Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508
DOI: 10.24996/ijs.2026.67.1.39

N
Iraqi
Journal of

Science

ISSN: 0067-2904

Enhanced Manta Ray Foraging Algorithm for Scheduling Scientific
Workflows in Cloud Computing Environments Using Levy Flight and
Heuristic Operator

Mohanad Awad Abed*, Adnan Jumaa Jabir
Department of Computer Since, Collage of Since, University of Baghdad, Baghdad, Iraq

Received: 19/9/2024 Accepted: 28/1/2025 Published: 30/1/2026

Abstract

In modern computing, efficient task scheduling in cloud environments,
especially for large-scale scientific workflows, presents a significant challenge as it
is classified as a NP-hard problem. This study introduces an improved version of
the Manta Ray Foraging Optimization Algorithm, named Lévy-Heuristic Manta
Ray Foraging Optimization Algorithm (LH-MRFOA), which is enhanced with Lévy
flight and heuristic search techniques to address these challenges. The Lévy flight
mechanism is integrated to enhance the algorithm’s exploration capabilities,
allowing it to avoid local optima effectively and achieve global convergence.
Meanwhile, the heuristic search method is employed to improve the exploitation
capability of the algorithm while ensuring more efficient resource utilization and
reduced processing time. The proposed LH-MRFOA, which mimics the natural
foraging behavior of manta rays, combines these enhancements to deliver superior
performance in task scheduling by minimizing makespan, processing cost, storage
cost, and bandwidth utilization across varying workflow sizes. Experimental
evaluations on a heterogeneous cloud infrastructure reveal that the LH-MRFOA
outperforms bio-inspired algorithms such as Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO), particularly in scenarios that require high scalability
and balanced resource allocation. This research substantially advances cloud task
scheduling optimization, offering a robust solution for enhancing resource
management and cost efficiency in real-world cloud applications.

Keywords: Cloud computing, Lévy flight, MET, MRFOA, Scientific workflows,
Task scheduling, Workflow simulator.

8388 aladinly dulad) duwgall ddy L",A ‘;’-AM‘ Jand) i ddgaad dilaall janl) Uasd dia) s
YO Jalally A

Al dras lise Fae dge diga

dbxj\ ¢Alazs ¢Alar daals ‘?}M\ :X:JS ‘k._ljua\A.“ ?}X; euaé

dLadal)
DaS Gass Gl dady dulacd) i) 8 A aleadl Al Jidh Epaall Lawsall Hlle &
Loo))lsd (e Ailine Ads Ayl oda a2 L (250a]) Baaeie) Area A0 Ll o lgaiead o5 43) Camy
lgins <Ll (Manta ray) dlleul dglu Slas lly (MRFOA) jadl glasd dlleny olelall e can)

*Email: mohannad.abd2201m@sc.uobaghdad.edu.iq
482

mailto:mohannad.abd2201m@sc.uobaghdad.edu.iq

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

GNEN Gl iy sghdl (LH-MRFOA)) lsa sach dieaal) ddally ¢ olabll e
Vaay) dale aa (Lévy flight) s lsad LAY A1 zad o s liasil) (e g5 1388 dalladl
Cagigll Cuiaiy Ll maws lae (MRFOA) duoylsal Galasiny) @b (sl (Heuristic search)
Gl dayha aladial gy dad gl s aas¥) il sty Jlad G ddadl Jelall xe
Aadled) g Qi ST 8l lsall alatial Glacs ae Faejlsall PDUELY) 838 Cppent] V)
PIs e plgall dlgan 8 Bgia ol auaiil Cliseaatll 038 G dajikall LH-MRFOA e 53 e
dee by DA Ziadll Laaj lsall el jlas) 5 a8y . sl ZalSy dalledd) 26 cmll 8y Qe
Gsiis LH-MRFOA (i duslaniall e Anlacd) £aail) L) e Zunpanl) coloyil) i€ aily délide
Glamal) Chul daalsas (GA) adhsl daaplsall die Lagloall e lagivall byl o
D Olsie IS lsall paradty sl Llle 46 Gl Al clag)ladl & Lalsy ((PSO)
5oy lsall B Sl B8 Ma s Lew eAnland) plgad) Apan Gend 8 S Ll Cnd) 18
e gial) allall b dlad) Slagls 8 A4lS)
1. Introduction
Presently, cloud computing serves as a key facilitator for digital transformation, changing
how businesses consider IT services and infrastructures via the strategic importance of cloud
computing in enhancing productivity, flexibility, and competitiveness in the digital era,
especially with the present massive demand for cloud computing applications. The primary
benefits of cloud computing are that users do not need to own or manage physical
infrastructure, such as servers or networking equipment; instead, users can access computing
resources on-demand from cloud service providers. This model offers several advantages,
including cost savings, scalability, and resource allocation flexibility. Users can scale their
resources up or down based on their needs, in addition to enforcing deadlines and constraints
on tasks running within the cloud environment [1]. Cloud computing leverages virtualization
technology to transform physical resources into virtual instances, streamlining the allocation
and management of computing, storage, and networking resources. This abstraction enables
seamless dynamic provisioning and scaling of resources in response to user demand, resulting
in optimized resource utilization and cost-effectiveness.
Nevertheless, cloud computing encounters numerous obstacles, the most significant being the
efficient utilization of computing resources. Efficient resource allocation is then translated
into that the cloud provider can maximize the utilization of their infrastructure, as much as it
enables users to obtain the best value for their investment in cloud services from performance
to overall cost. Cloud orchestration systems, i.e., brokers and schedulers, map and assign
workloads containing dependent and independent tasks to available resources in a process
known as task scheduling. Task scheduling is critical in ensuring efficient resource
utilization, optimal performance, and cost-effectiveness. It refers to the process of assigning
incoming tasks to suitable virtual machines (VMs) or cloud resources within a cloud
environment. Task scheduling complexity arises due to several factors, including the dynamic
nature of cloud available resources, task dependencies such as scientific workflows, and user-
defined constraints [2]. Such complexity makes reaching optimal task scheduling decisions
regarded and recognized as NP-hard problem [3]. Effective task scheduling is crucial for
achieving several key advantages in cloud computing i.e., enhancing performance, improving
resource utilization, reducing costs, optimizing quality of services (QoS), and increasing
scalability. As a result, finding an optimal scheduling solution typically requires exponential
time in relation to the number of tasks and resources involved.
Scientific workflows are organized and represented using direct acyclic graphs (DAGs). In
such representation, a task is defined as a node in the graph, and the dependencies among
tasks (nodes) are represented as directed edges.

483

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

Scheduling optimization of scientific workflows has received great attention within academic
literature, and it is an active and evolving field of research that emphasizes the importance of
efficient cloud resource utilization [4][5]. Such interest is primarily driven by the widespread
adoption of cloud-based services and solutions and the important role scheduling
optimization plays in cost minimization and efficiency of cloud resource utilization. To
address this challenge, researchers explored heuristic, metaheuristic, and several nature-
inspired optimization algorithms to approximate near-optimal task scheduling solutions
within reasonable time and other user defined constraints. Upon examining recent research
[9-12], it is evident that various improvements have been made to enhance the convergence
of several optimization algorithms to determine the optimal global-best task scheduling
solution within cloud environments.

However, several limitations and drawbacks have been identified. Primarily, the research
often confines its evaluation to small-scale test datasets, limiting the generalization of the
findings. Second, several of the proposed hybrid approaches frequently exhibit high
computational complexity, while others achieved marginal improvements compared to
alternative optimization algorithms. The cumulative impact of these limitations can be
significant in convergence to optimal solution in the optimization of large-scale tasks. Last, a
certain number of studies suffer from poor selection of virtual machines configuration to
accommodate the aim of their study, such as employing a small number of virtual machines
in large and high-performance tasks scheduling cloud environments or an excessive number
of virtual machines to investigate scheduling of small and limited number of tasks. From this
standpoint, the main contributions of our work comprise:

1. To enhance the efficiency of scientific workflow task scheduling in cloud environments,
emphasizing minimizing both makespan and costs (including processing, bandwidth, and
storage) across workflows of various sizes (small, medium, and large).

2. The Manta Ray Foraging Optimization Algorithm (MRFOA) is introduced as a solution
for optimizing task scheduling. MRFOA is recognized for its robust and fast convergence in
large-scale optimization problems. Thus, MRFOA is particularly well-suited for handling the
complexities of large-scale multi-objective task scheduling in cloud environments

3. An enhanced version of the Manta Ray algorithm, termed Lévy-Heuristic Manta Ray
Optimization Algorithm (LH-MRFOA), is proposed. LH-MRFOA incorporates Lévy flight
randomness and heuristic approach to enhance further the convergence towards global near to
optimal solution, hence, more suited to address optimization challenges inherent in complex
workflows.

4. The proposed algorithm undergoes comprehensive tests on heterogeneous cloud
infrastructure characterized by different processing speeds (slow, moderate, fast) and costs.
This rigorous examination aims to thoroughly evaluate the effectiveness of the proposed
approach in real-world cloud computing scenarios.

The subsequent sections of this paper are organized as follows: Section 2 thoroughly
examines recent literature on multi-objectives task scheduling optimization with an analysis
of various methodologies employed and critical evaluations of their weaknesses. Section 3
details the definition of the problem and the objective function in scientific workflow task
scheduling. Section 4 presents MRFOA as the proposed algorithm and proposed
improvements by employing Lévy flight-heuristic as a search factor. Our experimental setup
is explained in Section 5. The evaluation of performance is discussed in Section 6, while
Section 7 encompasses the conclusion and outlines avenues for future research endeavors.

2. Related Work

Scheduling in cloud computing has been an object of extensive research since it has been
classified as an NP-hard problem. Such complexity lies in the combinatorial nature inherent

484

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

to the resource allocation and coordination of task execution. Researchers have been
considering different heuristic and metaheuristic approaches for solutions [6], with a special
emphasis on optimization techniques recently. Y. Zhang et al., 2023 [7] proposed a Dynamic
Multi-Objective Evolutionary Algorithm (DMOEA) for workflow scheduling in dynamic
cloud environments. The work has emphasized the necessity of adaptation to the dynamically
priced spot resources and was focused on the maximization of reliability and minimization of
cost and makespan. However, the approach has high computational and space complexity,
which is unsuitable for large-scale datasets. Adnan Talha et al. (2022) [8] proposed
Oppositional-Based Learning (OBL) integrated with the Pathfinder Algorithm (PFA) to
improve the performance of task scheduling in large-scale workflows. Although the hybrid
approach improved the exploration and exploitation abilities, the study did not have
theoretical advances in the chosen algorithms.

N. Manikandan et al. (2022) [9] carried out task scheduling using a hybrid Whale

Optimization Algorithm (WOA) combined with mutation-based Bees optimization. Despite
achieving remarkable improvement in resource utilization and operational cost, the method
showed high computational time for large-scale scenarios, but it was not tested on benchmark
datasets. Haithem Hafsi et al. [10], in 2022, proposed the genetically modified multi-
objective particle swarm optimization algorithm with a novel two-dimensional encoding for
task-resource mapping in high-performance hybrid cloud environments. While the approach
has reached faster solution convergence, it was only tested with a small number of virtual
machines and medium-scale datasets, which can hardly be generalized.
Junlong Zhou et al. (2019) [11] proposed an improved genetic algorithm for hybrid cloud
scheduling to minimize cost and makespan under SLA constraints. The two-stage approach in
this work improved solution quality at the expense of heavy computational overhead and,
hence, was unsuitable for a dynamic environment with large-scale workflows. To deal with
large-scale optimization, Bilal H. Abed-Alguni et al. (2021) [12] introduced a Distributed
Grey Wolf Optimizer (DGWO). The technique organized candidate solutions into islands for
parallel evaluation, improving the exploration capabilities. However, the approach lacked
statistical analysis of migration strategies, which reduced the insight into solution quality for
high data transmission tasks.

J. Kok Konjaang et al. (2021) [13] proposed a three-stage task scheduling method
combining the Cost Optimized Heuristic Algorithm (COHA) and Multi-Objective Workflow
Optimization Strategy (MOWOS). Despite achieving cost and makespan reductions, the
study did not include bandwidth and storage metrics in its evaluation, making it less
comprehensive. In QoS-oriented optimization, Xianyong Wei (2020) [14] proposed an ACA
with dynamic pheromone update strategy and load balancing strategies. While the method
achieved a very high improvement in dynamic resource allocation, it still suffered from
small-scale task evaluation and homogeneous virtual machine configurations. Hatem Aziza et
al. [15], 2020, integrated the Heterogeneous Earliest Finish Time (HEFT) with the Genetic
Algorithm for scientific workflows and proposed new crossover and mutation operators.
However, the fitness function was very basic, and the approach did not significantly improve
in most of the test cases. Ali Mohammad Zadeh et al., 2021 [16] used the Sine Cosine
Algorithm with chaotic randomness to modify the Ant Lion Optimization algorithm to green
cloud computing. While the approach was efficient at a low workload, computational
overhead was high at a high workload.

485

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508
Table 1: A Comparison of the Current Workflow Task Scheduling
Ref. Metrics Method Limitations
L Dynamic multi-objective . High computational complexity
Reliability, L
[7] makespan, cost optimization evolutionary . High space complexity (weights vectors)
’ algorithm (DMOEA). . Only small and medium size datasets were tested.
Makespan, cost, Hy.b.rld Pathfinder and. . No theoretical improvements in the selected
[8] resource oppositional-based Learning loorith
utilization (OBLPFA). a.goritims.
. High computational and time complexity due to
Makespan, cost, | Hybrid Whale and mutation- | double adaptive weight and random spare scheme,
[9] energy based Bee optimization especially for large scale workflow tasks.
consumption algorithms. . Workflow standard benchmark datasets were not
tested.
. The proposed work aimed at high performance
hybrid cloud scenarios, yet only six VMs were
configured (one free and five paid). A large number
Genetically modified of VMs must be tested.
Makespan, cost, Particle swarm algorithm . Synthetic extra-large workflow tasks should be
[10] SLA factors (GMPSO) and novel two- considered such as [8] and [14].
such as budget dimensional encoding for . In terms of evaluation metrics IGD (inverted
task and resource mapping. generational distance) and Hv (Hypervolume), the
performance of the proposed GMPSO is relatively
close, if not worse, when compared to NSGAIL.
Better results are obtained only in higher iterations.
Makespan, Enhanced genetic algorithm . The proposed two-stage solution is slow in a
monetary cost, (improved chromosome . .
[11] . . dynamic cloud environment.
SLA encoding and hybrid
. . Only small workflow workloads were tested.
constraints. Crossover).
. The proposed distribution is to increase the
number of parallel workflow evaluations and not to
. enhance the GWO algorithm.
Computation . Lo
. . The maximum tested data transmission is 5GB, a
and data Distributed grey wolf . .
[12] . . bigger value should be considered.
transmission optimizer (DGWO). o . . L.
costs. . No statistical ana1y31s.of solutions migration
among islands.
. The impact of the best and worst solutions from
one island to another was not presented.
. Tasks splitting approach effect was not measured
Hybrid cost optimized during the evaluation. It must be included in the
heuristic and multi-objective Fitness function.
[13] | Makespan, cost workflow optimization . Tasks splitting was based on task length, which is
’ strategy (MOWOS), with accommodated by splitting the task’s bandwidth,
improved task schedular storage, each of which was not covered.
using MinVM and MaxVM. . MinVM and MaxVM scheduling effects on the
overall obtained results were not measured.
. Proposed Cloudlets properties share the same file
input and outsize.
. Presented VMs’ configurations are not
Makespan, cost, | Hybrid Chemical Reaction heterogeneous and are relatively the same.
[14] energy, SLA Optimization (CRO), and . The maximum number of tested tasks is 300, large
deadline Particle Swarm Optimization tasks number should be tested.
constraints (PSO). . No standard workflow benchmark datasets were
tested.
. The time complexity of the proposed CR-PSO is
high
Dynamic Improved Ant Colony . A large number of tasks should be considered, the
resources Algorithm (ACA) with maximum number of tasks tested was only 200.
[15] availability, reward and punishment . The number of VMs in the experimental results
dynamic prices coefficient to enhance was 80, which is rather large considering the small
of cloud pheromone updating strategy number of tasks tested.

486

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

resources, of ant colony. . No standard workflow benchmark datasets were
makespan, QoS tested.
Hybrid Genetic Algorithm . The proposed approach can be improved, and
Makespan, cost and Heterogeneous earliest better results were obtained in only half of the
[16] deadline b’u dget’ finish time HEFT, performed workflow tests.
tournament crossover, and | . The proposed Fitness function is composed of two
random mutation operator. subfunctions and it can be improved
. The number of VMs’ in the experimental setup is
Eneray !mprox./ed Ant Lion . set to 1000 VM. .
[17] | makespan ’an d thlmlzgtlon (ALQ) using . The largesF workflow tested load only contain
resources’cos ¢ Sine Cosine Algorithm and 1000 tasks, bigger workflow should be considered
Chaotic randomness. given the large number of VMs, such as [5] and

[10].

3. Scientific Workflow Task Scheduling

Scientific workflows are sequences of tasks used by scientific research to test the
efficiency of task scheduling algorithms in the cloud environment. Workflows are systematic
sequences of activities or tasks aimed at generating scientific results or solving complex
problems. Workflows are typically represented in a directed acyclic graph (DAG). The term
"acyclic" implies no cycles or loops in the graph, meaning that tasks can be executed in a
specific order without encountering circular dependencies. Each node in the graph represents
a task or a computation along with other task related attributes, such as task length, and data
required for input and output. Edges, on the other hand, indicate the dependencies between
tasks. An edge from task A to task B indicates that task B depends on the output of task A.
This dependency structure ensures that tasks are executed in the correct order, with
prerequisite tasks completed before their dependent tasks can begin. Fig 1 [17] shows the
DAG representation of five scientific workflows utilized in this study: Montage (a),
CyberShake (b), Epigenomics (c), Inspiral (d), SIPHT (e).

L4

sOk \
(C 000
‘O_

P
\
) e /\)‘ ‘ bt

Figure 1: DAG structure of scientific workflows [17].

DAG is mathematically represented as G = (T,E). Where T = {T;, T4, T,, T,} denote
the set of vertices or nodes (tasks). And E represents the set of directed edges among nodes,
where E = {Ey, Ey, E,,, E,}. For instance, a directed edge of E (T3, T,) indicates a direct
dependency between task T3 and Tj. In other words, the fourth task cannot be executed until
the third task has been completed. Therefore, E can be rewritten as a set of ordered pairs of
vertices, E = { (Ti, T]) | T;,T; € T}. Where T; is the predecessor task and T; is successor task.

487

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

Each task T; in DAG workload has additional attributes or metadata. These attributes help in
optimizing task execution and resource allocation within the workflow, such as:

e Inputdata: [= {ly, [, ,,I,,}, where I; represents input data required by task T;.
e Output data: 0 = {0y, 04,04, 0, }, where O; represent output data produced by
task T;.

e Task length: length(T;), is a measure of computational effort required to complete task
T;. Tt is typically expressed in terms of the number of instructions or the amount of
competition (e.g., in millions of instructions). In workflow simulations, task length is used to
estimate the makespan or the time required to complete the task, assuming certain
computational resources are available.

In the realm of Infrastructure as a Service (IaaS), computing resources are commonly
provisioned in the form of virtual machines (VMs). These VMs are simulated computing
environments operating independently within a physical server. Users of laaS platforms
leverage these VMs to deploy and run their applications, software, and computational
workloads in a flexible and scalable manner.

Cloud Scheduler

@
@

Task Task Task Task
to to to to
™ M ™ ™

Cloud \

Workflow | _ [Qrchestration

submission Layer l l

[J

) 7'y

& vy -

Cloud Broker

Figure 2: Workflow and Cloud tasks scheduling

3.1 Problem Formulation

The context of this study aims to present and develop a multi-objective task scheduling
optimization algorithm. This algorithm aims to address the complexities inherited in task
scheduling within cloud computing environments. By the above given definitions for the
workflows and tasks, our primary objective is to minimize critical factors associated with task
scheduling on cloud resources. These factors encompass the makespan, processing costs,
storage costs, and bandwidth utilization. Each of these factors can be defined as follows:

1. Makespan: the total time required to complete all tasks within a given workflow,

starting from the initiation of the first task to the completion of the last task. Consider the
following workflow, G = (T, E), where T = {Ty, Ty, T, ..., T, } represent the set of tasks (both

488

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

dependent and independent), and E is a set of all edges or dependency connections among
tasks. Each connection is denoted as E; = (T;, Tj), and belongs to E = {Ey, Ey, Es, ..., Ep}.

A task T;with dependencies, dep (T;) will not start unless all its dependent tasks have been
executed. If a task has no dependencies (e.g., entry tasks), dep (T;) = @. The finish time FT7,

for task T; is defined as the sum of its execution time and the execution times of all dependent
tasks [12]:
FTr; = (XZoET (dep(Ty) + ET(T)) (1)

Where n is the number of dependent tasks and ET = length(T;)/(MPIS,y,; * PE;). Where
MIPSvm; is processing power of VM; measured in MIPS, and PE; is the number of available
virtual cores (Processing Entity); Makespan can be measured as:

Makespan = maxy¢qsis (FT) 2)
Where FT = {FT,,FTy,FT,, ...,FT,}.

2. Processing Cost: The cost associated with executing task T; on resource VM;. In
workflow simulation, processing cost P; for task T; is calculated as [12]:

PL' = ETl * COStj (3)
Where ET; is execution time for task T; and Cost; is the Processing Cost of VM; per time
unit. The total processing cost for the entire workload can be determined as:

PCostiprar = 2?:0 p; 4)

3. Storage Cost: The expenditure associated with storing data related to tasks on cloud
storage services. The storage requirement S; for the task Tj, is the sum of all its output file

sizes hence [12]:
n
Si = z 01]
=

J
Where 0;; is the jj, output file for the task T;. Then storage cost SC; for task T; is:

SC; = (S;/SVM;) = SCVM;
Where SV M; is the total storage available for VM;, and SCV M; is the storage cost of V M;.

the total storage cost for the workflow is:
n

Total storage cost = Z SC;
i=0
4. Bandwidth Cost: Refers to the network bandwidth consumption during data transfer
operations in the cloud. The required bandwidth B; for the task T; is the sum of all input file

sizes [12]:
Bi = ZIU
j=0

Where [;; is the jp, input file for the task T;. Then bandwidth cost BC; for task T is:
BC; = (B; / BVM;) = BCVM;

489

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

Where BV M; is the total bandwidth available for VM;, and BCVM; is the bandwidth
cost of VM;. The total bandwidth cost for the workflow is:

n
Total bandwidith cost = 2 BC;
i=0
3.2 Objective Function
In this research, we aim to decrease task execution time and cost while maximizing
resource utilization across all VMs in a cloud environment. Workflow scheduling in dynamic
environments is more challenging and realistic compared to static environments. Cloud
resources must be allocated precisely to fulfill user service agreements while maximizing
resource utilization. Large scale with multi-objectives optimization is inherently complex,
and optimal solutions require efficient scheduling algorithms and more importantly, accurate
objective function. Considering this, the objective function of this study is focused primarily
on minimizing the following fitness function:

F = (wy * MS + w; * PCrorqr + W3 * SCiotar + Wy * BCrotar)

Where MS is MakeSpan, PCiyiq; 1S the total Processing Cost, SCiotq; 15 the total Storage
Cost, and BCyy¢q; 1s the total Bandwidth Cost. And w; represents the weight, w; € [0, 1], and
wy+w, +wsz+w, =1.

Weights are used in optimization functions to assign relative importance or priority to
different objectives or criteria. In a cloud environment, such decisions are entirely dependent
on user preferences and on the specification of the workflow at hand. Objectives with higher
weights are given more emphasis, leading to solutions prioritizing those objectives over
others. Additionally, it provides against contradictory objectives such as makespan and
processing costs.

4. Proposed LH-MRFOA Algorithm
This section presents the original MRFO algorithm along with the proposed
improvements.

4.1 Manta Ray Foraging Optimization Algorithm (MRFOA)

Manta Ray Foraging Optimization Algorithm (MRFOA) is a metaheuristic optimization
method first proposed by Zhao in 2020. It is inspired by the effective and cooperative
foraging behavior of manta rays. MRFOA has successfully imitated three major foraging
behaviors of manta rays, including chain foraging, cyclone foraging, and somersault foraging.
The behavior is customized for optimization tasks with a good balance between exploration
and exploitation to find the global optimum in complex search spaces.

4.1.1 Manta Ray Structure and Foraging Behavior

Manta rays are large, flat, aquatic animals with terminal mouths; they forage using their
cephalic lobes to direct the plankton into the mouth. Manta rays portray peculiar foraging
behavior, such as looping and somersaulting motions. Figures 3(A) and 3(B) [20] depict a
manta ray in action and its structure.

490

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

Cephalic lobe
A B ;

Mouth ... /!

> Pectoral fin

s
Eye

T il

Figure. 3: (A) A foraging manta ray, and (B) structure of a manta ray [20]

Chain foraging, Figure 4 depicts the 2-D foraging behavior of cyclones. Instead of merely
following the meal in front of it, the individual moves in a circular pattern in that direction. In
two dimensions, the spiral motion of manta rays is described by the mathematical
expression:x{ (t + 1) =

X (©) + 7. (tflge (8) = x3(0)) + . (xfhese () — 28 () i =1

x (@) + 7. (1 (0) = 21 (©) + @ (xfese(O) — x(®)) i=2,..,N
a=2.r.\/|log ()| (2)

where, x{(t) is the position of ith individual at time t in dth dimension, r is a random
vector within the range of [0,1], a is a weight coefficient, x{,,(t) is the plankton with high
concentration. Fig. 4 depicts this foraging behavior in a 2-D space. The position update of the

ith individual is determined by the position x;_4(t) of the (i-1) th current individual and the
position x4 (t) of the food.

(1

Figure 4: Chain foraging behavior in 2-D space [20]

- Cyclone foraging: Figure 4 depicts the 2-D foraging behavior of cyclones. Instead of
merely following the meal in front of it, the individual moves in a circular pattern in that
direction. In two dimensions, the spiral motion of manta rays is described by the
mathematical expression:

{xi(t +1) = Xpest + 7 (xi_l) — x; (t)) + ebv . cos(an) . Xpest — xi(t))
xi(t+1) = xpest + 7. (xi_l (t) — x; (t)) + ebv . sin(an) . Xpest — xi(t))
(3)

491

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

where w is a random number in [0, 1], this motion behavior may be extended to a n-D space.
For simplicity, this mathematical model of cyclone foraging can be defined as:

xgest +r. (xgest(t) - xld (t)) + ﬁ : (xgest(t) - xid (t)) i=1
Xfese + 7. (xL1 () = xf (t)) +B . (tfse () = xF () = i=2,.,N

p = 2¢" T sin (2mry) (5)
where r_1 is the rand number in [0, 1], T is the maximum number of repetitions, and f is the
weight coefficient.

The equation for this mechanism may be seen below. As seen in the illustration below, it
focuses mostly on exploration, enabling MRFO to conduct an extensive worldwide search:
x%.q = Lb% + 1. (Ub% — Lb%)

xi(t+1) = 4)

(6)
i(t N 1) xgest +7. (xgest - xld (t)) + ﬁ . (Xgand - xid (t)) i=1 (7)

xd -

Xt + 1. (xid_1 — xf (t)) +8. (xmnd X (t)) i=2,..,N

M xi(0)
Y A
f
n(+1)
B (x, () —x,())
o —_— \,:

Figure.5: Cyclone forging behavior in 2-D space [20]

- Somersault foraging: The food's location is seen as a pivot in this behavior. Every manta
ray tends to swim around the pivot and somersault into a different position. As a result, they
constantly adjust their positions to reflect the best position thus far. The following is one way
to develop the mathematical model:

(¢ +1) = 2O +S . (ry g — 73 .280), i =1,..,N (8)

where S is the somersault factor that decides the somersault range of manta rays and S =
2, 15, and 13 are two random numbers in [0, 1].

e -

%‘ 20D — 13 5D) e . T 2 N

\
$

492

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508
Figure 6: Cyclone foraging behavior in 2-D space [20]

Algorithm I, shows the pseudo code for the basic specifications of the MRFO algorithm [20]

Algorithm I: MRFO Algorithm

Input Parameters//

N: Population size (number of manta rays).

T max: Maximum number of iterations.

x_I: Lower boundary of the search space (problem domain).

u_x: Upper boundary of the search space (problem domain).

S: Somersault factor.

Fitness Function f(x): Objective function to be minimized or maximized.
Output//

x_best : The best solution found by the algorithm.

f(x_best): The fitness value of the best solution.
Initialize population //
Initialize the size of population N, the maximal number of iterations 7" and each manta ray
x;(t) = x; + rand (x,, — x;) fori=1, N and t=1.
Compute the fitness of each individual f; = f(x;) and obtain the best solution found so far
Xpest, Where x,, and x; are the upper and lower boundaries of problem space, respectively.
Iterative optimization //
WHILE stop criterion is not satisfied do
FOR i=1 TO N DO
IF rand <0.5 THEN //Cyclone foraging

IF t/T,0x < rand THEN
Xpana = X +rand . (x, — x;)

x;(t+1) = {xrand + (xrand - X (t)) +0. (xrand - X (t)) i=1
l Xrang + T (xi_l (t) X (t)) + B ' (xrand - X (t)) i=2,..,N
ELSE
x(t+1) = { Xrand T 1 (xb95t - X (t)) +B. (xbest - Xj (t)) i=1
l Xrana + T+ (Xie1 () = % (t)) + B (Xpest — X (t)) i=2,.,N
END IF.
ELSE // Chain foraging
x;(t+1) = { Xrang T (xbeSt X (t)) ta. (xbest - X (t)) i=1
l Xrana + 7 (xi—l)~ x (t)) ta. (xbest - X (t)) i=2,..,N
END IF.

Compute the fitness of each individual f (x;(¢+1))
IF f(xi(t+1)) < f(xbest)

THEN xpese = x;(t + 1)

END IF

/I Somersault foraging
FOR i=1 TO N DO

Xi(t+1) = Xige) TS - (72 Xpest — 73 -xi(t))
Compute the fitness of each individual f(x;(¢+1))

IF f(xi(t+1)) < f(xbest)
THEN Xpesr = x;(t + 1)

END IF
END FOR.

493

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

END WHILE.
Return the best solution found so far x,;

In several technical disciplines i.e., geophysics [21], energy allocation [22], image
processing [23], and electric power [24], the MRFO algorithm performs exceptionally well
and exhibits a wide range of optimization talents. The MRFO has proven to be a conducive
approach to resolving several intricate real-world issues through these successful applications
[25]. Despite being a member of the meta-heuristic algorithm domain, MRFO differs greatly
from other popular meta heuristics in philosophy and design. i.e., in comparison with Particle
Swarm Optimization (PSO), MRFO and PSO they differ primarily in their biological actions.
While MRFO draws inspiration from manta ray social foraging activities, PSO is motivated
by the movement of bird flocks in the natural world. The way the two hunt for solutions
differs significantly from one another [26]. The global best solution is combined with other
solutions to create PSO solutions. A further notable distinction between the two is the method
used to look for solutions. The global best solution found so far, the local best solution, and
the individual movement velocities combine to produce the solutions in PSO; in contrast, the
global best solution found so far, and the solution in front of it combine to produce the
solutions in MRFO by switching different movement strategies [27]. Another comparison in
the same domain with Genetic Algorithm (GA) in contrast to the communal foraging
activities of manta rays in MRFO, GA is based on Darwin's theory of evolution. The
representation of problem variables is the second distinction. Whereas the issue variables in
MRFO are utilized directly, in GAs, they are represented as a sequence of fixed-length bit
strings. Better solutions also have a higher chance of generating new solutions in GAs when
the roulette wheel selection approach is used, and inferior solutions will likely be replaced by
better new solutions [28]. While in MRFOA every member of the population has an equal
chance of improving their solutions.

4.2 Improved MFROA

Our proposal for a hybrid Lévy-Heuristic Manta Ray Foraging Optimization Algorithm
for multiple critical objectives in workflow scheduling: makespan minimization, processing
cost reduction, storage cost optimization, and bandwidth utilization minimization. One of the
new improvements embeds the Lévy flight mechanism in the MRFOA, enabling it to take big
probabilistic leaps in search space. This addition elevates the exploration capabilities greatly
and therefore escapes local optimum and finds globally optimal solutions. On the other hand,
we suggest a different enhancement that involves addressing dependency management. This
process begins by iterating over each task and identifying whether it has any dependent tasks
(parent tasks). If a task has no parent tasks (independent tasks), it is processed directly
without needing dependency handling. However, if a task has one or more parent tasks
(dependent tasks), the algorithm will initiate a procedure to optimize resource allocation for
these dependent tasks. The Heuristic Dependency Management (HDM) mechanism is the
second enhancement in LH-MRFOA, addressing task dependencies in workflow scheduling.
It focuses on optimizing the allocation of dependent tasks to ensure efficient resource
utilization and adherence to dependency constraints. Initially, the dependent tasks are
temporarily stored and cleared from previous iterations to ensure accurate processing without
conflicts. For each parent task, the algorithm evaluates the performance of assigning the task
to different virtual machines (VMs). It calculates the expected execution time for each task
on every available VM based on the task's computational requirements and the VM's
capabilities.
Algorithm II shows the pseudo code for the first improvement of the MRFO algorithm by
employing Lévy-flight technique to enhance the exploration of the algorithm.

494

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

Algorithm II: Lévy-Manta ray Algorithm (L-MRFOA).

MRFO Original initialization
//Cyclone foraging

ELSE // Chain foraging
//" First Improvement: introduce Lévy flight mechanism for enhancing exploration by
generating step sizes based on a Lévy distribution, introducing variability that allows the
algorithm to take occasional large steps, improving its ability to explore the search space and
avoid local minima.
Leves = Leévy ()
If i =1THEN

Xie+1) = Xigey + levies [i] % (Xpesery — Xi) + @ * (Kpest(r) — Xi(r))

ELSE
Xie+1) = Xigey + levies [i] % (xi—1) = Xi)) + @ * (Xpese(ry — Xi(o)
END IF
END IF.
// Ensure the new positions are within search space boundaries
x;(t +1) = Bounds X;(41y, X1, Xy)
Compute the fitness of each individual f(x;(¢+1))
IF f(xi(t+1)) < f(xbest)
THEN Xpest = Xi(e+1)
END IF
END FOR

/I Somersault foraging
FOR i=1 TO N DO
Xi(t+1) = Xige) TS * (12 * Xpese — T3 * xi(t))

// Ensure the new positions are within search space boundaries
Xit+1) = Bound x;11y, X1, Xy)

Compute the fitness of each individual f(x;(¢+1))

IF f(xi(t+1)) < f(xbest)

THEN Xpese = Xi(t+1)

END IF

END FOR.

END WHILE.

Return the best solution found so far x .

After calculating these values, the algorithm identifies the VM that offers the shortest
execution time for the task. The task is then assigned to the VM with the optimal
performance. After assigning the tasks, the overall effectiveness of the current solution is
evaluated, considering both the execution time and cost. If the new allocation improves the
solution, it is retained; otherwise, the algorithm reverts to the previous allocation. Finally,
once all tasks have been processed, whether independent or dependent, the fitness of the

495

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

current solution is recalculated to ensure that only the best task-to-VM allocation is
preserved. H-MRFOA, as illustrated in the results below in the Pseudo code

Algorithm III: Heuristic Manta ray Algorithm (H-MRFOA).

MRFO Original initialization
.//Cyclone foraging

)/ Chain foraging

}/ Somersault foraging

Return the best solution found so far X
/I Second Improvement: heuristic dependency management, tackling the dependency for
tasks that allocated among available virtual machines (VMs)Initialize task list, available
VMs, and other necessary parameters in work environment
Set best solution x_best to the best solution found so far
FOR each taski in taskList DO
// Check for dependencies (parent tasks)
// Store dependent tasks temporarily
FOR each parent of taski DO
Add parent to parentList
END FOR
// For each parent task, optimize resource allocation
FOR each parent in parentList DO
// Initialize best allocation for current task
Copy current best solution x_best to t best
fitness = calculate Fitness(x_best)
/I Calculate execution time for each VM
FOR each vm in available VMs DO
MET [vm]=Execution time of parent on vin
END FOR
/I Find the VM with the shortest execution time
/I Assign the parent task to the best VM
X best[parent] = MIN(MET)
// Check if the new allocation improves the solution
IF calculate fitness(x_best) < fitness THEN
/I Keep the new allocation
continue for next parent task
ELSE
// Revert to the previous allocation
retrieve previous best solution x_best to t_best
END IF
END FOR
END FOR

496

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

// Return the best solution found so far
Return the best solution x_best

The final stage of optimization leverages a hybrid approach, combining two powerful
techniques: Lévy flight and Heuristic Dependency Management (HDM). This strategy aims
to balance global exploration and local exploitation in the search for an optimal solution.
Lévy flight enables the algorithm to perform large jumps in the solution space, helping avoid
local optima by exploring new regions that incremental steps might miss. Meanwhile, HDM
enhances the algorithm's ability to refine these potential solutions, particularly in optimizing
task dependencies. By incorporating Lévy flight, the algorithm gains the ability to cover
diverse areas of the solution space using a probability distribution (Lévy distribution) that
favors small steps but allows for large leaps. This structured randomness ensures that
unexplored areas are efficiently reached, improving the chances of finding a globally optimal
solution. On the other hand, HDM plays a crucial role in the local exploitation phase. Once
promising solutions are identified, HDM fine-tunes them by analyzing task dependencies and
VM loads, ensuring that tasks are assigned to minimize overall completion time. This
practical optimization is essential for improving real-world performance in distributed
systems.

The integration of HDM as a second improvement ensures that solutions are not only
theoretically optimal but also practical in execution. It enhances the algorithm’s ability to
handle complex optimization problems where efficient resource management and task
scheduling are key. In essence, this hybrid approach combines the exploratory power of Lévy
flights with the precise, task-optimized benefits of HDM, making the algorithm more robust,
adaptive, and capable of delivering high-performance results in real-world applications that
resulting in a more comprehensive and effective optimization algorithm as illustrated in
below Pseudo code for Lévy-Heuristic Manat ray Algorithm (LH-MRFOA).

Algorithm IV: Lévy-Heuristic Manat ray Algorithm (LH-MRFOA).

MRFO Original initialization

//Cyclone foraging
/I First improvement: introduce Lévy flight mechanism for enhancing exploration

/I Chain foraging

/I Somersault foraging
Return the best solution found so far xp,.¢;

// Second improvement: heuristic dependency management
/I Return the best solution found so far

Return the best solution x_best

END FUNCTION

497

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508
5. Experimental Setup
5.1 Workflow Simulation Platform.

A workflow simulation platform (WFS) is essential for testing and enhancing job
scheduling algorithms in research and academic settings, especially in cloud computing. This
platform ensures that the findings are consistent, reproducible, and applicable to real-world
settings by offering a controlled environment for the testing and comparing alternative
scheduling techniques under diverse conditions [29]. WFS is designed to model and simulate
the execution of workflows in distributed computing environments. These platforms allow
researchers to emulate the behavior of complex workflows, which are often represented as
Directed Acyclic Graphs (DAGs) [30]. Each node in the DAG represents a specific task,
while the edges signify dependencies between these tasks. The primary goal of using a WFS
is to analyze the performance of different scheduling algorithms, particularly in terms of key
metrics such as makespan, processing cost, resource utilization, and energy consumption. In
cloud computing, task scheduling is a complex problem due to the dynamic nature of cloud
resources and the diverse requirements of scientific workflows. Workflow simulation
platforms are particularly valuable in this domain because they allow for testing scheduling
algorithms under different configurations of virtual machines, resource availability, and
workload sizes. This is critical for understanding how algorithms perform under varying
conditions, which is essential for optimizing cloud resource management. The WFS allows
researchers to assess the algorithm's effectiveness in minimizing makespan and cost. By
simulating different workload scenarios, including those with varying task complexities and
interdependencies, the WFS can provide insights into the scalability and robustness of the
proposed algorithms.

5.2 Virtual Machines (VMs) Setup

The task scheduling experiment was conducted using a workflow simulator configured to
run on 15 virtual machines distributed among three different groups: slow, moderate, and
fast. This grouping ensures a fair distribution of tasks across various types of VMs, reflecting
a range of computational capabilities as illustrated in the table below (2). Available VMs are
grouped into three categories based on their computational power. This allows the task
scheduler to allocate tasks to VMs with appropriate resources, depending on the task's
computational requirements. within each group, the MIPS (Million Instructions Per Second)
value is randomly assigned within a specified range. This randomization simulates a more
realistic cloud environment where VM capabilities can vary even within the same category.
RAM and bandwidth are also set according to the VM group. The 'slow' group has lower
RAM and MIPS values, while the 'fast' group has higher values, making it suitable for more
computationally intensive tasks. The setup mimics a typical cloud environment where
resources are heterogeneous by ensuring that tasks are distributed among VMs with different
capabilities. This helps to test the robustness of the scheduling algorithm across various
conditions. Using WFS provides a controlled environment for simulating the task scheduling
process, making it possible to evaluate the effectiveness of the proposed algorithm under
different VM configurations. This setup is essential for evaluating the performance of the task
scheduling algorithm in a realistic cloud computing environment, ensuring that it can
effectively manage and distribute workloads across VMs with varying capabilities.

Table 2: Specifications of Virtual Machines Used in Workflow Simulations

Group# # of VMs RAM Range MIPS
G1: Slow 5 512 (0-4) 1000-3000
G2: Moderate 5 512 (5-9) 3000-6000
G3: Fast 5 1024 (10-14) 6000-10000

498

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

5.3 Experimental Process

We developed a run processing system within our workflow simulator that executes each
algorithm ten times to evaluate makespan and processing cost using a weighted summation
formula. The comparison conducted among (MRFOA) and its updated versions Lévy-Manta
ray Foraging Algorithm (L-MRFOA), Heuristic-Manta ray Foraging Algorithm (H-
MRFOA), Lévy Heuristic-Manta ray Foraging Algorithm (LH-MRFOA) and the top of bio-
inspired algorithms (GA) and (PSO), by using five standard data sets fig (1) with different
scales and considering the average of ten times of the whole run-in process of workflow
simulator table (2), table (3) and table (4).

6. Results and Discussion
6.1 Empirical Results

The empirical results offer a thorough evaluation of the performance characteristics of the
algorithms under study, focusing on key metrics such as makespan, cost, and fitness. These
metrics provide essential insights into how each algorithm manages task scheduling within
complex cloud computing environments. Through rigorous testing across diverse workloads.
This section delves into the performance test's quantitative outcomes, highlighting each
algorithm's strengths and weaknesses.

The results reveal significant distinctions in how these algorithms handle various
scheduling challenges, with LH-MRFOA frequently outperforming other algorithms, GA and
PSO. The findings underscore the robust capability of LH-MRFOA to optimize resource
allocation, minimize execution time, and reduce operational costs, making it an optimal
solution for dynamic and large-scale cloud environments. In terms of makespan, the LH-
MRFOA consistently outperformed its counterparts, demonstrating a remarkable ability to
minimize the total time required for task completion. Across various datasets, LH-MRFOA
achieved significantly lower makespan values, particularly in scenarios involving large and
complex workloads during testing makespan as shown in Table (3). This reduction in
makespan is crucial in cloud computing environments, where time efficiency directly impacts
overall system performance and user satisfaction. The algorithm's advanced heuristic
strategies and robust search capabilities enable it to navigate and optimize scheduling tasks
more effectively than traditional algorithms such as GA and PSO.

Table 3: Best Makespan

Data set GA PSO MRFOA L-MRFOA H-MRFOA MIL{EO A
1. Inspiral 30 3389.13 3107.70 2860.94 2976.31 2875.47 2799.32
2. Inspiral 1000 255438.98 | 210553.27 | 236622.81 | 198138.36 | 115326.90 | 101372.02
3.| CyberShake 30 287.83 270.75 24431 236.80 232.47 218.99
4.| CyberShake 1000 | 14872.72 14781.01 13621.18 13439.58 11222.14 | 10860.59
5. Montage 25 245.08 216.51 231.44 223.30 217.71 187.45
6. Montage 100 6301.10 5364.55 4830.51 4913.52 3761.60 3752.01
7. Sipht_30 2767.21 2620.10 2684.59 2616.49 2612.90 2612.01
8. Sipht_1000 3403423 | 32856.94 | 27482.56 | 32199.65 | 20732.19 | 19652.69
9.| Epigenomics 24 2375.01 2580.19 2363.02 2360.27 2238.06 2146.30
10| Epigenomics 997 | 973484.72 | 882633.77 | 856202.79 | 824748.70 | 410740.87 | 398818.30

499

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508
Turning to the cost, the LH-MRFOA also proved highly effective in minimizing the
operational expenses associated with task scheduling. Cost efficiency is a critical factor in
cloud computing, where resource utilization directly translates to financial expenditure.

LH-MRFOA demonstrated a consistent ability to reduce costs across diverse workload
scenarios, outperforming other algorithms by optimizing resource allocation and reducing the
computational overhead, as illustrated in Table (4). This cost-effectiveness makes LH-
MRFOA an attractive option for cloud service providers aiming to maximize profitability
while maintaining high levels of performance. By achieving lower costs without
compromising on efficiency or scalability, LH-MRFOA positions itself as a superior solution

for managing the economic demands of cloud-based operations.

Table 4: Best Cost

" Data set GA PSO MRFOA L-MRFOA H-MRFOA MIIQE(_) N
11| Tnspiral 30 647.65 632.94 583.29 57521 572.24 556.10
12| Inspiral 1000 | 24430.67 | 2408096 | 24036.85 | 22860.16 | 23443.54 | 22301.88
13 CyberShake 30 | 19839.65 | 19695.84 | 19687.56 | 19690.19 | 19646.01 | 19645.61
14 CyberShake 1000 | 106270.17 | 104056.90 | 10235258 | 102785.97 | 94176.64 | 93953.63
15| Montage 25 135.08 136.16 125.93 129.67 12477 121.51
16] Montage 100 576.67 588.74 53521 540.06 54231 516.74
17 Sipht_30 529.02 538.16 512.41 513.08 511.22 506.60
18| Sipht 1000 2081020 | 20519.92 | 2095426 | 2102073 | 1997643 | 19729.46
19 Epigenomics 24 | 339301 | 322967 | 316484 | 322888 | 316617 | 3165.74
20| Epigenomics 997 | 68044843 | 63562336 | 63121741 | 58484597 | 57950343 | 558601.39

Finally, when considering fitness, which provides a comprehensive measure of an
algorithm’s overall performance, LH-MRFOA once again demonstrated its superiority.
Fitness encapsulates various aspects of task scheduling, including the balance between
exploration and exploitation, efficiency in resource use, and the ability to adapt to varying
workloads. LH-MRFOA consistently achieved higher fitness scores across different datasets,
reflecting its robust capability to optimize multiple performance criteria simultaneously, as
illustrated below in Table (5). This high fitness indicates that LH-MRFOA is not only
effective in specific metrics like makespan and cost but is also versatile enough to maintain
strong performance across a range of conditions. This makes LH-MRFOA a highly reliable
choice for real-world applications, where diverse and dynamic cloud environments demand
an algorithm that can consistently deliver optimal results.

Table 5: Best Fitness

Data set GA PSO MRFOA L-MRFOA H-MRFOA LH-MRFOA
21 Inspiral 30 2176.51 1865.10 1883.92 1933.19 1832.15 1800.98
22| Inspiral 1000 14368431 | 123370.91 | 119832.70 | 115946.63 | 68411.38 | 66834.45
23| CyberShake 30 10040.82 | 9994.98 9930.06 9932.40 9932.80 9928.21
24| CyberShake 1000 | 60581.67 | 57353.46 | 56657.83 | 56988.78 | 52021.07 | 51923.83
25| Montage 25 213.82 197.64 190.03 200.59 180.44 176.41
26/ Montage 100 3575.65 3168.25 3052.49 2893.94 2264.96 2214.69
27 Sipht_30 1750.57 1667.66 1664.87 166531 1550.08 1541.81
28] Sipht 1000 27606.74 | 2575023 | 2665738 | 25113.37 | 20247.89 | 19201.83
29| Epigenomics 24 2980.56 2856.72 2791.28 2755.68 2761.34 2661.55
30| Epigenomics 997 | 908657.14 | 801416.80 | 781958.68 | 738252.03 | 523809.04 | 492700.21

500

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

6.2 Performance Variability Analysis

Task scheduling in the cloud should be very unpredictable in nature. While observing the
facts, the prior result proved that GA was found to be performing variably over the datasets.
For instance, with the best cost scenario in GA, it was found to be constant in performing
well at low iterations but losing hold in the latter iterations against LH-MRFOA. This trend
can be seen in the best cost in Fig (7), where LH-MRFOA clearly had better performance as
the algorithm continued, with better lower costs from further iterations.
On the other hand, as shown in Fig (8) best makespan, GA had consistent performance across
the iteration but was greatly surpassed by the LH-MRFOA, mainly in the minimizing
makespan measure. The LH-MRFOA not only showed superiority in the reduction of
makespan but also in the improved consistency across further iterations. Similarly, from the
best fitness analysis Fig (8), GA remained strong in performance at the start, and it was only
later surpassed by both the L-HMRFOA and LH-MRFOA algorithms, especially as
alternating count increased. There are apparent fluctuations in the outcome due to the
variability necessary to select the algorithm, which then counts with the explicit nature of the
workload. Different scenarios expose the strengths and weaknesses of each algorithm. The
LH-MRFOA showed the best performance regarding all the applied criteria; this was carried
out due to its hybrid nature. Therefore, it is a generalized approach that can underpin any
cloud computing activity.

6.3 Scalability Analysis

Adaptive scalability regarding the available resources to be provisioned forms the most
critical issue in the task scheduling algorithm. This becomes acute in nature for the cloud
computing system in which resource adaptability and dynamic provisioning are applied in
relation to the change of workload. The results obtained from the three different applied
criteria, designated as best cost, best fitness, and best makespan were used in scaling the
algorithm's behavior regarding L-MRFOA and its heuristic extension. These algorithms were
not only holding their performance but further improving as the iteration counts went up, thus
showing an adaptability to increasing workload sizes. GA was competitive in the lower initial
stages or with lower iterations but generally struggled in the best makespan and best fitness
figures, where GA predictably leveled off in performance or even declined in the face of
increasing workload size, while the LH-MRFOA continued to optimize effectively. These
results show that the scalability of LH-MRFOA is a better fit for a larger and more dynamic
cloud environment.

6.4 Consistency Evaluation

An algorithm representative of its reliability and stability is consistent throughout varied
workloads. LH-MRFOA, according to the results obtained on the best cost, best fitness, and
best makespan figures, is proven to be reasonably consistent throughout varied situations. It
outperformed other algorithms, like GA and PSO, for different iteration numbers, as seen
below. The algorithm's consistency indicates that it is powerful and effective enough to
handle diversified task scheduling scenarios and therefore clearly establishes its candidature
for real-world deployment in a cloud environment. However, it is also evident from these
figures that in the case of extreme workloads, represented by the best makespan dataset, the
performance gaps between algorithms became more pronounced. The effectiveness of the
LH-MRFOA is seen in its ability to hold performance by retaining robustness in resource
allocation frameworks for a high-demand cloud environment.

501

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

6.5 Complexity vs. Performance Trade-off

The performance of complex algorithms, e.g., L-MRFOA and its heuristic variant, versus
simpler algorithms, e.g., GA and PSO, tends to be proportional to workload or iteration
count; see the figures. It is not universal; at a good cost Fig.8, GA and PSO remain
competitive in the earlier iterations, meaning that an increase in algorithmic complexity does
not always bring better performance. This indicates the necessity of a delicate evaluation that
will consider both complexity and performance outcomes while selecting the right approach
to be used specifically in scheduling tasks for the cloud environment. Whereas this LH-
MRFOA offers huge competitive advantages in most scenarios, at the cost of performance,
some simpler algorithms will remain good enough in the simpler contexts or when
computational efficiency is a must.

Best Cost Inspiral 30 Best Cost Inspiral 1000
5700 524,500 "\
5680
524,000
5660
.30 < 523,500
%]
3 8
Y 5620 Q
600 523,000
5580
522,500
5560
0 20 a0 0 80 100 0 20 40 60 80 100
Iteration Iteration
—_— A Orginal MantaRay == Heunstic MantsRay — GA Original MantaRay ~ —— Heuristic MantaRay
PSO Levy MantaRay — Levy Heurkstic Mantaray SO Levy MantaRay —— Levy Heuristic MantaRay
Best Cost Cybershake 30 Best Cost Cybershake 1000
$108,000
$19,850 $106,000 h
$104,000
$19,800
s $102,000
g g
G $19,750 U $100.000
598,000
519,700
§96,000
519,650 594,000
0 20 40 60 80 100 [} 20 100
Iteration
— A Original MantaRay ~—— Heuristic MantaRay — GA c
PSO Levy MantaRay —— Levy Heuristic MantaRay 50 Levy
Best Cost Montage 25 Best Cost Montage 100
sisef | $590
5134 $380 l
— 5570
— 5130 5560
& &
7 7
§ s128 3§ 550
5126 5540
5124 $530
5122 $520
0 20 20 60 80 100 0 20 20 60 80 100
Iteration Iteration
—_— GA Original MantaRay ~ —— Heuristic MantaRay — GA Original MantaRay ~ —— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay

502

Abed and Jabir

Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

Best Cost Sipht 30 Best Cost Sipht 1000
$560 521,000
520,800
$550
$20,600
S $540 =
g \ 3 520,400
o o
$530
520,200
1
$320 $20,000
$510 519,800
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
—GA Original MantaRay ~—— Heuristic MantaRay — GA Original MantaRay ~ —— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay
Best Cost Epigenomics 24 Best Cost Epigenomics 997
s3,900f
$680,000
$3,800
5660,000
$3,700
$640,000
$3,600
g g
g G $620,000
38 s3.500 S
$3,400 $600,000
$3,300 $580,000
$3,200
$560,000
0 20 a0 50 80 100 0 20 40 60 80 100
Iteration Iteration
— GA Original MantaRay == Heuristic MantaRay — GA Original MantaRay = Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay
.
.
Figure 7: best cost
Best Makespan Inspiral 30 Best Makespan Inspiral 1000
350,000 ms
4,400 ms
4,200 ms
300,000 ms
4,000 ms
3,800 ms 250,000 ms
T G
E E
< 3,600 ms 5
£ £
E F 200,000 ms
3,400 ms
3,200 ms
150,000 ms
3,000 ms
2,800 ms| 100,000 ms
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
— GA Original MantaRay ~—— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay

()

(b)

Best Makespan Cybershake 30 Best Makespan Cybershake 1000

380 ms

360 ms 16,000 ms

340msf |

15,000 ms

320ms
w w
£ 300 ms £ 14,000 ms
o v
E -
g £

ZR0ms 13,000 ms

260 ms

12,000 ms,
240 ms
550 ms 11,000 ms
0 20 [60 80 100 0 20 40 60 80 100
Iteration Iteration
— GA Original MantaRay ~ —— Heuristic MantaRay —GA Original MantaRay ~ —— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay

(c)

(d)

503

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

Best Makespan Montage 25 Best Makespan Montage 100
9,000 ms
375 ms
350 ms 8,000 ms
325 ms
7.000 ms
~ 300ms =
£ £
P P
£ 275 ms £
E £ 6,000 ms
250 ms
5,000 ms
225 ms
200 ms 4,000 ms
[20 40 60 30 100 0 20 40 60 80 100
Iteration Iteration
—GA Original MantaRay ~ —— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PsO Lewy MantaRay — Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay
Best Makespan Sipht 30 Best Makespan Sipht 1000
3,800 ms 50,000 ms|
3,600 ms 45,000 ms.
3,400 ms 40,000 ms
I w
E E
¢ 3,200 ms £ 35,000 ms
E S
3,000 ms 30,000 ms|
2,800 ms| 25,000 ms,
2,600 ms 20,000 ms
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
— GA Original MantaRay =~ = Heuristic MantaRay . (8. Original MantaRay ~ = Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay
Best Makespan Epigenomics 24 Best Makespan Epigenomics 997
3,000 ms
1,000,000 ms s e T
2,800 ms 900,000 ms
800,000 ms
£ 2,600 ms £
g 2 700,000 ms
E S
2,400 ms 600,000 ms
500,000 ms
2,200 ms
400,000 ms
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
— GA Original MantaRay ~—— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PsO Levy MantaRay ~—— Levy Heuristic MantaRay PSO Levy MantaRay ~—— Levy Heuristic MantaRay
Best Fit Inspiral 30 Best Fit Inspiral 1000
180000
2800
i\
160000 -——_
2600
|)
140000
2 2
£ 2400 £
& g
& & 120000
@ @
& 2200 &
100000
2000
80000 1
1800 —
0 20 40 60 80 100 0 20 40 60 50 100
Iteration Iteration
— GA Original MantaRay ~ —— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay

504

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

Best Fit Cybershake 30 Best Fit Cybershake 1000
10125F
62000
10100
10075 60000
g 10050 g
= & 58000
& 10025 &
i i
@ 10000 @ 56000
9975
54000
9950 \\
9925 52000
0 20 a0 60 80 100 0 20 40 60 80 100
Iteration Iteration
— GA Original MantaRay ~—— Heuri tantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PsSO Levy MantaRay —— Levy Heuristic MantaRay
Best Fit Montage 25 Best Fit Montage 100
4250
280 jum
_
4000
20 3750
= \— 7 3500
£ 240 - 2
& - &
= ‘n__\ = 3250
[&
220 h o
2 S 2 3000
2750
200
2500
180 2250
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
— GA Original MantaRay ~ = Heuristic MantaRay — GA nal MantaRay = Heunstic MantaRay
SO Levy MantaRay — Levy Heuristic MantaRay (] MantaRay —— Levy Heuristic MantaRay
Best Fit Sipht 30 Best Fit Sipht 1000
2000 32000
30000
1900 \
o = 28000 ~
E £
£ 1800 & o
& &
g — g
& &
1700 24000
22000
1600
\ 20000
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
— GA Original MantaRay ~—— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PsSO Levy MantaRay —— Levy Heuristic MantaRay
Best Fit Epigenomics 24 Best Fit Epigenomics 997
3800 —1
900000
3600
Z 3400 7 800000
E e
& &
+ 3200 700000
3 3
@ @
3000 e
600000
2800 h
500000 l
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
—_— GA Original MantaRay =~ == Heuristic MantaRay e GA Original MantaRay =~ = Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay P50 Levy MantaRay —— Levy Heuristic MantaRay

(i) W)

Figure 9: best fitness

6.6 Discussion
The LH-MRFOA is a potent step forward in optimization task scheduling for cloud
computing. With the utilization of the Lévy flight search strategies in optimizing landscapes,

505

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

LH-MRFOA has shown a better balance between exploitation and exploration. The results
shown in the best cost, Best makespan, and best fitness figures show that the LH-MRFOA
outperform standard bio-inspired algorithms like GA and PSO in most cases, especially when
higher scalability and consistency are required. Among all, the LH-MRFOA especially can
scale up to an increased iteration count or workload size where it either maintained or
improved performance compared to the other algorithms that failed. The experimental
platform, constructed with rich configurations in virtual machines, represents more precisely
the actual cloud environment's complexity and makes the research outcome more applicable.
The scalability spoken about by LH-MRFOA speaks to its overall suitability for workload
conditions with increased magnitude without degradation of performance and, as such, is an
ideal candidate for dynamic, changing cloud computing situations.
7. Conclusion

This work has fully investigated the efficiency and effectiveness of different task
scheduling algorithms within the cloud computing environment, emphasizing the LH-
MRFOA. The analysis has dealt with some critical issues such as performance variability,
scalability, consistency, and the complexity-performance trade-off, and arrived at some
significant results. The final results underline the subtleties of task scheduling optimization
since the performance of an algorithm varies quite significantly according to the workload.
Another nature-based algorithm, like GA and PSO, has shown initial efficiencies, especially
under scenarios with less workload. Advanced methods like LH-MRFOA were consistently
outperforming as the workload increased with the increase in both the aspects of size and
complexity. Furthermore, the superiority of these techniques is highly visible for later
iterations as well, where the LH-MRFOA outperforms, especially its Lévy Heuristic variant,
in minimizing the cost, optimizing the fitness, and reducing makespan. Results of the
scalability analysis position LH-MRFOA at good adaptability to various workload demands
since it can utilize properly available resources and optimize an assignment of tasks in a
dynamic cloud environment. In contrast, GA and PSO failed in scalability for more complex
scenarios, where LH-MRFOA kept its performance constant or even improved when the
number of iterations and the size of workloads increased. Real-world cloud computing
applications greatly require this adaptability since the demand for resources is constantly
changing. Consistency evaluation further proved the reliability and robustness of LH-
MRFOA. Regardless of scheduling scenarios of diverse tasks, LH-MRFOA performs well
when it uses Lévy flight strategies compared with other algorithms. This consistency across
different metrics/iterations further confirms that LH-MRFOA has the potential to be applied
effectively to real-world problems by capturing the deployment challenges of cloud resource
management.
Moreover, this work has also outlined one significant trade-off between the complexity of an
algorithm and its performance. While more complex algorithms, such as LH-MRFOA, often
outperformed simpler variants, especially for large and iteratively solved scenarios, there
were cases when GA and PSO remained competitive. This henceforth explains why a delicate
approach in the evaluation criteria, such as adaptability and optimization of efficiency in
resource utilization through scalability, has to be applied to task scheduling algorithms for the
cloud environment. In summary, the LH-MRFOA is one approach essential for task
scheduling optimization, which outperforms existing ones in improved performance,
scalability, and reliability. These features become necessary in dealing with complex and
dynamic workloads consistently for different metrics and render it a viable solution for
managing cloud resources. Further research can be conducted to enhance LH-MRFOA
further and apply it in other optimization areas related to cloud computing to continuously
improve cloud resource management and optimization techniques. Therefore, this research
contributes to the ever-growing scientific knowledge base on improving efficiency and

506

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

effectiveness in task scheduling within cloud computing to enhance overall performance and
reliability in cloud-based systems.

References

[1] M. F. Younis, "Enhancing cloud resource management based on intelligent system," Baghdad
Science Journal, vol. 21, no. 6, pp. 2156-2156, 2024.

[2] D. R. Abdulrazzaq, N. M. Shati, and H. K. Hoomod, "Task scheduling in a cloud environment
based on meta-heuristic approaches: A survey," Iraqi Journal of Science, vol. 65, no. 2, pp.
1001-1023, 2024.

[3] J. Yu, R. Buyya, and C. K. Tham, "Cost-based scheduling of scientific workflow applications on
utility grids," in Proc. First Int. Conf. e-Science Grid Comput. (e-Science'05), Melbourne, VIC,
Australia, Dec. 2005, pp. 8-147, doi: 10.1109/E-SCIENCE.2005.26.

[4] W. Viriyasitavat, L. D. Xu, G. Dhiman, A. Sapsomboon, V. Pungpapong, and Z. Bi, "Service
workflow: State-of-the-art and future trends," IEEE Transactions on Services Computing, vol.
16, no. 1, pp. 757-772, 2021.

[S] H. Kchaou, Z. Kechaou, and A. M. Alimi, "A PSO task scheduling and IT2FCM fuzzy data
placement strategy for scientific cloud workflows," Journal of Computational Science, vol. 64, p.
101840, 2022.

[6] 1. A. Abduljabbar and S. M. Abdullah, "An Evolutionary Algorithm for Solving Academic
Courses Timetable Scheduling Problem," Baghdad Science Journal, vol. 19, no. 2, pp. 399-408,
Apr. 2022. DOI: 10.21123/bsj.2022.19.2.0399.

[71 Y. Zhang, L. Wu, M. Li, T. Zhao, and X. Cai, "Dynamic multi-objective workflow scheduling
for combined resources in cloud," Simulation Modelling Practice and Theory, vol. 129, p.
102835, 2023.

[8] A. Talha, A. Bouayad, and M. O. C. Malki, "An improved pathfinder algorithm using opposition-
based learning for tasks scheduling in cloud environment," Journal of Computational Science,
vol. 64, p. 101873, 2022.

[9] N. Manikandan, N. Gobalakrishnan, and K. Pradeep, "Bee optimization-based random double
adaptive whale optimization model for task scheduling in cloud computing environment,"
Computer Communications, vol. 187, pp. 35-44, 2022.

[10] H. Hafsi, H. Gharsellaoui, and S. Bouamama, "Genetically-modified multi-objective particle
swarm optimization approach for high-performance computing workflow scheduling," Applied
Soft Computing, vol. 122, p. 108791, 2022.

[11] J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei, and M. Chen, "Cost and makespan-aware workflow
scheduling in hybrid clouds," Journal of Systems Architecture, vol. 100, p. 101631, 2019.

[12] B. H. Abed-Alguni and N. A. Alawad, "Distributed Grey Heuristic for scheduling of workflow
applications in cloud environments," Applied Soft Computing, vol. 102, p. 107113, 2021.

[13] J. K. Konjaang and L. Xu, "Multi-objective workflow optimization strategy (MOWOS) for cloud
computing," Journal of Cloud Computing, vol. 10, no. 1, p. 11, 2021.

[14] X. Wei, "Task scheduling optimization strategy using improved ant colony optimization
algorithm in cloud computing," Journal of Ambient Intelligence and Humanized Computing, pp.
1-12, 2020.

[15] H. Aziza and S. Krichen, "A hybrid genetic algorithm for scientific workflow scheduling in
cloud environment," Neural Computing and Applications, vol. 32, no. 18, pp. 15263-15278,
2020.

[16] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, and A. Jafarian, "A hybrid multi-
objective metaheuristic optimization algorithm for scientific workflow scheduling," Cluster
Computing, vol. 24, pp. 1479-1503, 2021.

[17] N. Anwar and H. Deng, "A hybrid metaheuristic for multi-objective scientific workflow
scheduling in a cloud environment," Applied Sciences, vol. §, no. 4, p. 538, 2018.

[18] S. Kumar and R. Buyya, "Green cloud computing and environmental sustainability," in
Harnessing Green IT: Principles and Practices, pp. 315-339, 2012.

[19] M. A. Rodriguez and R. Buyya, "Deadline-based resource provisioning and scheduling algorithm
for scientific workflows on clouds," /IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp.
222-235,2014.

507

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

[20] W. Zhao, Z. Zhang, and L. Wang, "Manta ray foraging optimization: An effective bio-inspired
optimizer for engineering applications," Engineering Applications of Artificial Intelligence, vol.
87, p. 103300, 2020.

[21] H. Dewar, P. Mous, M. Domeier, A. Muljadi, J. Pet, and J. Whitty, "Movements and site fidelity
of the giant manta ray, Manta birostris, in the Komodo Marine Park, Indonesia," Marine Biology,
vol. 155, pp. 121-133, 2008.

[22] U. C. Ben, A. E. Akpan, C. C. Mbonu, and E. D. Ebong, "Novel methodology for interpretation
of magnetic anomalies due to two-dimensional dipping dikes using the manta ray foraging
optimization," Journal of Applied Geophysics, vol. 192, p. 104405, 2021.

[23] A. M. Shaheen, A. R. Ginidi, R. A. El-Sehiemy, and S. S. Ghoneim, "Economic power and heat
dispatch in cogeneration energy systems using manta ray foraging optimizer," IEEE Access, vol.
8, pp. 208281-208295, 2020.

[24] E. H. Houssein, L. E. Ibrahim, N. Neggaz, M. Hassaballah, and Y. M. Wazery, "An efficient ECG
arrhythmia classification method based on manta ray foraging optimization," Expert Systems with
Applications, vol. 181, p. 115131, 2021.

[25] S. Duman, A. Dalcali, and H. Ozbay, "Manta ray foraging optimization algorithm-based
feedforward neural network for electric energy consumption forecasting," International
Transactions on Electrical Energy Systems, vol. 31, no. 9, p. €12999, 2021.

[26] S. A. Alsaidy and N. A. Abdullah, "Power-efficient virtual machine placement in cloud
datacenters using heuristic-assisted enhanced discrete particle swarm optimization," Iragqi
Journal of Science, vol. 63, no. 10, pp. 44994517, 2022.

[27] Y. Liao, W. Zhao, and L. Wang, "Improved manta ray foraging optimization for parameters
identification of magnetorheological dampers," Mathematics, vol. 9, no. 18, p. 2230, 2021.

[28] M. P. Calasan, A. Jovanovié, V. Rubezié, D. Muji¢i¢, and A. Deriszadeh, "Notes on parameter
estimation for single-phase transformer," IEEE Transactions on Industry Applications, vol. 56,
no. 4, pp. 3710-3718, 2020.

[29] H. S. Ramadan and A. M. Helmi, "Optimal reconfiguration for vulnerable radial smart grids
under uncertain operating conditions," Computers & Electrical Engineering, vol. 93, p. 107310,
2021.

[30] W. Chen and E. Deelman, "WorkflowSim: A toolkit for simulating scientific workflows in
distributed environments," in Proc. 2012 IEEE 8th Int. Conf. e-Science, Chicago, IL, USA, Oct.
2012, pp. 1-8, doi: 10.1109/eScience.2012.6404430.

508

