
Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

 DOI: 10.24996/ijs.2026.67.1.39

__
*Email: mohannad.abd2201m@sc.uobaghdad.edu.iq

482

Enhanced Manta Ray Foraging Algorithm for Scheduling Scientific

Workflows in Cloud Computing Environments Using Levy Flight and

Heuristic Operator

Mohanad Awad Abed*, Adnan Jumaa Jabir
Department of Computer Since, Collage of Since, University of Baghdad, Baghdad, Iraq

 Received: 19/9/2024 Accepted: 28/1/2025 Published: 30/1/2026

Abstract

 In modern computing, efficient task scheduling in cloud environments,

especially for large-scale scientific workflows, presents a significant challenge as it

is classified as a NP-hard problem. This study introduces an improved version of

the Manta Ray Foraging Optimization Algorithm, named Lévy-Heuristic Manta

Ray Foraging Optimization Algorithm (LH-MRFOA), which is enhanced with Lévy

flight and heuristic search techniques to address these challenges. The Lévy flight

mechanism is integrated to enhance the algorithm’s exploration capabilities,

allowing it to avoid local optima effectively and achieve global convergence.

Meanwhile, the heuristic search method is employed to improve the exploitation

capability of the algorithm while ensuring more efficient resource utilization and

reduced processing time. The proposed LH-MRFOA, which mimics the natural

foraging behavior of manta rays, combines these enhancements to deliver superior

performance in task scheduling by minimizing makespan, processing cost, storage

cost, and bandwidth utilization across varying workflow sizes. Experimental

evaluations on a heterogeneous cloud infrastructure reveal that the LH-MRFOA

outperforms bio-inspired algorithms such as Genetic Algorithm (GA) and Particle

Swarm Optimization (PSO), particularly in scenarios that require high scalability

and balanced resource allocation. This research substantially advances cloud task

scheduling optimization, offering a robust solution for enhancing resource

management and cost efficiency in real-world cloud applications.

Keywords: Cloud computing, Lévy flight, MET, MRFOA, Scientific workflows,

Task scheduling, Workflow simulator.

خوارزمية شيطان البحر المحسّنة لجدولة سير العمل العلمي في بيئة الحوسبة السحابية باستخدام قفزة
 ليفي والعامل الاستدلالي

 مهند عواد عبد*, عدنان جمعة جابر

 قسم علوم الحاسوب، كلية العلوم، جامعة بغداد، بغداد، العراق

 الخلاصة
كبيرًا تحديًا النطاق واسعة السحابية البيئات في الفعّالة المهام جدولة تُمثل الحديثة الحوسبة عالم في

بحيث إنه تم تصنيفها على أنها مشكلة صعبة)متعددة الحدود(. تقدم هذه الدراسة نسخة محسّنة من خوارزمية
(اثناء بحثها Manta ray(والتي تحاكي سلوك أسماك) MRFOAالبحث عن الطعام لأسماك شيطان البحر)

 ISSN: 0067-2904

mailto:mohannad.abd2201m@sc.uobaghdad.edu.iq

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

483

 (خوارزمية تسمى المحسنة والنسخة ، الطعام الاستدلالي LH-MRFOAعن البحث بتقنيات المطورة)
الاستدلال عامل (مع Lévy flightلمعالجة هكذا نوع من التحديات حيث تم دمج آلية الاستكشاف لخوارزمية)

 (Heuristic search (لخوارزمية الاستكشاف قدرات لتحسين)MRFOA الوقوف بتجنب لها يسمح مما)
البحث طريقة استخدام يتم نفسهُ الوقت وفي الأوسع التقارب وتحقيق فعال بشكل المحلية الحلول عند
الاستدلالي لتحسين قدرة الاستغلال للخوارزمية مع ضمان استخدام الموارد بكفاءة أكبر وتقليل وقت المعالجة.

المقترحة بين هذه التحسينات لتقديم أداء متفوق في جدولة المهام من خلال LH-MRFOAتجمع خوارزمية
وقد تم اختبار أداء الخوارزمية المحسنة خلال بيئات عمل .كلفة المعالجة وكلفة التخزين تقليل وقت التنفيذ،

تتفوق LH-MRFOAمختلفة ولقد كشفت التقييمات التجريبية على البنية التحتية السحابية غير المتجانسة أن
(الوراثية الخوارزمية مثل البيولوجيا من المستوحاة الخوارزميات الجسيمات GAعلى أسراب وخوارزمية)

 (PSO وخاصة في السيناريوهات التي تتطلب قابلية عالية للتوسع وتخصيص الموارد بشكل متوازن. يوفر ،)
وكفاءة الموارد إدارة لتعزيز قويًا حلًا يوفر مما السحابية، المهام جدولة تحسين في كبيرًا تقدمًا البحث هذا

 .التكلفة في تطبيقات السحابة في العالم الحقيقي.
1. Introduction

 Presently, cloud computing serves as a key facilitator for digital transformation, changing

how businesses consider IT services and infrastructures via the strategic importance of cloud

computing in enhancing productivity, flexibility, and competitiveness in the digital era,

especially with the present massive demand for cloud computing applications. The primary

benefits of cloud computing are that users do not need to own or manage physical

infrastructure, such as servers or networking equipment; instead, users can access computing

resources on-demand from cloud service providers. This model offers several advantages,

including cost savings, scalability, and resource allocation flexibility. Users can scale their

resources up or down based on their needs, in addition to enforcing deadlines and constraints

on tasks running within the cloud environment [1]. Cloud computing leverages virtualization

technology to transform physical resources into virtual instances, streamlining the allocation

and management of computing, storage, and networking resources. This abstraction enables

seamless dynamic provisioning and scaling of resources in response to user demand, resulting

in optimized resource utilization and cost-effectiveness.

Nevertheless, cloud computing encounters numerous obstacles, the most significant being the

efficient utilization of computing resources. Efficient resource allocation is then translated

into that the cloud provider can maximize the utilization of their infrastructure, as much as it

enables users to obtain the best value for their investment in cloud services from performance

to overall cost. Cloud orchestration systems, i.e., brokers and schedulers, map and assign

workloads containing dependent and independent tasks to available resources in a process

known as task scheduling. Task scheduling is critical in ensuring efficient resource

utilization, optimal performance, and cost-effectiveness. It refers to the process of assigning

incoming tasks to suitable virtual machines (VMs) or cloud resources within a cloud

environment. Task scheduling complexity arises due to several factors, including the dynamic

nature of cloud available resources, task dependencies such as scientific workflows, and user-

defined constraints [2]. Such complexity makes reaching optimal task scheduling decisions

regarded and recognized as NP-hard problem [3]. Effective task scheduling is crucial for

achieving several key advantages in cloud computing i.e., enhancing performance, improving

resource utilization, reducing costs, optimizing quality of services (QoS), and increasing

scalability. As a result, finding an optimal scheduling solution typically requires exponential

time in relation to the number of tasks and resources involved.

Scientific workflows are organized and represented using direct acyclic graphs (DAGs). In

such representation, a task is defined as a node in the graph, and the dependencies among

tasks (nodes) are represented as directed edges.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

484

Scheduling optimization of scientific workflows has received great attention within academic

literature, and it is an active and evolving field of research that emphasizes the importance of

efficient cloud resource utilization [4][5]. Such interest is primarily driven by the widespread

adoption of cloud-based services and solutions and the important role scheduling

optimization plays in cost minimization and efficiency of cloud resource utilization. To

address this challenge, researchers explored heuristic, metaheuristic, and several nature-

inspired optimization algorithms to approximate near-optimal task scheduling solutions

within reasonable time and other user defined constraints. Upon examining recent research

[9-12], it is evident that various improvements have been made to enhance the convergence

of several optimization algorithms to determine the optimal global-best task scheduling

solution within cloud environments.

However, several limitations and drawbacks have been identified. Primarily, the research

often confines its evaluation to small-scale test datasets, limiting the generalization of the

findings. Second, several of the proposed hybrid approaches frequently exhibit high

computational complexity, while others achieved marginal improvements compared to

alternative optimization algorithms. The cumulative impact of these limitations can be

significant in convergence to optimal solution in the optimization of large-scale tasks. Last, a

certain number of studies suffer from poor selection of virtual machines configuration to

accommodate the aim of their study, such as employing a small number of virtual machines

in large and high-performance tasks scheduling cloud environments or an excessive number

of virtual machines to investigate scheduling of small and limited number of tasks. From this

standpoint, the main contributions of our work comprise:

1. To enhance the efficiency of scientific workflow task scheduling in cloud environments,

emphasizing minimizing both makespan and costs (including processing, bandwidth, and

storage) across workflows of various sizes (small, medium, and large).

2. The Manta Ray Foraging Optimization Algorithm (MRFOA) is introduced as a solution

for optimizing task scheduling. MRFOA is recognized for its robust and fast convergence in

large-scale optimization problems. Thus, MRFOA is particularly well-suited for handling the

complexities of large-scale multi-objective task scheduling in cloud environments

3. An enhanced version of the Manta Ray algorithm, termed Lévy-Heuristic Manta Ray

Optimization Algorithm (LH-MRFOA), is proposed. LH-MRFOA incorporates Lévy flight

randomness and heuristic approach to enhance further the convergence towards global near to

optimal solution, hence, more suited to address optimization challenges inherent in complex

workflows.

4. The proposed algorithm undergoes comprehensive tests on heterogeneous cloud

infrastructure characterized by different processing speeds (slow, moderate, fast) and costs.

This rigorous examination aims to thoroughly evaluate the effectiveness of the proposed

approach in real-world cloud computing scenarios.

 The subsequent sections of this paper are organized as follows: Section 2 thoroughly

examines recent literature on multi-objectives task scheduling optimization with an analysis

of various methodologies employed and critical evaluations of their weaknesses. Section 3

details the definition of the problem and the objective function in scientific workflow task

scheduling. Section 4 presents MRFOA as the proposed algorithm and proposed

improvements by employing Lévy flight-heuristic as a search factor. Our experimental setup

is explained in Section 5. The evaluation of performance is discussed in Section 6, while

Section 7 encompasses the conclusion and outlines avenues for future research endeavors.

2. Related Work

 Scheduling in cloud computing has been an object of extensive research since it has been

classified as an NP-hard problem. Such complexity lies in the combinatorial nature inherent

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

485

to the resource allocation and coordination of task execution. Researchers have been

considering different heuristic and metaheuristic approaches for solutions [6], with a special

emphasis on optimization techniques recently. Y. Zhang et al., 2023 [7] proposed a Dynamic

Multi-Objective Evolutionary Algorithm (DMOEA) for workflow scheduling in dynamic

cloud environments. The work has emphasized the necessity of adaptation to the dynamically

priced spot resources and was focused on the maximization of reliability and minimization of

cost and makespan. However, the approach has high computational and space complexity,

which is unsuitable for large-scale datasets. Adnan Talha et al. (2022) [8] proposed

Oppositional-Based Learning (OBL) integrated with the Pathfinder Algorithm (PFA) to

improve the performance of task scheduling in large-scale workflows. Although the hybrid

approach improved the exploration and exploitation abilities, the study did not have

theoretical advances in the chosen algorithms.

 N. Manikandan et al. (2022) [9] carried out task scheduling using a hybrid Whale

Optimization Algorithm (WOA) combined with mutation-based Bees optimization. Despite

achieving remarkable improvement in resource utilization and operational cost, the method

showed high computational time for large-scale scenarios, but it was not tested on benchmark

datasets. Haithem Hafsi et al. [10], in 2022, proposed the genetically modified multi-

objective particle swarm optimization algorithm with a novel two-dimensional encoding for

task-resource mapping in high-performance hybrid cloud environments. While the approach

has reached faster solution convergence, it was only tested with a small number of virtual

machines and medium-scale datasets, which can hardly be generalized.

Junlong Zhou et al. (2019) [11] proposed an improved genetic algorithm for hybrid cloud

scheduling to minimize cost and makespan under SLA constraints. The two-stage approach in

this work improved solution quality at the expense of heavy computational overhead and,

hence, was unsuitable for a dynamic environment with large-scale workflows. To deal with

large-scale optimization, Bilal H. Abed-Alguni et al. (2021) [12] introduced a Distributed

Grey Wolf Optimizer (DGWO). The technique organized candidate solutions into islands for

parallel evaluation, improving the exploration capabilities. However, the approach lacked

statistical analysis of migration strategies, which reduced the insight into solution quality for

high data transmission tasks.

 J. Kok Konjaang et al. (2021) [13] proposed a three-stage task scheduling method

combining the Cost Optimized Heuristic Algorithm (COHA) and Multi-Objective Workflow

Optimization Strategy (MOWOS). Despite achieving cost and makespan reductions, the

study did not include bandwidth and storage metrics in its evaluation, making it less

comprehensive. In QoS-oriented optimization, Xianyong Wei (2020) [14] proposed an ACA

with dynamic pheromone update strategy and load balancing strategies. While the method

achieved a very high improvement in dynamic resource allocation, it still suffered from

small-scale task evaluation and homogeneous virtual machine configurations. Hatem Aziza et

al. [15], 2020, integrated the Heterogeneous Earliest Finish Time (HEFT) with the Genetic

Algorithm for scientific workflows and proposed new crossover and mutation operators.

However, the fitness function was very basic, and the approach did not significantly improve

in most of the test cases. Ali Mohammad Zadeh et al., 2021 [16] used the Sine Cosine

Algorithm with chaotic randomness to modify the Ant Lion Optimization algorithm to green

cloud computing. While the approach was efficient at a low workload, computational

overhead was high at a high workload.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

486

Table 1: A Comparison of the Current Workflow Task Scheduling

Ref. Metrics Method Limitations

[7]
Reliability,

makespan, cost

Dynamic multi-objective

optimization evolutionary

algorithm (DMOEA).

. High computational complexity

. High space complexity (weights vectors)

. Only small and medium size datasets were tested.

[8]

Makespan, cost,

resource

utilization

Hybrid Pathfinder and

oppositional-based Learning

(OBLPFA).

. No theoretical improvements in the selected

algorithms.

[9]

Makespan, cost,

energy

consumption

Hybrid Whale and mutation-

based Bee optimization

algorithms.

. High computational and time complexity due to

double adaptive weight and random spare scheme,

especially for large scale workflow tasks.

. Workflow standard benchmark datasets were not

tested.

[10]

Makespan, cost,

SLA factors

such as budget

Genetically modified

Particle swarm algorithm

(GMPSO) and novel two-

dimensional encoding for

task and resource mapping.

. The proposed work aimed at high performance

hybrid cloud scenarios, yet only six VMs were

configured (one free and five paid). A large number

of VMs must be tested.

. Synthetic extra-large workflow tasks should be

considered such as [8] and [14].

. In terms of evaluation metrics IGD (inverted

generational distance) and Hv (Hypervolume), the

performance of the proposed GMPSO is relatively

close, if not worse, when compared to NSGAII.

Better results are obtained only in higher iterations.

[11]

Makespan,

monetary cost,

SLA

constraints.

Enhanced genetic algorithm

(improved chromosome

encoding and hybrid

crossover).

. The proposed two-stage solution is slow in a

dynamic cloud environment.

. Only small workflow workloads were tested.

[12]

Computation

and data

transmission

costs.

Distributed grey wolf

optimizer (DGWO).

. The proposed distribution is to increase the

number of parallel workflow evaluations and not to

enhance the GWO algorithm.

. The maximum tested data transmission is 5GB, a

bigger value should be considered.

. No statistical analysis of solutions migration

among islands.

. The impact of the best and worst solutions from

one island to another was not presented.

[13] Makespan, cost

Hybrid cost optimized

heuristic and multi-objective

workflow optimization

strategy (MOWOS), with

improved task schedular

using MinVM and MaxVM.

. Tasks splitting approach effect was not measured

during the evaluation. It must be included in the

Fitness function.

. Tasks splitting was based on task length, which is

accommodated by splitting the task’s bandwidth,

storage, each of which was not covered.

. MinVM and MaxVM scheduling effects on the

overall obtained results were not measured.

[14]

Makespan, cost,

energy, SLA

deadline

constraints

Hybrid Chemical Reaction

Optimization (CRO), and

Particle Swarm Optimization

(PSO).

. Proposed Cloudlets properties share the same file

input and outsize.

. Presented VMs’ configurations are not

heterogeneous and are relatively the same.

. The maximum number of tested tasks is 300, large

tasks number should be tested.

. No standard workflow benchmark datasets were

tested.

. The time complexity of the proposed CR-PSO is

high

[15]

Dynamic

resources

availability,

dynamic prices

of cloud

Improved Ant Colony

Algorithm (ACA) with

reward and punishment

coefficient to enhance

pheromone updating strategy

. A large number of tasks should be considered, the

maximum number of tasks tested was only 200.

. The number of VMs in the experimental results

was 80, which is rather large considering the small

number of tasks tested.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

487

resources,

makespan, QoS

of ant colony. . No standard workflow benchmark datasets were

tested.

[16]
Makespan, cost,

deadline budget

Hybrid Genetic Algorithm

and Heterogeneous earliest

finish time HEFT,

tournament crossover, and

random mutation operator.

. The proposed approach can be improved, and

better results were obtained in only half of the

performed workflow tests.

. The proposed Fitness function is composed of two

subfunctions and it can be improved

[17]

Energy,

makespan, and

resources cost

Improved Ant Lion

Optimization (ALO) using

Sine Cosine Algorithm and

Chaotic randomness.

. The number of VMs’ in the experimental setup is

set to 1000 VM.

. The largest workflow tested load only contain

1000 tasks, bigger workflow should be considered

given the large number of VMs, such as [5] and

[10].

3. Scientific Workflow Task Scheduling

 Scientific workflows are sequences of tasks used by scientific research to test the

efficiency of task scheduling algorithms in the cloud environment. Workflows are systematic

sequences of activities or tasks aimed at generating scientific results or solving complex

problems. Workflows are typically represented in a directed acyclic graph (DAG). The term

"acyclic" implies no cycles or loops in the graph, meaning that tasks can be executed in a

specific order without encountering circular dependencies. Each node in the graph represents

a task or a computation along with other task related attributes, such as task length, and data

required for input and output. Edges, on the other hand, indicate the dependencies between

tasks. An edge from task A to task B indicates that task B depends on the output of task A.

This dependency structure ensures that tasks are executed in the correct order, with

prerequisite tasks completed before their dependent tasks can begin. Fig 1 [17] shows the

DAG representation of five scientific workflows utilized in this study: Montage (a),

CyberShake (b), Epigenomics (c), Inspiral (d), SIPHT (e).

Figure 1: DAG structure of scientific workflows [17].

DAG is mathematically represented as 𝐺 = (𝑇, 𝐸). Where 𝑇 = {𝑇1, 𝑇1, 𝑇2, … … . . , 𝑇𝑛} denote

the set of vertices or nodes (tasks). And 𝐸 represents the set of directed edges among nodes,

where 𝐸 = {𝐸0, 𝐸1, 𝐸2, … … . , 𝐸𝑛}. For instance, a directed edge of 𝐸(𝑇3, 𝑇4) indicates a direct

dependency between task 𝑇3 and 𝑇4. In other words, the fourth task cannot be executed until

the third task has been completed. Therefore, 𝐸 can be rewritten as a set of ordered pairs of

vertices, 𝐸 = { (𝑇𝑖, 𝑇𝑗) | 𝑇𝑖, 𝑇𝑗 ∈ 𝑇}. Where 𝑇𝑖 is the predecessor task and 𝑇𝑗 is successor task.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

488

Each task 𝑇𝑖 in DAG workload has additional attributes or metadata. These attributes help in

optimizing task execution and resource allocation within the workflow, such as:

• Input data: 𝐼 = {𝐼0, 𝐼1, 𝐼2, … … . . 𝐼𝑛}, where 𝐼𝑖 represents input data required by task 𝑇𝑖.

• Output data: 𝑂 = { 𝑂0, 𝑂1, 𝑂2, … … . . 𝑂𝑛}, where 𝑂𝑖 represent output data produced by

task 𝑇𝑖.

• Task length: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑖), is a measure of computational effort required to complete task

𝑇𝑖. It is typically expressed in terms of the number of instructions or the amount of

competition (e.g., in millions of instructions). In workflow simulations, task length is used to

estimate the makespan or the time required to complete the task, assuming certain

computational resources are available.

In the realm of Infrastructure as a Service (IaaS), computing resources are commonly

provisioned in the form of virtual machines (VMs). These VMs are simulated computing

environments operating independently within a physical server. Users of IaaS platforms

leverage these VMs to deploy and run their applications, software, and computational

workloads in a flexible and scalable manner.

Figure 2: Workflow and Cloud tasks scheduling

3.1 Problem Formulation

 The context of this study aims to present and develop a multi-objective task scheduling

optimization algorithm. This algorithm aims to address the complexities inherited in task

scheduling within cloud computing environments. By the above given definitions for the

workflows and tasks, our primary objective is to minimize critical factors associated with task

scheduling on cloud resources. These factors encompass the makespan, processing costs,

storage costs, and bandwidth utilization. Each of these factors can be defined as follows:

1. Makespan: the total time required to complete all tasks within a given workflow,

starting from the initiation of the first task to the completion of the last task. Consider the

following workflow, 𝐺 = (𝑇, 𝐸), where 𝑇 = {𝑇1, 𝑇1, 𝑇2, … , 𝑇𝑛} represent the set of tasks (both

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

489

dependent and independent), and 𝐸 is a set of all edges or dependency connections among

tasks. Each connection is denoted as 𝐸𝑖 = (𝑇𝑖, 𝑇𝑗), and belongs to 𝐸 = {𝐸0, 𝐸1, 𝐸2, … . , 𝐸𝑛}.

A task 𝑇𝑖with dependencies, dep (𝑇𝑖) will not start unless all its dependent tasks have been

executed. If a task has no dependencies (e.g., entry tasks), dep (𝑇𝑖) = ∅. The finish time 𝐹𝑇𝑇𝑖

for task 𝑇𝑖 is defined as the sum of its execution time and the execution times of all dependent

tasks [12]:

𝐹𝑇𝑇𝑖 = (∑ 𝐸𝑇𝑛
𝑖=0 (𝑑𝑒𝑝(𝑇𝑖)) + 𝐸𝑇(𝑇𝑖) (1)

Where 𝑛 is the number of dependent tasks and 𝐸𝑇 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑖)/(𝑀𝑃𝐼𝑆𝑣𝑚𝑗 ∗ 𝑃𝐸𝑗). Where

𝑀𝐼𝑃𝑆𝑣𝑚𝑗 is processing power of 𝑉𝑀𝑗 measured in 𝑀𝐼𝑃𝑆, and 𝑃𝐸𝑗 is the number of available

virtual cores (Processing Entity); Makespan can be measured as:

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥∀𝑡𝑎𝑠𝑘𝑠(𝐹𝑇) (2)

Where 𝐹𝑇 = {𝐹𝑇0, 𝐹𝑇1, 𝐹𝑇2, … , 𝐹𝑇𝑛}.

2. Processing Cost: The cost associated with executing task 𝑇𝑖 on resource 𝑉𝑀𝑗. In

workflow simulation, processing cost 𝑃𝑖 for task 𝑇𝑖 is calculated as [12]:

𝑃𝑖 = 𝐸𝑇𝑖 ∗ 𝐶𝑜𝑠𝑡𝑗 (3)

Where 𝐸𝑇𝑖 is execution time for task 𝑇𝑖 and 𝐶𝑜𝑠𝑡𝑗 is the Processing Cost of 𝑉𝑀𝑗 per time

unit. The total processing cost for the entire workload can be determined as:

𝑃𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑖
𝑛
𝑖=0 (4)

3. Storage Cost: The expenditure associated with storing data related to tasks on cloud

storage services. The storage requirement 𝑆𝑖 for the task 𝑇𝑖, is the sum of all its output file

sizes hence [12]:

𝑆𝑖 = ∑ 𝑂𝑖𝑗

𝑛

𝑗=0

Where 𝑂𝑖𝑗 is the 𝑗𝑡ℎ output file for the task 𝑇𝑖. Then storage cost 𝑆𝐶𝑖 for task 𝑇𝑖 is:

𝑆𝐶𝑖 = (𝑆𝑖 / 𝑆𝑉𝑀𝑗) ∗ 𝑆𝐶𝑉𝑀𝑗

Where 𝑆𝑉𝑀𝑗 is the total storage available for 𝑉𝑀𝑗, and 𝑆𝐶𝑉𝑀𝑗 is the storage cost of 𝑉𝑀𝑗.

the total storage cost for the workflow is:

𝑇𝑜𝑡𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 = ∑ 𝑆𝐶𝑖

𝑛

𝑖=0

4. Bandwidth Cost: Refers to the network bandwidth consumption during data transfer

operations in the cloud. The required bandwidth 𝐵𝑖 for the task 𝑇𝑖 is the sum of all input file

sizes [12]:

𝐵𝑖 = ∑ 𝐼𝑖𝑗

𝑛

𝑗=0

 Where 𝐼𝑖𝑗 is the 𝑗𝑡ℎ input file for the task 𝑇𝑖. Then bandwidth cost 𝐵𝐶𝑖 for task 𝑇𝑖 is:

𝐵𝐶𝑖 = (𝐵𝑖 / 𝐵𝑉𝑀𝑗) ∗ 𝐵𝐶𝑉𝑀𝑗

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

490

 Where 𝐵𝑉𝑀𝑗 is the total bandwidth available for 𝑉𝑀𝑗, and 𝐵𝐶𝑉𝑀𝑗 is the bandwidth

cost of 𝑉𝑀𝑗. The total bandwidth cost for the workflow is:

𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑖𝑡ℎ 𝑐𝑜𝑠𝑡 = ∑ 𝐵𝐶𝑖

𝑛

𝑖=0

3.2 Objective Function

 In this research, we aim to decrease task execution time and cost while maximizing

resource utilization across all VMs in a cloud environment. Workflow scheduling in dynamic

environments is more challenging and realistic compared to static environments. Cloud

resources must be allocated precisely to fulfill user service agreements while maximizing

resource utilization. Large scale with multi-objectives optimization is inherently complex,

and optimal solutions require efficient scheduling algorithms and more importantly, accurate

objective function. Considering this, the objective function of this study is focused primarily

on minimizing the following fitness function:

𝐹 = (𝑤1 ∗ 𝑀𝑆 + 𝑤2 ∗ 𝑃𝐶𝑡𝑜𝑡𝑎𝑙 + 𝑤3 ∗ 𝑆𝐶𝑡𝑜𝑡𝑎𝑙 + 𝑤4 ∗ 𝐵𝐶𝑡𝑜𝑡𝑎𝑙)

Where 𝑀𝑆 is 𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛, 𝑃𝐶𝑡𝑜𝑡𝑎𝑙 is the total Processing Cost, 𝑆𝐶𝑡𝑜𝑡𝑎𝑙 is the total Storage

Cost, and 𝐵𝐶𝑡𝑜𝑡𝑎𝑙 is the total Bandwidth Cost. And 𝑤𝑖 represents the weight, 𝑤𝑖 ∈ [0, 1], and

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 1.

Weights are used in optimization functions to assign relative importance or priority to

different objectives or criteria. In a cloud environment, such decisions are entirely dependent

on user preferences and on the specification of the workflow at hand. Objectives with higher

weights are given more emphasis, leading to solutions prioritizing those objectives over

others. Additionally, it provides against contradictory objectives such as makespan and

processing costs.

4. Proposed LH-MRFOA Algorithm

 This section presents the original MRFO algorithm along with the proposed

improvements.

4.1 Manta Ray Foraging Optimization Algorithm (MRFOA)

 Manta Ray Foraging Optimization Algorithm (MRFOA) is a metaheuristic optimization

method first proposed by Zhao in 2020. It is inspired by the effective and cooperative

foraging behavior of manta rays. MRFOA has successfully imitated three major foraging

behaviors of manta rays, including chain foraging, cyclone foraging, and somersault foraging.

The behavior is customized for optimization tasks with a good balance between exploration

and exploitation to find the global optimum in complex search spaces.

4.1.1 Manta Ray Structure and Foraging Behavior

 Manta rays are large, flat, aquatic animals with terminal mouths; they forage using their

cephalic lobes to direct the plankton into the mouth. Manta rays portray peculiar foraging

behavior, such as looping and somersaulting motions. Figures 3(A) and 3(B) [20] depict a

manta ray in action and its structure.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

491

Figure. 3: (A) A foraging manta ray, and (B) structure of a manta ray [20]

Chain foraging, Figure 4 depicts the 2-D foraging behavior of cyclones. Instead of merely

following the meal in front of it, the individual moves in a circular pattern in that direction. In

two dimensions, the spiral motion of manta rays is described by the mathematical

expression:𝑥𝑖
𝑑(𝑡 + 1) =

 {
𝑥𝑖

𝑑(𝑡) + 𝑟. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛼 . (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) 𝑖 = 1

𝑥𝑖
𝑑(𝑡) + 𝑟. (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛼 . (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) 𝑖 = 2, … , 𝑁

 (1)

𝛼 = 2 . 𝑟. √|log (𝑟)| (2)

 where, 𝑥𝑖
𝑑(𝑡) is the position of 𝑖th individual at time t in 𝑑th dimension, r is a random

vector within the range of [0,1], a is a weight coefficient, 𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) is the plankton with high

concentration. Fig. 4 depicts this foraging behavior in a 2-D space. The position update of the

𝑖th individual is determined by the position 𝑥𝑖−1(𝑡) of the (i-1) th current individual and the

position 𝑥𝑏𝑒𝑠𝑡(𝑡) of the food.

Figure 4: Chain foraging behavior in 2-D space [20]

- Cyclone foraging: Figure 4 depicts the 2-D foraging behavior of cyclones. Instead of

merely following the meal in front of it, the individual moves in a circular pattern in that

direction. In two dimensions, the spiral motion of manta rays is described by the

mathematical expression:

{
𝑥𝑖(𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡 + 𝑟. (𝑥𝑖−1 (𝑡) − 𝑥𝑖 (𝑡)) + 𝑒𝑏𝑤 . 𝑐𝑜𝑠(2𝜋𝑤) . 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

𝑥𝑖(𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡 + 𝑟. (𝑥𝑖−1 (𝑡) − 𝑥𝑖 (𝑡)) + 𝑒𝑏𝑤 . 𝑠𝑖𝑛(2𝜋𝑤) . 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

(3)

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

492

where w is a random number in [0, 1], this motion behavior may be extended to a n-D space.

For simplicity, this mathematical model of cyclone foraging can be defined as:

𝑥𝑑
𝑖 (𝑡 + 1) = {

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟. (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑 (𝑡)) + 𝛽 . (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑 (𝑡)) 𝑖 = 1

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟. (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑 (𝑡)) + 𝛽 . (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑 (𝑡)) = 𝑖 = 2, … , 𝑁

 (4)

𝛽 = 2𝑒𝑟1
𝑇−𝑡+1

𝑇 . sin (2𝜋𝑟1) (5)

where r_1 is the rand number in [0, 1], T is the maximum number of repetitions, and 𝛽 is the

weight coefficient.

The equation for this mechanism may be seen below. As seen in the illustration below, it

focuses mostly on exploration, enabling MRFO to conduct an extensive worldwide search:

𝑥𝑟𝑎𝑛𝑑
𝑑 = 𝐿𝑏𝑑 + 𝑟. (𝑈𝑏𝑑 − 𝐿𝑏𝑑)

(6)

𝑥𝑑
𝑖 (𝑡 + 1) = {

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟. (𝑥𝑏𝑒𝑠𝑡

𝑑 − 𝑥𝑖
𝑑 (𝑡)) + 𝛽 . (𝑥𝑟𝑎𝑛𝑑

𝑑 − 𝑥𝑖
𝑑 (𝑡)) 𝑖 = 1

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟. (𝑥𝑖−1

𝑑 − 𝑥𝑖
𝑑 (𝑡)) + 𝛽 . (𝑥𝑟𝑎𝑛𝑑

𝑑 − 𝑥𝑖
𝑑 (𝑡)) 𝑖 = 2, … , 𝑁

 (7)

Figure.5: Cyclone forging behavior in 2-D space [20]

- Somersault foraging: The food's location is seen as a pivot in this behavior. Every manta

ray tends to swim around the pivot and somersault into a different position. As a result, they

constantly adjust their positions to reflect the best position thus far. The following is one way

to develop the mathematical model:

- 𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑆 . (𝑟2 . 𝑥𝑏𝑒𝑠𝑡
𝑑 − 𝑟3 . 𝑥𝑖

𝑑(𝑡)) , 𝑖 = 1, … , 𝑁 (8)

 where S is the somersault factor that decides the somersault range of manta rays and 𝑆 =

2, 𝑟2 and 𝑟3 are two random numbers in [0, 1].

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

493

Figure 6: Cyclone foraging behavior in 2-D space [20]

 Algorithm I, shows the pseudo code for the basic specifications of the MRFO algorithm [20]

Algorithm I: MRFO Algorithm

Input Parameters//

 N: Population size (number of manta rays).

 T_max: Maximum number of iterations.

 x_l: Lower boundary of the search space (problem domain).

 u_x: Upper boundary of the search space (problem domain).

 S: Somersault factor.

 Fitness Function f(x): Objective function to be minimized or maximized.

Output//

 x_best : The best solution found by the algorithm.

 f(x_best): The fitness value of the best solution.

Initialize population //

Initialize the size of population N, the maximal number of iterations T and each manta ray

𝑥𝑖(𝑡) = 𝑥𝑙 + 𝑟𝑎𝑛𝑑 (𝑥𝑢 − 𝑥𝑙) for i=1 …., N and t=1.

Compute the fitness of each individual 𝑓𝑖 = 𝑓(𝑥𝑖) and obtain the best solution found so far

𝑥𝑏𝑒𝑠𝑡, Where 𝑥𝑢 𝑎𝑛𝑑 𝑥𝑙 are the upper and lower boundaries of problem space, respectively.

Iterative optimization //

WHILE stop criterion is not satisfied do

FOR i=1 TO N DO

IF rand <0.5 THEN //Cyclone foraging

 IF 𝑡/𝑇𝑚𝑎𝑥 < 𝑟𝑎𝑛𝑑 THEN

 𝑥𝑟𝑎𝑛𝑑 = 𝑥𝑙 + 𝑟𝑎𝑛𝑑 . (𝑥𝑢 − 𝑥𝑙)

𝑥𝑖(𝑡 + 1) = {
𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖 (𝑡)) + 𝛽 . (𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖 (𝑡)) 𝑖 = 1

𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑖−1 (𝑡) − 𝑥𝑖 (𝑡)) + 𝛽 . (𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖 (𝑡)) 𝑖 = 2, … , 𝑁

 ELSE

𝑥𝑖(𝑡 + 1) = {
𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖 (𝑡)) + 𝛽 . (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖 (𝑡)) 𝑖 = 1

𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑖−1 (𝑡) − 𝑥𝑖 (𝑡)) + 𝛽 . (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖 (𝑡)) 𝑖 = 2, … , 𝑁

 END IF.

 ELSE // Chain foraging

𝑥𝑖(𝑡 + 1) = {
𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖 (𝑡)) + 𝛼 . (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖 (𝑡)) 𝑖 = 1

𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑖−1 (𝑡) − 𝑥𝑖 (𝑡)) + 𝛼 . (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖 (𝑡)) 𝑖 = 2, … , 𝑁

END IF.

Compute the fitness of each individual 𝑓(𝑥𝑖(𝑡+1))

𝐼𝐹 𝑓(𝑥𝑖(𝑡+1)) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

THEN 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑖(𝑡 + 1)

END IF

// Somersault foraging

FOR i=1 TO N DO

 𝑥𝑖(𝑡+1) = 𝑥𝑖(𝑡) + 𝑆 . (𝑟2. 𝑥𝑏𝑒𝑠𝑡 − 𝑟3 . 𝑥𝑖(𝑡))

Compute the fitness of each individual 𝑓(𝑥𝑖(𝑡+1))

𝐼𝐹 𝑓(𝑥𝑖(𝑡+1)) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

THEN 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑖(𝑡 + 1)

END IF

END FOR.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

494

END WHILE.

Return the best solution found so far 𝑥𝑏𝑒𝑠𝑡

 In several technical disciplines i.e., geophysics [21], energy allocation [22], image

processing [23], and electric power [24], the MRFO algorithm performs exceptionally well

and exhibits a wide range of optimization talents. The MRFO has proven to be a conducive

approach to resolving several intricate real-world issues through these successful applications

[25]. Despite being a member of the meta-heuristic algorithm domain, MRFO differs greatly

from other popular meta heuristics in philosophy and design. i.e., in comparison with Particle

Swarm Optimization (PSO), MRFO and PSO they differ primarily in their biological actions.

While MRFO draws inspiration from manta ray social foraging activities, PSO is motivated

by the movement of bird flocks in the natural world. The way the two hunt for solutions

differs significantly from one another [26]. The global best solution is combined with other

solutions to create PSO solutions. A further notable distinction between the two is the method

used to look for solutions. The global best solution found so far, the local best solution, and

the individual movement velocities combine to produce the solutions in PSO; in contrast, the

global best solution found so far, and the solution in front of it combine to produce the

solutions in MRFO by switching different movement strategies [27]. Another comparison in

the same domain with Genetic Algorithm (GA) in contrast to the communal foraging

activities of manta rays in MRFO, GA is based on Darwin's theory of evolution. The

representation of problem variables is the second distinction. Whereas the issue variables in

MRFO are utilized directly, in GAs, they are represented as a sequence of fixed-length bit

strings. Better solutions also have a higher chance of generating new solutions in GAs when

the roulette wheel selection approach is used, and inferior solutions will likely be replaced by

better new solutions [28]. While in MRFOA every member of the population has an equal

chance of improving their solutions.

4.2 Improved MFROA

 Our proposal for a hybrid Lévy-Heuristic Manta Ray Foraging Optimization Algorithm

for multiple critical objectives in workflow scheduling: makespan minimization, processing

cost reduction, storage cost optimization, and bandwidth utilization minimization. One of the

new improvements embeds the Lévy flight mechanism in the MRFOA, enabling it to take big

probabilistic leaps in search space. This addition elevates the exploration capabilities greatly

and therefore escapes local optimum and finds globally optimal solutions. On the other hand,

we suggest a different enhancement that involves addressing dependency management. This

process begins by iterating over each task and identifying whether it has any dependent tasks

(parent tasks). If a task has no parent tasks (independent tasks), it is processed directly

without needing dependency handling. However, if a task has one or more parent tasks

(dependent tasks), the algorithm will initiate a procedure to optimize resource allocation for

these dependent tasks. The Heuristic Dependency Management (HDM) mechanism is the

second enhancement in LH-MRFOA, addressing task dependencies in workflow scheduling.

It focuses on optimizing the allocation of dependent tasks to ensure efficient resource

utilization and adherence to dependency constraints. Initially, the dependent tasks are

temporarily stored and cleared from previous iterations to ensure accurate processing without

conflicts. For each parent task, the algorithm evaluates the performance of assigning the task

to different virtual machines (VMs). It calculates the expected execution time for each task

on every available VM based on the task's computational requirements and the VM's

capabilities.

Algorithm II shows the pseudo code for the first improvement of the MRFO algorithm by

employing Lévy-flight technique to enhance the exploration of the algorithm.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

495

Algorithm II: Lévy-Manta ray Algorithm (L-MRFOA).

MRFO Original initialization

.

.

 //Cyclone foraging

.

.

 ELSE // Chain foraging

// First Improvement: introduce Lévy flight mechanism for enhancing exploration by

generating step sizes based on a Lévy distribution, introducing variability that allows the

algorithm to take occasional large steps, improving its ability to explore the search space and

avoid local minima.

Leves = Lévy ()

If 𝑖 = 1 THEN

𝑥𝑖(𝑡+1) = 𝑥𝑖(𝑡) + 𝑙𝑒𝑣𝑖𝑒𝑠 [𝑖] ∗ (𝑥𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) + 𝛼 ∗ (𝑥𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))

 ELSE

𝑥𝑖(𝑡+1) = 𝑥𝑖(𝑡) + 𝑙𝑒𝑣𝑖𝑒𝑠 [𝑖] ∗ (𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡)) + 𝛼 ∗ (𝑥𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))

END IF

END IF.

// Ensure the new positions are within search space boundaries

𝑥𝑖(𝑡 + 1) = 𝐵𝑜𝑢𝑛𝑑𝑠 𝑥𝑖(𝑡+1), 𝑥𝑙, 𝑥𝑢)

Compute the fitness of each individual 𝑓(𝑥𝑖(𝑡+1))

𝐼𝐹 𝑓(𝑥𝑖(𝑡+1)) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

THEN 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑖(𝑡+1)

END IF

END FOR

// Somersault foraging

FOR i=1 TO N DO

 𝑥𝑖(𝑡+1) = 𝑥𝑖(𝑡) + 𝑆 ∗ (𝑟2 ∗ 𝑥𝑏𝑒𝑠𝑡 − 𝑟3 ∗ 𝑥𝑖(𝑡))

// Ensure the new positions are within search space boundaries

𝑥𝑖(𝑡+1) = 𝐵𝑜𝑢𝑛𝑑 𝑥𝑖(𝑡+1), 𝑥𝑙, 𝑥𝑢)

Compute the fitness of each individual 𝑓(𝑥𝑖(𝑡+1))

𝐼𝐹 𝑓(𝑥𝑖(𝑡+1)) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

THEN 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑖(𝑡+1)

END IF

END FOR.

END WHILE.

Return the best solution found so far 𝑥𝑏𝑒𝑠𝑡

After calculating these values, the algorithm identifies the VM that offers the shortest

execution time for the task. The task is then assigned to the VM with the optimal

performance. After assigning the tasks, the overall effectiveness of the current solution is

evaluated, considering both the execution time and cost. If the new allocation improves the

solution, it is retained; otherwise, the algorithm reverts to the previous allocation. Finally,

once all tasks have been processed, whether independent or dependent, the fitness of the

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

496

current solution is recalculated to ensure that only the best task-to-VM allocation is

preserved. H-MRFOA, as illustrated in the results below in the Pseudo code

Algorithm III: Heuristic Manta ray Algorithm (H-MRFOA).

MRFO Original initialization

.

.

 //Cyclone foraging

.

.

// Chain foraging

.

.

// Somersault foraging

.

.

Return the best solution found so far 𝑥𝑏𝑒𝑠𝑡

// Second Improvement: heuristic dependency management, tackling the dependency for

tasks that allocated among available virtual machines (VMs)Initialize task list, available

VMs, and other necessary parameters in work environment

Set best solution x_best to the best solution found so far

 FOR each taski in taskList DO

 // Check for dependencies (parent tasks)

 // Store dependent tasks temporarily

 FOR each parent of taski DO

 Add parent to parentList

 END FOR

 // For each parent task, optimize resource allocation

 FOR each parent in parentList DO

 // Initialize best allocation for current task

 Copy current best solution x_best to t_best

 fitness = calculate Fitness(x_best)

 // Calculate execution time for each VM

 FOR each vm in available VMs DO

 MET [vm]=Execution time of parent on vm

 END FOR

 // Find the VM with the shortest execution time

 // Assign the parent task to the best VM

 X_best[parent] = MIN(MET)

 // Check if the new allocation improves the solution

 IF calculate fitness(x_best) < fitness THEN

 // Keep the new allocation

 continue for next parent task

 ELSE

 // Revert to the previous allocation

 retrieve previous best solution x_best to t_best

 END IF

 END FOR

 END FOR

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

497

 // Return the best solution found so far

Return the best solution x_best

 The final stage of optimization leverages a hybrid approach, combining two powerful

techniques: Lévy flight and Heuristic Dependency Management (HDM). This strategy aims

to balance global exploration and local exploitation in the search for an optimal solution.

Lévy flight enables the algorithm to perform large jumps in the solution space, helping avoid

local optima by exploring new regions that incremental steps might miss. Meanwhile, HDM

enhances the algorithm's ability to refine these potential solutions, particularly in optimizing

task dependencies. By incorporating Lévy flight, the algorithm gains the ability to cover

diverse areas of the solution space using a probability distribution (Lévy distribution) that

favors small steps but allows for large leaps. This structured randomness ensures that

unexplored areas are efficiently reached, improving the chances of finding a globally optimal

solution. On the other hand, HDM plays a crucial role in the local exploitation phase. Once

promising solutions are identified, HDM fine-tunes them by analyzing task dependencies and

VM loads, ensuring that tasks are assigned to minimize overall completion time. This

practical optimization is essential for improving real-world performance in distributed

systems.

 The integration of HDM as a second improvement ensures that solutions are not only

theoretically optimal but also practical in execution. It enhances the algorithm’s ability to

handle complex optimization problems where efficient resource management and task

scheduling are key. In essence, this hybrid approach combines the exploratory power of Lévy

flights with the precise, task-optimized benefits of HDM, making the algorithm more robust,

adaptive, and capable of delivering high-performance results in real-world applications that

resulting in a more comprehensive and effective optimization algorithm as illustrated in

below Pseudo code for Lévy-Heuristic Manat ray Algorithm (LH-MRFOA).

Algorithm IV: Lévy-Heuristic Manat ray Algorithm (LH-MRFOA).

MRFO Original initialization

.

.

.

 //Cyclone foraging

// First improvement: introduce Lévy flight mechanism for enhancing exploration

.

.

.

// Chain foraging

.

.

.

// Somersault foraging

Return the best solution found so far 𝑥𝑏𝑒𝑠𝑡

// Second improvement: heuristic dependency management

 // Return the best solution found so far

Return the best solution x_best

END FUNCTION

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

498

5. Experimental Setup

5.1 Workflow Simulation Platform.

 A workflow simulation platform (WFS) is essential for testing and enhancing job

scheduling algorithms in research and academic settings, especially in cloud computing. This

platform ensures that the findings are consistent, reproducible, and applicable to real-world

settings by offering a controlled environment for the testing and comparing alternative

scheduling techniques under diverse conditions [29]. WFS is designed to model and simulate

the execution of workflows in distributed computing environments. These platforms allow

researchers to emulate the behavior of complex workflows, which are often represented as

Directed Acyclic Graphs (DAGs) [30]. Each node in the DAG represents a specific task,

while the edges signify dependencies between these tasks. The primary goal of using a WFS

is to analyze the performance of different scheduling algorithms, particularly in terms of key

metrics such as makespan, processing cost, resource utilization, and energy consumption. In

cloud computing, task scheduling is a complex problem due to the dynamic nature of cloud

resources and the diverse requirements of scientific workflows. Workflow simulation

platforms are particularly valuable in this domain because they allow for testing scheduling

algorithms under different configurations of virtual machines, resource availability, and

workload sizes. This is critical for understanding how algorithms perform under varying

conditions, which is essential for optimizing cloud resource management. The WFS allows

researchers to assess the algorithm's effectiveness in minimizing makespan and cost. By

simulating different workload scenarios, including those with varying task complexities and

interdependencies, the WFS can provide insights into the scalability and robustness of the

proposed algorithms.

5.2 Virtual Machines (VMs) Setup

 The task scheduling experiment was conducted using a workflow simulator configured to

run on 15 virtual machines distributed among three different groups: slow, moderate, and

fast. This grouping ensures a fair distribution of tasks across various types of VMs, reflecting

a range of computational capabilities as illustrated in the table below (2). Available VMs are

grouped into three categories based on their computational power. This allows the task

scheduler to allocate tasks to VMs with appropriate resources, depending on the task's

computational requirements. within each group, the MIPS (Million Instructions Per Second)

value is randomly assigned within a specified range. This randomization simulates a more

realistic cloud environment where VM capabilities can vary even within the same category.

RAM and bandwidth are also set according to the VM group. The 'slow' group has lower

RAM and MIPS values, while the 'fast' group has higher values, making it suitable for more

computationally intensive tasks. The setup mimics a typical cloud environment where

resources are heterogeneous by ensuring that tasks are distributed among VMs with different

capabilities. This helps to test the robustness of the scheduling algorithm across various

conditions. Using WFS provides a controlled environment for simulating the task scheduling

process, making it possible to evaluate the effectiveness of the proposed algorithm under

different VM configurations. This setup is essential for evaluating the performance of the task

scheduling algorithm in a realistic cloud computing environment, ensuring that it can

effectively manage and distribute workloads across VMs with varying capabilities.

Table 2: Specifications of Virtual Machines Used in Workflow Simulations

Group# # of VMs RAM Range MIPS

G1: Slow 5 512 (0-4) 1000-3000

G2: Moderate 5 512 (5-9) 3000-6000

G3: Fast 5 1024 (10-14) 6000-10000

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

499

5.3 Experimental Process

 We developed a run processing system within our workflow simulator that executes each

algorithm ten times to evaluate makespan and processing cost using a weighted summation

formula. The comparison conducted among (MRFOA) and its updated versions Lévy-Manta

ray Foraging Algorithm (L-MRFOA), Heuristic-Manta ray Foraging Algorithm (H-

MRFOA), Lévy Heuristic-Manta ray Foraging Algorithm (LH-MRFOA) and the top of bio-

inspired algorithms (GA) and (PSO), by using five standard data sets fig (1) with different

scales and considering the average of ten times of the whole run-in process of workflow

simulator table (2), table (3) and table (4).

6. Results and Discussion

6.1 Empirical Results

 The empirical results offer a thorough evaluation of the performance characteristics of the

algorithms under study, focusing on key metrics such as makespan, cost, and fitness. These

metrics provide essential insights into how each algorithm manages task scheduling within

complex cloud computing environments. Through rigorous testing across diverse workloads.

This section delves into the performance test's quantitative outcomes, highlighting each

algorithm's strengths and weaknesses.

 The results reveal significant distinctions in how these algorithms handle various

scheduling challenges, with LH-MRFOA frequently outperforming other algorithms, GA and

PSO. The findings underscore the robust capability of LH-MRFOA to optimize resource

allocation, minimize execution time, and reduce operational costs, making it an optimal

solution for dynamic and large-scale cloud environments. In terms of makespan, the LH-

MRFOA consistently outperformed its counterparts, demonstrating a remarkable ability to

minimize the total time required for task completion. Across various datasets, LH-MRFOA

achieved significantly lower makespan values, particularly in scenarios involving large and

complex workloads during testing makespan as shown in Table (3). This reduction in

makespan is crucial in cloud computing environments, where time efficiency directly impacts

overall system performance and user satisfaction. The algorithm's advanced heuristic

strategies and robust search capabilities enable it to navigate and optimize scheduling tasks

more effectively than traditional algorithms such as GA and PSO.

Table 3: Best Makespan

Data set GA PSO MRFOA L-MRFOA H-MRFOA
LH-

MRFOA

1. Inspiral_30 3389.13 3107.70 2860.94 2976.31 2875.47 2799.32

2. Inspiral_1000 255438.98 210553.27 236622.81 198138.36 115326.90 101372.02

3. CyberShake_30 287.83 270.75 244.31 236.80 232.47 218.99

4. CyberShake_1000 14872.72 14781.01 13621.18 13439.58 11222.14 10860.59

5. Montage_25 245.08 216.51 231.44 223.30 217.71 187.45

6. Montage_100 6301.10 5364.55 4830.51 4913.52 3761.60 3752.01

7. Sipht_30 2767.21 2620.10 2684.59 2616.49 2612.90 2612.01

8. Sipht_1000 34034.23 32856.94 27482.56 32199.65 20732.19 19652.69

9. Epigenomics_24 2375.01 2580.19 2363.02 2360.27 2238.06 2146.30

10. Epigenomics_997 973484.72 882633.77 856202.79 824748.70 410740.87 398818.30

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

500

Turning to the cost, the LH-MRFOA also proved highly effective in minimizing the

operational expenses associated with task scheduling. Cost efficiency is a critical factor in

cloud computing, where resource utilization directly translates to financial expenditure.

LH-MRFOA demonstrated a consistent ability to reduce costs across diverse workload

scenarios, outperforming other algorithms by optimizing resource allocation and reducing the

computational overhead, as illustrated in Table (4). This cost-effectiveness makes LH-

MRFOA an attractive option for cloud service providers aiming to maximize profitability

while maintaining high levels of performance. By achieving lower costs without

compromising on efficiency or scalability, LH-MRFOA positions itself as a superior solution

for managing the economic demands of cloud-based operations.

Table 4: Best Cost

Data set GA PSO MRFOA L-MRFOA H-MRFOA
LH-

MRFOA

11. Inspiral_30 647.65 632.94 583.29 575.21 572.24 556.10

12. Inspiral_1000 24430.67 24080.96 24036.85 22860.16 23443.54 22301.88

13. CyberShake_30 19839.65 19695.84 19687.56 19690.19 19646.01 19645.61

14. CyberShake_1000 106270.17 104056.90 102352.58 102785.97 94176.64 93953.63

15. Montage_25 135.08 136.16 125.93 129.67 124.77 121.51

16. Montage_100 576.67 588.74 535.21 540.06 542.31 516.74

17. Sipht_30 529.02 538.16 512.41 513.08 511.22 506.60

18. Sipht_1000 20810.20 20519.92 20954.26 21020.73 19976.43 19729.46

19. Epigenomics_24 3393.01 3229.67 3164.84 3228.88 3166.17 3165.74

20. Epigenomics_997 680448.43 635623.36 631217.41 584845.97 579503.43 558601.39

 Finally, when considering fitness, which provides a comprehensive measure of an

algorithm’s overall performance, LH-MRFOA once again demonstrated its superiority.

Fitness encapsulates various aspects of task scheduling, including the balance between

exploration and exploitation, efficiency in resource use, and the ability to adapt to varying

workloads. LH-MRFOA consistently achieved higher fitness scores across different datasets,

reflecting its robust capability to optimize multiple performance criteria simultaneously, as

illustrated below in Table (5). This high fitness indicates that LH-MRFOA is not only

effective in specific metrics like makespan and cost but is also versatile enough to maintain

strong performance across a range of conditions. This makes LH-MRFOA a highly reliable

choice for real-world applications, where diverse and dynamic cloud environments demand

an algorithm that can consistently deliver optimal results.

Table 5: Best Fitness
Data set GA PSO MRFOA L-MRFOA H-MRFOA LH-MRFOA

21. Inspiral_30 2176.51 1865.10 1883.92 1933.19 1832.15 1800.98

22. Inspiral_1000 143684.31 123370.91 119832.70 115946.63 68411.38 66834.45

23. CyberShake_30 10040.82 9994.98 9930.06 9932.40 9932.80 9928.21

24. CyberShake_1000 60581.67 57353.46 56657.83 56988.78 52021.07 51923.83

25. Montage_25 213.82 197.64 190.03 200.59 180.44 176.41

26. Montage_100 3575.65 3168.25 3052.49 2893.94 2264.96 2214.69

27. Sipht_30 1750.57 1667.66 1664.87 1665.31 1550.08 1541.81

28. Sipht_1000 27606.74 25750.23 26657.38 25113.37 20247.89 19201.83

29. Epigenomics_24 2980.56 2856.72 2791.28 2755.68 2761.34 2661.55

30. Epigenomics_997 908657.14 801416.80 781958.68 738252.03 523809.04 492700.21

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

501

6.2 Performance Variability Analysis

 Task scheduling in the cloud should be very unpredictable in nature. While observing the

facts, the prior result proved that GA was found to be performing variably over the datasets.

For instance, with the best cost scenario in GA, it was found to be constant in performing

well at low iterations but losing hold in the latter iterations against LH-MRFOA. This trend

can be seen in the best cost in Fig (7), where LH-MRFOA clearly had better performance as

the algorithm continued, with better lower costs from further iterations.

On the other hand, as shown in Fig (8) best makespan, GA had consistent performance across

the iteration but was greatly surpassed by the LH-MRFOA, mainly in the minimizing

makespan measure. The LH-MRFOA not only showed superiority in the reduction of

makespan but also in the improved consistency across further iterations. Similarly, from the

best fitness analysis Fig (8), GA remained strong in performance at the start, and it was only

later surpassed by both the L-HMRFOA and LH-MRFOA algorithms, especially as

alternating count increased. There are apparent fluctuations in the outcome due to the

variability necessary to select the algorithm, which then counts with the explicit nature of the

workload. Different scenarios expose the strengths and weaknesses of each algorithm. The

LH-MRFOA showed the best performance regarding all the applied criteria; this was carried

out due to its hybrid nature. Therefore, it is a generalized approach that can underpin any

cloud computing activity.

6.3 Scalability Analysis

 Adaptive scalability regarding the available resources to be provisioned forms the most

critical issue in the task scheduling algorithm. This becomes acute in nature for the cloud

computing system in which resource adaptability and dynamic provisioning are applied in

relation to the change of workload. The results obtained from the three different applied

criteria, designated as best cost, best fitness, and best makespan were used in scaling the

algorithm's behavior regarding L-MRFOA and its heuristic extension. These algorithms were

not only holding their performance but further improving as the iteration counts went up, thus

showing an adaptability to increasing workload sizes. GA was competitive in the lower initial

stages or with lower iterations but generally struggled in the best makespan and best fitness

figures, where GA predictably leveled off in performance or even declined in the face of

increasing workload size, while the LH-MRFOA continued to optimize effectively. These

results show that the scalability of LH-MRFOA is a better fit for a larger and more dynamic

cloud environment.

6.4 Consistency Evaluation

 An algorithm representative of its reliability and stability is consistent throughout varied

workloads. LH-MRFOA, according to the results obtained on the best cost, best fitness, and

best makespan figures, is proven to be reasonably consistent throughout varied situations. It

outperformed other algorithms, like GA and PSO, for different iteration numbers, as seen

below. The algorithm's consistency indicates that it is powerful and effective enough to

handle diversified task scheduling scenarios and therefore clearly establishes its candidature

for real-world deployment in a cloud environment. However, it is also evident from these

figures that in the case of extreme workloads, represented by the best makespan dataset, the

performance gaps between algorithms became more pronounced. The effectiveness of the

LH-MRFOA is seen in its ability to hold performance by retaining robustness in resource

allocation frameworks for a high-demand cloud environment.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

502

6.5 Complexity vs. Performance Trade-off

 The performance of complex algorithms, e.g., L-MRFOA and its heuristic variant, versus

simpler algorithms, e.g., GA and PSO, tends to be proportional to workload or iteration

count; see the figures. It is not universal; at a good cost Fig.8, GA and PSO remain

competitive in the earlier iterations, meaning that an increase in algorithmic complexity does

not always bring better performance. This indicates the necessity of a delicate evaluation that

will consider both complexity and performance outcomes while selecting the right approach

to be used specifically in scheduling tasks for the cloud environment. Whereas this LH-

MRFOA offers huge competitive advantages in most scenarios, at the cost of performance,

some simpler algorithms will remain good enough in the simpler contexts or when

computational efficiency is a must.

are(a) (b)

(c) (d)

(e) (f)

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

503

(g) (h)

(i) (j)

Figure 7: best cost

(a) (b)

(c) (d)

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

504

(e) (f)

(g) (h)

(i) (j)

Fig (8) best makespan

(a) (b)

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

505

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 9: best fitness

6.6 Discussion

 The LH-MRFOA is a potent step forward in optimization task scheduling for cloud

computing. With the utilization of the Lévy flight search strategies in optimizing landscapes,

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

506

LH-MRFOA has shown a better balance between exploitation and exploration. The results

shown in the best cost, Best makespan, and best fitness figures show that the LH-MRFOA

outperform standard bio-inspired algorithms like GA and PSO in most cases, especially when

higher scalability and consistency are required. Among all, the LH-MRFOA especially can

scale up to an increased iteration count or workload size where it either maintained or

improved performance compared to the other algorithms that failed. The experimental

platform, constructed with rich configurations in virtual machines, represents more precisely

the actual cloud environment's complexity and makes the research outcome more applicable.

The scalability spoken about by LH-MRFOA speaks to its overall suitability for workload

conditions with increased magnitude without degradation of performance and, as such, is an

ideal candidate for dynamic, changing cloud computing situations.

7. Conclusion

 This work has fully investigated the efficiency and effectiveness of different task

scheduling algorithms within the cloud computing environment, emphasizing the LH-

MRFOA. The analysis has dealt with some critical issues such as performance variability,

scalability, consistency, and the complexity-performance trade-off, and arrived at some

significant results. The final results underline the subtleties of task scheduling optimization

since the performance of an algorithm varies quite significantly according to the workload.

Another nature-based algorithm, like GA and PSO, has shown initial efficiencies, especially

under scenarios with less workload. Advanced methods like LH-MRFOA were consistently

outperforming as the workload increased with the increase in both the aspects of size and

complexity. Furthermore, the superiority of these techniques is highly visible for later

iterations as well, where the LH-MRFOA outperforms, especially its Lévy Heuristic variant,

in minimizing the cost, optimizing the fitness, and reducing makespan. Results of the

scalability analysis position LH-MRFOA at good adaptability to various workload demands

since it can utilize properly available resources and optimize an assignment of tasks in a

dynamic cloud environment. In contrast, GA and PSO failed in scalability for more complex

scenarios, where LH-MRFOA kept its performance constant or even improved when the

number of iterations and the size of workloads increased. Real-world cloud computing

applications greatly require this adaptability since the demand for resources is constantly

changing. Consistency evaluation further proved the reliability and robustness of LH-

MRFOA. Regardless of scheduling scenarios of diverse tasks, LH-MRFOA performs well

when it uses Lévy flight strategies compared with other algorithms. This consistency across

different metrics/iterations further confirms that LH-MRFOA has the potential to be applied

effectively to real-world problems by capturing the deployment challenges of cloud resource

management.

Moreover, this work has also outlined one significant trade-off between the complexity of an

algorithm and its performance. While more complex algorithms, such as LH-MRFOA, often

outperformed simpler variants, especially for large and iteratively solved scenarios, there

were cases when GA and PSO remained competitive. This henceforth explains why a delicate

approach in the evaluation criteria, such as adaptability and optimization of efficiency in

resource utilization through scalability, has to be applied to task scheduling algorithms for the

cloud environment. In summary, the LH-MRFOA is one approach essential for task

scheduling optimization, which outperforms existing ones in improved performance,

scalability, and reliability. These features become necessary in dealing with complex and

dynamic workloads consistently for different metrics and render it a viable solution for

managing cloud resources. Further research can be conducted to enhance LH-MRFOA

further and apply it in other optimization areas related to cloud computing to continuously

improve cloud resource management and optimization techniques. Therefore, this research

contributes to the ever-growing scientific knowledge base on improving efficiency and

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

507

effectiveness in task scheduling within cloud computing to enhance overall performance and

reliability in cloud-based systems.

References

[1] M. F. Younis, "Enhancing cloud resource management based on intelligent system," Baghdad

Science Journal, vol. 21, no. 6, pp. 2156–2156, 2024.

[2] D. R. Abdulrazzaq, N. M. Shati, and H. K. Hoomod, "Task scheduling in a cloud environment

based on meta-heuristic approaches: A survey," Iraqi Journal of Science, vol. 65, no. 2, pp.

1001–1023, 2024.

[3] J. Yu, R. Buyya, and C. K. Tham, "Cost-based scheduling of scientific workflow applications on

utility grids," in Proc. First Int. Conf. e-Science Grid Comput. (e-Science'05), Melbourne, VIC,

Australia, Dec. 2005, pp. 8–147, doi: 10.1109/E-SCIENCE.2005.26.

[4] W. Viriyasitavat, L. D. Xu, G. Dhiman, A. Sapsomboon, V. Pungpapong, and Z. Bi, "Service

workflow: State-of-the-art and future trends," IEEE Transactions on Services Computing, vol.

16, no. 1, pp. 757–772, 2021.

[5] H. Kchaou, Z. Kechaou, and A. M. Alimi, "A PSO task scheduling and IT2FCM fuzzy data

placement strategy for scientific cloud workflows," Journal of Computational Science, vol. 64, p.

101840, 2022.

[6] I. A. Abduljabbar and S. M. Abdullah, "An Evolutionary Algorithm for Solving Academic

Courses Timetable Scheduling Problem," Baghdad Science Journal, vol. 19, no. 2, pp. 399-408,

Apr. 2022. DOI: 10.21123/bsj.2022.19.2.0399.

[7] Y. Zhang, L. Wu, M. Li, T. Zhao, and X. Cai, "Dynamic multi-objective workflow scheduling

for combined resources in cloud," Simulation Modelling Practice and Theory, vol. 129, p.

102835, 2023.

[8] A. Talha, A. Bouayad, and M. O. C. Malki, "An improved pathfinder algorithm using opposition-

based learning for tasks scheduling in cloud environment," Journal of Computational Science,

vol. 64, p. 101873, 2022.

[9] N. Manikandan, N. Gobalakrishnan, and K. Pradeep, "Bee optimization-based random double

adaptive whale optimization model for task scheduling in cloud computing environment,"

Computer Communications, vol. 187, pp. 35–44, 2022.

[10] H. Hafsi, H. Gharsellaoui, and S. Bouamama, "Genetically-modified multi-objective particle

swarm optimization approach for high-performance computing workflow scheduling," Applied

Soft Computing, vol. 122, p. 108791, 2022.

[11] J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei, and M. Chen, "Cost and makespan-aware workflow

scheduling in hybrid clouds," Journal of Systems Architecture, vol. 100, p. 101631, 2019.

[12] B. H. Abed-Alguni and N. A. Alawad, "Distributed Grey Heuristic for scheduling of workflow

applications in cloud environments," Applied Soft Computing, vol. 102, p. 107113, 2021.

[13] J. K. Konjaang and L. Xu, "Multi-objective workflow optimization strategy (MOWOS) for cloud

computing," Journal of Cloud Computing, vol. 10, no. 1, p. 11, 2021.

[14] X. Wei, "Task scheduling optimization strategy using improved ant colony optimization

algorithm in cloud computing," Journal of Ambient Intelligence and Humanized Computing, pp.

1–12, 2020.

[15] H. Aziza and S. Krichen, "A hybrid genetic algorithm for scientific workflow scheduling in

cloud environment," Neural Computing and Applications, vol. 32, no. 18, pp. 15263–15278,

2020.

[16] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, and A. Jafarian, "A hybrid multi-

objective metaheuristic optimization algorithm for scientific workflow scheduling," Cluster

Computing, vol. 24, pp. 1479–1503, 2021.

[17] N. Anwar and H. Deng, "A hybrid metaheuristic for multi-objective scientific workflow

scheduling in a cloud environment," Applied Sciences, vol. 8, no. 4, p. 538, 2018.

[18] S. Kumar and R. Buyya, "Green cloud computing and environmental sustainability," in

Harnessing Green IT: Principles and Practices, pp. 315–339, 2012.

[19] M. A. Rodriguez and R. Buyya, "Deadline-based resource provisioning and scheduling algorithm

for scientific workflows on clouds," IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp.

222–235, 2014.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 482-508

508

[20] W. Zhao, Z. Zhang, and L. Wang, "Manta ray foraging optimization: An effective bio-inspired

optimizer for engineering applications," Engineering Applications of Artificial Intelligence, vol.

87, p. 103300, 2020.

[21] H. Dewar, P. Mous, M. Domeier, A. Muljadi, J. Pet, and J. Whitty, "Movements and site fidelity

of the giant manta ray, Manta birostris, in the Komodo Marine Park, Indonesia," Marine Biology,

vol. 155, pp. 121–133, 2008.

[22] U. C. Ben, A. E. Akpan, C. C. Mbonu, and E. D. Ebong, "Novel methodology for interpretation

of magnetic anomalies due to two-dimensional dipping dikes using the manta ray foraging

optimization," Journal of Applied Geophysics, vol. 192, p. 104405, 2021.

[23] A. M. Shaheen, A. R. Ginidi, R. A. El-Sehiemy, and S. S. Ghoneim, "Economic power and heat

dispatch in cogeneration energy systems using manta ray foraging optimizer," IEEE Access, vol.

8, pp. 208281–208295, 2020.

[24] E. H. Houssein, I. E. Ibrahim, N. Neggaz, M. Hassaballah, and Y. M. Wazery, "An efficient ECG

arrhythmia classification method based on manta ray foraging optimization," Expert Systems with

Applications, vol. 181, p. 115131, 2021.

[25] S. Duman, A. Dalcalı, and H. Özbay, "Manta ray foraging optimization algorithm–based

feedforward neural network for electric energy consumption forecasting," International

Transactions on Electrical Energy Systems, vol. 31, no. 9, p. e12999, 2021.

[26] S. A. Alsaidy and N. A. Abdullah, "Power-efficient virtual machine placement in cloud

datacenters using heuristic-assisted enhanced discrete particle swarm optimization," Iraqi

Journal of Science, vol. 63, no. 10, pp. 4499–4517, 2022.

[27] Y. Liao, W. Zhao, and L. Wang, "Improved manta ray foraging optimization for parameters

identification of magnetorheological dampers," Mathematics, vol. 9, no. 18, p. 2230, 2021.

[28] M. P. Ćalasan, A. Jovanović, V. Rubežić, D. Mujičić, and A. Deriszadeh, "Notes on parameter

estimation for single-phase transformer," IEEE Transactions on Industry Applications, vol. 56,

no. 4, pp. 3710–3718, 2020.

[29] H. S. Ramadan and A. M. Helmi, "Optimal reconfiguration for vulnerable radial smart grids

under uncertain operating conditions," Computers & Electrical Engineering, vol. 93, p. 107310,

2021.

[30] W. Chen and E. Deelman, "WorkflowSim: A toolkit for simulating scientific workflows in

distributed environments," in Proc. 2012 IEEE 8th Int. Conf. e-Science, Chicago, IL, USA, Oct.

2012, pp. 1–8, doi: 10.1109/eScience.2012.6404430.

