{1+4i\omega}))y} \\ + (A_{25} + \alpha A_{26})e^{-\frac{1}{2}(1-2pr + 2\sqrt{pr}\sqrt{pr} - 4s + \sqrt{1+4i\omega})y} \\ + Ec((A_{27} + \alpha A_{28})e^{-\frac{1}{2}(1-pr - \sqrt{pr}\sqrt{pr} - 4s + \sqrt{1+4i\omega})y} \\ + (A_{29} + \alpha A_{30})e^{-\frac{1}{2}(3 + \sqrt{1+4i\omega})y} + \\ A_{31}e^{-\frac{1}{2}(2+pr + \sqrt{pr}\sqrt{pr} - 4s + 4i\omega)y}) + \eta \}$$

where $A_1, A_7, A_7, \ldots, A_{71}$ and η is a function of $pr, Gr, \alpha, \beta, s, y, i, \omega$

And

$$\begin{aligned} \theta &= e^{-\frac{1}{2}(pr+\sqrt{pr}\sqrt{pr-4s})y} + Ed((\\ \frac{-2\ Gr\ pr^3\ e^{-y}}{(pr^2+pr^{3/2}\sqrt{pr-4s})(1+pr(-1+s))} + \\ &+ \alpha(\frac{8192\ Gr^2\ pr^{19/2}\sqrt{pr-4s}}{((-1+pr)^{4^2}(4-pr+\sqrt{pr}\sqrt{pr-4s})^2} \\ &+ D_1e^{-\frac{1}{2}\sqrt{pr}(\sqrt{pr}+\sqrt{pr-4s})y}) + \beta((D_2e^{-\frac{1}{2}(pr+\sqrt{pr}\sqrt{pr-4s})} \\ &+ D_3e^{-\frac{1}{2}(-6+pr+\sqrt{pr}\sqrt{pr-4s})y}) + \beta_4e^{-4y} \\ &+ D_5e^{-\frac{1}{2}(-2+3pr+3\sqrt{pr}\sqrt{pr-4s})y}) + \alpha(D_6e^{-\frac{1}{2}(-2+\sqrt{pr}\sqrt{pr-4s})y} \\ &+ D_7e^{-\frac{1}{2}\sqrt{pr}(\sqrt{pr}+\sqrt{pr-4s})y+\frac{1}{2}(2(-3+\frac{1}{2}(pr+\sqrt{pr}\sqrt{pr-4s}))+\sqrt{pr}\sqrt{pr-4s})y} \\ &+ D_8e^{-\frac{1}{2}\sqrt{pr}(\sqrt{pr}+\sqrt{pr-4s})y+\frac{1}{2}(pr+2(-2+pr+\sqrt{pr}\sqrt{pr-4s})+\sqrt{pr-4s})y} \end{aligned}$$

$$\begin{split} &+ D_{9}e^{(-8+pr-4(-pr-\sqrt{pr}\sqrt{pr-4s})y+(5-pr+\frac{9}{2}(-pr-\sqrt{pr}\sqrt{pr-4s})y}))) \\ &+ \in e^{-i\omega t} (D_{10}e^{-\frac{1}{2}(pr+\sqrt{pr}\sqrt{pr-4s+4i\omega}} + Ec((\\ &+ D_{11}e^{-\frac{1}{2}(-pr-\sqrt{pr}+\sqrt{pr-4s})y-\frac{1}{2}\sqrt{pr}(\sqrt{pr}+\sqrt{pr-4s+4i\omega})y}) \\ &+ \alpha (e^{-\frac{1}{2}(\sqrt{pr}(\sqrt{pr}+(\sqrt{pr-4s-4i\omega})y} \\ &+ D_{12}e^{-\frac{1}{2}(-2pr+\sqrt{1+4i\omega}-\sqrt{pr}(\sqrt{pr-4s}+(\sqrt{pr-4s-4i\omega}))y} \\ &+ D_{13}e^{-\frac{1}{2}(1-2pr+\sqrt{1+4i\omega}-\sqrt{pr}(\sqrt{pr-4s}+(\sqrt{pr-4s-4i\omega}))y} \\ &+ D_{14}e^{-\frac{1}{2}(pr+\sqrt{pr}+\sqrt{pr-4s+4i\omega}+2(-1+\frac{1}{2}(-pr-\sqrt{pr}\sqrt{pr-4s+4i\omega}))y} \\ &+ D_{15}e^{-\frac{1}{2}(1-2pr+\sqrt{1+4i\omega}-\sqrt{pr}(\sqrt{pr-4s}+(\sqrt{pr-4s-4i\omega}))y} \\ &+ D_{15}e^{-\frac{1}{2}(1-2pr+\sqrt{1+4i\omega}-\sqrt{pr}(\sqrt{pr-4s}+(\sqrt{pr-4s-4i\omega}))y} \end{pmatrix}))) + \psi \end{split}$$

where D_1 , D_2 , ..., D_2 and ψ is a function of pr, Gr, α , β , s, ω , y, i

Skin Friction and Nusselt number

We can find the coefficient of Skin Friction by using the formula

$$\begin{split} C_{p} &= - \left(\frac{\partial u}{\partial y} \right)_{y \to 0} \\ &= \frac{2 \, G r}{- \, p r - \sqrt{p r} \sqrt{p r - 4 s}} + \frac{2 \, G r \, \alpha}{(\sqrt{p r} (\sqrt{p r} + \sqrt{p r - 4 s}))} \\ \frac{(-2 - \, p r - \sqrt{p r} \sqrt{p r - 4 s} \, (-p r^{2} - p r^{3/2} \sqrt{p r - 4 s}))}{(-2 + \, p r + \sqrt{p r} \sqrt{p r - 4 s})^{2}} \\ \frac{4 \, G r \, \alpha (-2 + \, p r + p r (p r + \sqrt{p r} \sqrt{p r - 4 s})^{2})}{\sqrt{p r} (\sqrt{p r} + \sqrt{p r - 4 s})(-2 + \, p r + \sqrt{p r} \sqrt{p r - 4 s})^{2}} + \\ &+ \beta (\frac{4 \, G r^{3}}{(-2 + \, p r + \sqrt{p r} \sqrt{p r - 4 s})^{3}} (24 \sqrt{p r} (\sqrt{p r - 4 s})) \\ (-1 - \, p r - \sqrt{p r} \sqrt{p r - 4 s})(1 + \, p r + \sqrt{p r} \sqrt{p r - 4 s})^{3} - \\ \frac{(6 \sqrt{p r} (\sqrt{p r} \sqrt{p r - 4 s})(4 + p r + \sqrt{p r} \sqrt{p r - 4 s})^{3}}{(2 + p r + \sqrt{p r} \sqrt{p r - 4 s})} \\ Ec(-(4 \, G r^{3} (9 \, p r^{3} (-1 + s) + 9 \, p r^{5/2} \sqrt{p r - 4 s} (-1 + s)))(p r^{3/2}) \end{split}$$

$$\begin{split} &+ pr\sqrt{pr-4s-3}\sqrt{prs-\sqrt{pr-4ss}} \\ &-9pr^2(-3+s+3s^2)+pr(-20-7s+72s^2)+ \\ &2(\sqrt{pr}(10-23s)\sqrt{pr-4s}+20s-pr^3(-5+5s) \\ &+ \in e^{-i\omega t}\left(\beta(6\,Gr^3((Gr(+\sqrt{pr}\sqrt{pr-4s+4i\omega})^2 \\ (\frac{1}{2}(pr+\sqrt{pr-4s+4i\omega})))/(2(pr(-1-2s+2i\omega))' \\ &-\sqrt{pr}\sqrt{pr-4s+4i\omega}+pr^{3/2}\right)+ \\ &(2iGr(pr+\sqrt{pr}\sqrt{pr-4s+4i\omega})^2 + \\ &i\omega)\omega)/(pr^2-\sqrt{pr}\sqrt{pr-4s+4i\omega})^2 + \\ &i\omega)\omega)/(pr^2-\sqrt{pr}\sqrt{pr-4s+4i\omega}+pr^{3/2}\sqrt{pr-4s+4i\omega}) \\ &+ pr^{3/2}\sqrt{pr-4s+4i\omega}-2i\omega)))/ \\ &((-1+\frac{1}{2}(-\sqrt{pr}\sqrt{pr-4s}))^2 \\ &(+(pr+\sqrt{pr}\sqrt{pr-4s+4i\omega})^2-i\omega)(1+4i\omega) \\ &+ pr(10+5s-36s^2)+\sqrt{pr-4s}(-14+5s^2) \\ &+ pr^2(-14+3s+15s^2))))/ \\ &(\sqrt{pr}(\sqrt{pr}+\sqrt{pr-4s})^3(1+pr(-1+s)) \\ &(40+9pr^3+9pr^{5/2}\sqrt{pr-4s} \\ &- 9pr^{3/2}\sqrt{pr-4s}(2+s)pr(-7+36s)))+ \in e^{i\omega t} (\\ &(\beta(-(Gr^3\,pr^{12}s^3)/((-1+\frac{1}{2}(-pr-\sqrt{pr}\sqrt{pr-4s+4i\omega})^2 \\ &(1-2pr-\sqrt{pr}\sqrt{pr-4s}+pr^{3/2}\sqrt{pr-4s+4i\omega}-2i\omega)) \\ &(pr+(-1+\sqrt{1+4i\omega})(+\sqrt{1+4i\omega}-\sqrt{pr-4s+4i\omega})^2 \\ &(\frac{Gr^2\,pr(pr+\sqrt{pr}\sqrt{pr-4s}+4i\omega-2i\omega)}{(pr^2++pr^{3/2}\sqrt{pr-4s+4i\omega}-2i\omega)})) + \zeta \\ \end{aligned}$$

where ζ is a function of $pr, Gr, \alpha, \beta, s, \omega, y, i$. The rate of heat transfer in terms of Nusselt number at the plate is

$$\begin{split} Nu &= -\left(\frac{\partial \theta}{\partial y}\right)_{\theta \to 0} \\ &= -\left(\frac{1}{2}(-pr - \sqrt{pr}\sqrt{pr - 4s}) + Ec\right) \\ &\left(-1 + pr + \frac{1}{2}(4 - 3pr - 3\sqrt{pr}\sqrt{pr - 4s})\right) \\ &\left(\frac{1}{2}(-pr - \sqrt{pr}\sqrt{pr - 4s}) + pr\left(+\frac{1}{2}(-3pr - 3\sqrt{pr}\sqrt{pr - 4s})s\right)\right) / \left(\left(\sqrt{pr}\sqrt{pr - 4s}\right)s\right) \end{split}$$

$$+\beta(-(8192Gr^{4} pr(\frac{(-pr-\sqrt{pr}\sqrt{pr-4s})}{2 pr(\sqrt{pr}+\sqrt{pr-4s})^{4}} + \alpha(pr^{4}(-\frac{6Gr^{4}}{((-1+\frac{1}{2}(-pr-\sqrt{pr}\sqrt{pr-4s}))^{5}))}) + \alpha(6Gr^{3}(1+\sqrt{1+4i\omega}))/((-1+\frac{1}{2}(-\sqrt{pr}\sqrt{pr-4s}))^{2})) + \alpha(6Gr^{3}(1+\sqrt{1+4i\omega}))/((-1+\frac{1}{2}(-\sqrt{pr}\sqrt{pr-4s}))^{2})) + (3Gr^{3}(\sqrt{1+4i\omega})^{2})/((-1+\frac{1}{2}(-pr-\sqrt{pr-4s}))^{2}) + (3Gr^{3}(\sqrt{1+4i\omega})^{2})/((-1+\frac{1}{2}(-pr-\sqrt{pr-4s}))^{2})) + (pr^{2}+pr(-1-2s+2i\omega)-\sqrt{pr}\sqrt{pr-4s}))^{2} - \sqrt{pr}\sqrt{pr-4s+4i\omega} - 2i\omega)) + \varphi$$

Where φ is a function of $pr, Gr, \alpha, \beta, s, \omega, y, i$

Results and discussions

In this section, we will study the effects of different dimensionless numbers upon velocity and temperature distribution.

Figures (1-7), illustrate the effect of each of material moduli, coecostic parameter, prandtl number, Grashof number, sink strength and Eckerts number, upon the velocity component respectively.

Figure (1) exhibit the effect of material moduli β upon the velocity component, the velocity increases as material moduli ($\beta = \dots \circ, \dots, \dots, \dots, \uparrow, \uparrow$) increase. Figures (\uparrow, \uparrow) show the effects of the coecostic parameter upon the velocity component, we observe that there is small change in velocity values even for large value of α .

From figure (ξ), it is observed that the velocity is increases when there is increasing in Grashof number . However, figure (\circ), shows opposite effect with prandtl number . The sink strength has the same effects as Grashof number with some different in velocity values, see figure (7).

The effect of dimensionless parameters upon temperature are shown in figures $(\gamma - \gamma \gamma)$.

We note that there is increasing in temperature values as the material parameter β decreases, but this is true only for very small values of β , see figures ($^{\vee}$, $^{\wedge}$).

Figure (4, 1, 1), shows the effect of coecostic parameter α upon the temperature, this effect is clear for large values of α . Prandtl number and Grashof number have opposite effects upon temperature distribution, see figures(11) and

Iraqi Journal of Science, Vol. 01, No. 2, T. 1., PP. 727-

(17) .Figure (17) shows the effect of s upon the temperature distribution.

Table ' shows that as material moduli β increase there is increasing in the value of the skin frication coefficient C_p , also as α increases there is a small increasing in the C_p value. Table ' shows that as Gr or s increasing there is increasing in C_p . However, the increasing in prandtle number resulting a decreasing in C_p . Table '' shows that as α or *B* increasing there is increasing in the Nusselte number *Nu*. Table ' shows that as *Gr* increasing there is increasing in Nusselte number *Nu*, however as sink strength s or Prandtl number *pr* increase loads to a decreasing in Nusselte number *Nu*.

Figure ": $Gr=\circ, Ec=\cdots, 0$, $\omega=\circ$, $pr=\cdots, \circ$, $s=\cdots, \circ$, $\beta=\cdots, \circ$, $t=Pi/\cdots, c=\cdots, \circ$ $\alpha=\circ, \alpha=\circ, \alpha=\circ$

Figure $: Ec = \cdots$, $\omega = \circ$, $pr = \cdots$, \circ , S=..., $\alpha = \cdots$, $\beta = \cdots$, $t = Pi/\cdots$, $c = \cdots$, $Gr = \circ$, $Gr = 1 \circ$, $Gr = 1 \circ$, $Gr = 1 \circ$.

Figure •: $Gr=\bullet$, $Ec=\cdots$, $\omega=\bullet$, $s=\cdots$, $\alpha=\bullet,\bullet$, $\beta=\cdot,\bullet$, $t=Pi/1\cdot, c=\cdot,\bullet$ $Pr=\cdots$, $pr=\cdots$, $pr=\bullet,\bullet$

Figure ': $Gr=\circ$, $Ec=\cdots$ ', $\omega=\circ$, $pr=\cdots$ ' $\alpha=\cdots$ ', $\beta=\cdots$ ', $t=Pi/\cdots$, $C=\cdots$ ' $s=\cdots$ ', $s=\cdots$ ', $s=\cdots$ ', $s=\cdots$ '', s="

Figure $: Gr = \circ, Ec = ... \land, \omega = \circ, pr = ... \land \circ$

3

1

y value

4

Habeeb 701

Figure $\forall \forall : Gr = \circ, Ec = \cdots \forall, \omega = \circ, pr = \cdots \forall \circ,$ $\alpha = \cdots, \beta = \cdots, \beta = 1 \cdots, t = Pi/1 \cdots, C = \cdots, \tau$ $S=...\circ S=..., S=...\circ S=...$

. ۱ °.		
α	β	C_p
•.•)	•.•••	•_177775
• • •)	۰ <u>.</u> ۰۰٤	•_077171
•.•)	•.•٣	•. ٧١•٨٩٤
•.•1	•.1	•_^^
• • •)	١	1.77797
• • •)	۳_۲	۲_۳۱۱۳۷
• • •)	١.٨	۳.۲۰۰۳٥
• • •)	۲	۳ <u>.</u> 00090
• • • • • 1	•_£	•_177777
• • • • 1	•_£	• 1999 . •
• • • • 1	•_£	• 1777779
•.•1	۰.٤	. 1777777
١	•_£	• . ٣٥٦٩٣٨
٤	• . ٤	•_ ٣٦١٤١٦
٨	•_£	•_ ٣٦ ٧٣٨٧
۱.	•_£	

, \in -..., $Gr=\circ$, Ec = ..., $\mathcal{O}=\circ$, pr = ..., $r \circ$, s=

Table \:Values of Sink Friction Cp when t=Pi/\.

Table **Y**:Values of Sink Friction C_p when t=Pi/1. , $\epsilon = \cdots$, $Ec = \cdots$, $\omega = \circ$, $\alpha = \cdots$, $\beta =$ ٠.٤.

-			
Gr	pr	S	C_p
٥	• . • ٢٥	•.10	• . 700571
١.	• . • ٢٥	•.10	•. £709.9
10	• . • ٢٥	•.10	•.077799
۲.	•.•٢٥	• 10	۰ _. ٦١٠٦٧٧
0	• • • • 1	• 10	•_22274
0	• . • ٢٥	• 10	• . 700090
0	• . ٣0	• 10	• .759071
0	٥	• 10	*
0	•.•٢٥	• • • ٢	• 114047
0	•.•70	• 1 •	• 722040
0	•.•٢٥	• 10	. 700271
0	•.•٢٥	٣	•_٣٦٨٤٦٢

0	•.•٢٥	•.10	57500
0	•.•٢٥	٣	۳.٧٦٤٣٨

Table ":Values of	Rate of Heat	Transfer
(Nusselt number	Nu) when	t=Pi/\、, €=•.۲
$Gr=\circ, Ec=\cdot\cdot\cdot$	$, \omega = \circ, pr = 0$	· ۲°, s= ·. 1°.

α	β	Nu
•_)	* ₋ *********	1.77710
•.1	• • • • • • • • • • • • • • • • • • • •	1.09977
•_1	• • • • • • • ٢	1.99977
•_1	• • • • • • •	۲.۱٦٦٣٠
• 1)	۲.007٤٨
•_1	۲_۲	۲ _. ٦٨٩٦٧
•_1	١.٦	٤.• ٢ ٢٨٥
•_1	۲	0.707.7
• • • • • • • • • • • • • • • • • • • •	•.1	1
• • • • • 1	•.1	1.77950
•.••)	•_1	1.7771.
• • •)	•_1	1.770.7
١	•_1	1.1441
٤	•_1	1.77151
٨	•_1	77.07
۱.	•_1	۲ _. ٥٢٦٦٦

Table 4: Values of Rate of Heat Transfer (Nusselt number Nu) when t=Pi/1, $\epsilon=..., \epsilon=..., \epsilon=..., \beta=1..., \beta=1..., \epsilon=..., \beta=1..., \epsilon=..., \beta=1..., \epsilon=..., \beta=1..., \epsilon=..., \epsilon=.$

•	, ,	···· , /·	
Gr	pr	S	Nu
٥	•.•٢٥	•.10	1.70751
۱.	• . • ٢ ٥	• 10	1.971.1
10	• . • ٢٥	• 10	7.79707
۲.	•.•٢٥	• 10	٣.٢٩٩٤٧
٥	•.••)	•.10	5.78581
٥	• . • ٢٥	• 10	۳.٤٣٨٥٣
٥	• . ٣٥	• 10	٣.٣٦٠٦١
٥	٥	• 10	1.70707
٥	• . • ٢ ٥	•.•٢	٤.٧٠٠٨٨
٥	• . • ٢ ٥	•.1•	5.77791

References

- 1. Pop, I. and Soundalgekar, V. M. 1972. Effects of hall currents on hydro-magnetic flow near a porous plate. Acta. Mech. 7.: r10-r1A.
- Y. Gupta, A. S. YYYY. Steady and transient free convection of an electrically conducting fluid from a vertical plate in the presence of a magnetic field, *Appl. Sci. Res.* **A**: YYY-YYY.
- *. Nanda, R. S. and Mohanty, H. K. 14V. Hydromagentic free convection for high and low prandtl number. J. phys. Soc. Japan. ** (1).
- 2. Sacheti, N. C; Chandran, p and Singh, A. k. 1992. An exact solution for unsteady magnetohydrodynamic free convection flow with constant heat flux. *Int.Com. Heat Mass Transfer*. 11(1):171-121.
- Sahoo, P. k; Datta, N. and Biswal. *...*. Magnetohyrodynamic unsteady flow past an infinite vertical plate with constant suction and heat sink. *Indian J. pure appl. math.* ** (1):150-100.
- Sharma, P. R.; Ghur, Y. N. and Sharma, R. P.
 Y • 4. Unsteady MHD flow and heat transfer over a continuous porous moving horizontal surface in the presence of an oscillating free stream and heat source. J. Indian Acad. Mathematics. YY(1): 1.0-114.
- V. Noushima Humera, G.; Ramana Murthy, M.V.; Rafiuddn, Chenna Krishna Reddy, M.
 * • • A. Unsteady viscoelastic memory flow and heat transfer over a continuous porous moving horizontal surface. J. Indian Acad Math. * • (*): *** • - ***.
- A. Mustafa. S., Rafiuddin and Rammana Murthy, M. V. Υ···A, unsteady MHD memory flow with Oscilatory suction variable free streem and heat source, *Appn Journal Engineering and Applied Science*. ((°):1Y-Y ٤.
- Rivlin, R. S. and Ericksen, J. I. ۱۹۰۰. Stress Deformation Relations for Isotropic Materials. *Journal of Rational Mechanics and Analysis*. *±*: ΥΥΥ-*±*Υο.