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Abstract 

     The main objective of" this paper is to study a subclass of holomrphic and 

univalent functions with negative coefficients in the open unit disk 

U= defined by Hadamard Product. We obtain coefficients 

estimates, distortion theorem , fractional derivatives, fractional integrals, and some 

results. 
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 الخلاصة
التحميمية واحادية التكافؤمع  تضطنتالتي ئية و جد  لفئةدراسة دوال الخئيسي من هحا البحث هه  طهضهعال     

ظخية وحصمظا عمى معاملات تقجيخية,ن .الطعاملات السالبة في قخص الهحجة الطعخفة بهاسطة هادامارد بخودكت
 كسخية وتكاملات كسخية وبعض الظتائج.الطشتقات الالتشهه,

Introduction 

Let A denotes the class of functions of the form4 

                                      

                     
     which are univalent and holomrphic in the unit disk  . We define a 

subclass K of A consisting of the functions by  

 
 
The function f (w) belongs to the class  if it satisfies 
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      where ,(0  and 

 
then the Hadamard product or (convolution)  of f and  is defined by  

 
and  . 

Definition 1 : [1] 

The fractional derivative of order α (0< α <1) is defined by 

 

                                                                                             
     where f ( ) is an holomrphic function in a simply – connected region of the  – plane containing 

the origin, and the multiplicity of is removed by requiring log(z − t) to be real ,when (  – 

t                              

Definition 2: [2] 

     The fractional integral of order α(α>0) is defined by 

 

                                                                                                                                      
     where f ( ) is a holomrphic function in a simply – connected region of the  − plane containing the 

origin , and the multiplicity of  is removed by requiring log(  − t) to be real , when (  − 

t) > 0 . 

Definition 3: [2] 

The fractional derivative of order   is defined by 

                                                                           

                                        

        

We put the holomrphic function       in U, as follows  

                                     

                                                                                                                                                                                                                                                                       

And 

                     .  

 
Then , from (10) we get 
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 where                                                                                                      

Lemma 1: [3] 

      Let w = u + iv . Then Re (w) ≥  if and only if   

Lemma 2: [3] 

      Let w = u + iv and  are real numbers. Then 

Re w  if and only if Re  . 

2. Coefficient Estimates 

      In the Theorem(1), we get the sufficient condition for the function f ( ) in the class  

Theorem 1: 

A function f ( ) defined by (2) is in the class  if and only if 

                                    

                                                                                
 where  

Proof: 

By using Definition "3" , we get 

 
                    

 
                                                                                                                              

By Lemma (2) , we have 

 
                                                                                                      

or equivalently 

 
Let   

 

And  

By using (11) , we have 

 

(12) 

(13) 

(14) 
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By Lemma (1), we have that (14) is equivalent to 

 
But  
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Also 

 

 

 

 

 

 

 

 

 

 

 

 
This is equivalent to 
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By putting  in the above theorem, we have the result achieved  by Abdul Hussein and Buti[4]. 

Conversely, assume  that (2.1) holds , then we show that 

 
Upon choosing the values of z on the positive real axis where  the above inequality 

reduces to  

 
 

 
Since  , the above inequality reduces to  

 

 
Letting , we get the desired conclusion. 

Corollary 1 : 

  Then , 

 
3. Distortion Theorem 

     In the Theorem(2) , we obtain the distortion theorem of 

 
Theorem 2: 
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Proof : 

Since          

from (13) , we get 

 

 
hence 

 
Similarly , we get 

      

     Theorem(3) proves that the class  is closed under arithmetic mean and  closed under 

convex linear combinations . 

The function  is defined by 

 

        
Theorem 3: 

A function   in equation  (16) is in the class  for 

(k = 1,2,...,m). Then the function 

 
is also in the class  , where 

 
Proof : 

A function  , then from Theorem (1) , we get 

 
Hence  

 

 
 The   

Theorem 4: 

The class  is closed under linear combinations . 

Proof : 

     Let the function  defined by (16), be in the class e show that the 

function  is also in the class  

Since  then from (13), we get 

 

(15) 

(16) 

(17) 
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And, so,  Then from (13) we get 

 
Then 

 
Therefore, by Theorem 1 we have 

 
Hence, by Theorem (1) we have  

Theoirem 5:  

A function of the from (16) is in the class 

here   

  for each (k = 1,2,...,m) , then the function 

 
is also in the class  where 

 
                                                                                     

Proof : 

 Let the functions  , then from Theorem (1) we get 

 
hence 

 
Therefore,  . 

     In the next two theorems we want to show the fractional integral and fractional derivative 

introduced by Srivastava[5- 10]. 

Theorem 6: Let the function f ( ) be in the class .  

Then  

 
and 

 
 

 
The last equalities in (18) and (19) are accomplished for the function 
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Proof: By using the Theorem (1) , we have  

 
From Definition (3), we get 

 
and 

 

 
Where 

 
We get  is a decreasing univalent function of n and 0 <  

By using (20) and (21) , we get 

 

 
and 

 

 
The proof is complete. 

Theorem 7: A function f( ) is in the cilass . 

Then  

 
and 

 

 
The equalities in (22) and (23) are accomplished for a univalent function 

 
Proof: By using  Theorem (1) , we have 
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From Definition (2) , we  obtain 

 
and 

 

 

since   

for know that  is a decreasing univalent function of n and 0 <  

Using (24) and (25), we have 

 

 
we also have 

 

 
The proof is complete. 
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