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Abstract  

     In modern computing, efficient task scheduling in cloud environments, especially 

for large-scale scientific workflows, presents a significant challenge as it is classified 

as a NP-hard problem. This study introduces an improved version of the Manta Ray 

Foraging Optimization Algorithm, named Lévy-Heuristic Manta Ray Foraging 

Optimization Algorithm (LH-MRFOA), which is enhanced with Lévy flight and 

heuristic search techniques to address these challenges. The Lévy flight mechanism 

is integrated to enhance the algorithm’s exploration capabilities, allowing it to avoid 

local optima effectively and achieve global convergence. Meanwhile, the heuristic 

search method is employed to improve the exploitation capability of the algorithm 

while ensuring more efficient resource utilization and reduced processing time. The 

proposed LH-MRFOA, which mimics the natural foraging behavior of manta rays, 

combines these enhancements to deliver superior performance in task scheduling by 

minimizing makespan, processing cost, storage cost, and bandwidth utilization across 

varying workflow sizes. Experimental evaluations on a heterogeneous cloud 

infrastructure reveal that the LH-MRFOA outperforms bio-inspired algorithms such 

as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), particularly in 

scenarios that require high scalability and balanced resource allocation. This research 

substantially advances cloud task scheduling optimization, offering a robust solution 

for enhancing resource management and cost efficiency in real-world cloud 

applications. 

 

Keywords: Cloud computing, Lévy flight, MET, MRFOA, Scientific workflows, 

Task scheduling, Workflow simulator.  
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  الخلاصة 
في عالم الحوسبة الحديثة تُمثل جدولة المهام الفعّالة في البيئات السحابية واسعة النطاق تحديًا كبيرًا بحيث       

إنه تم تصنيفها على أنها مشكلة صعبة )متعددة الحدود(. تقدم هذه الدراسة نسخة محسّنة من خوارزمية البحث  
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) MRFOAعن الطعام لأسماك شيطان البحر) ( اثناء بحثها عن  Manta ray( والتي تحاكي سلوك أسماك 
( المطورة بتقنيات البحث الاستدلالي لمعالجة هكذا  LH-MRFOAالطعام ، والنسخة المحسنة تسمى خوارزمية ) 

 Heuristicالاستدلال ) عامل ( مع Lévy flightنوع من التحديات حيث تم دمج آلية الاستكشاف لخوارزمية ) 
search ( لتحسين قدرات الاستكشاف لخوارزمية )MRFOA  مما يسمح لها بتجنب الوقوف عند الحلول المحلية )

قدرة   لتحسين  الاستدلالي  البحث  طريقة  استخدام  يتم  نفسهُ  الوقت  وفي  الأوسع  التقارب  وتحقيق  فعال  بشكل 
أكبر وتقليل وقت المعالجة. تجمع خوارزمية   للخوارزمية مع ضمان استخدام الموارد بكفاءة  -LHالاستغلال 

MRFOA  كلفة   التنفيذ، المقترحة بين هذه التحسينات لتقديم أداء متفوق في جدولة المهام من خلال تقليل وقت
وقد تم اختبار أداء الخوارزمية المحسنة خلال بيئات عمل مختلفة ولقد كشفت التقييمات    .المعالجة وكلفة التخزين

تتفوق على الخوارزميات المستوحاة    LH-MRFOAالتجريبية على البنية التحتية السحابية غير المتجانسة أن  
(، وخاصة في السيناريوهات  PSO( وخوارزمية أسراب الجسيمات ) GAمن البيولوجيا مثل الخوارزمية الوراثية )

التي تتطلب قابلية عالية للتوسع وتخصيص الموارد بشكل متوازن. يوفر هذا البحث تقدمًا كبيرًا في تحسين جدولة  
 .الم الحقيقي. المهام السحابية، مما يوفر حلًا قويًا لتعزيز إدارة الموارد وكفاءة التكلفة في تطبيقات السحابة في الع

1. Introduction 

     Presently, cloud computing serves as a key facilitator for digital transformation, changing 

how businesses consider IT services and infrastructures via the strategic importance of cloud 

computing in enhancing productivity, flexibility, and competitiveness in the digital era, 

especially with the present massive demand for cloud computing applications. The primary 

benefits of cloud computing are that users do not need to own or manage physical 

infrastructure, such as servers or networking equipment; instead, users can access computing 

resources on-demand from cloud service providers. This model offers several advantages, 

including cost savings, scalability, and resource allocation flexibility. Users can scale their 

resources up or down based on their needs, in addition to enforcing deadlines and constraints 

on tasks running within the cloud environment [1]. Cloud computing leverages virtualization 

technology to transform physical resources into virtual instances, streamlining the allocation 

and management of computing, storage, and networking resources. This abstraction enables 

seamless dynamic provisioning and scaling of resources in response to user demand, resulting 

in optimized resource utilization and cost-effectiveness.  

Nevertheless, cloud computing encounters numerous obstacles, the most significant being the 

efficient utilization of computing resources. Efficient resource allocation is then translated into 

that the cloud provider can maximize the utilization of their infrastructure, as much as it enables 

users to obtain the best value for their investment in cloud services from performance to overall 

cost. Cloud orchestration systems, i.e., brokers and schedulers, map and assign workloads 

containing dependent and independent tasks to available resources in a process known as task 

scheduling. Task scheduling is critical in ensuring efficient resource utilization, optimal 

performance, and cost-effectiveness. It refers to the process of assigning incoming tasks to 

suitable virtual machines (VMs) or cloud resources within a cloud environment. Task 

scheduling complexity arises due to several factors, including the dynamic nature of cloud 

available resources, task dependencies such as scientific workflows, and user-defined 

constraints [2]. Such complexity makes reaching optimal task scheduling decisions regarded 

and recognized as NP-hard problem [3]. Effective task scheduling is crucial for achieving 

several key advantages in cloud computing i.e., enhancing performance, improving resource 

utilization, reducing costs, optimizing quality of services (QoS), and increasing scalability. As 

a result, finding an optimal scheduling solution typically requires exponential time in relation 

to the number of tasks and resources involved.  

Scientific workflows are organized and represented using direct acyclic graphs (DAGs). In 

such representation, a task is defined as a node in the graph, and the dependencies among tasks 

(nodes) are represented as directed edges.  
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Scheduling optimization of scientific workflows has received great attention within academic 

literature, and it is an active and evolving field of research that emphasizes the importance of 

efficient cloud resource utilization [4][5]. Such interest is primarily driven by the widespread 

adoption of cloud-based services and solutions and the important role scheduling optimization 

plays in cost minimization and efficiency of cloud resource utilization. To address this 

challenge, researchers explored heuristic, metaheuristic, and several nature-inspired 

optimization algorithms to approximate near-optimal task scheduling solutions within 

reasonable time and other user defined constraints. Upon examining recent research [9-12], it 

is evident that various improvements have been made to enhance the convergence of several 

optimization algorithms to determine the optimal global-best task scheduling solution within 

cloud environments.  

However, several limitations and drawbacks have been identified. Primarily, the research often 

confines its evaluation to small-scale test datasets, limiting the generalization of the findings. 

Second, several of the proposed hybrid approaches frequently exhibit high computational 

complexity, while others achieved marginal improvements compared to alternative 

optimization algorithms. The cumulative impact of these limitations can be significant in 

convergence to optimal solution in the optimization of large-scale tasks. Last, a certain number 

of studies suffer from poor selection of virtual machines configuration to accommodate the aim 

of their study, such as employing a small number of virtual machines in large and high-

performance tasks scheduling cloud environments or an excessive number of virtual machines 

to investigate scheduling of small and limited number of tasks. From this standpoint, the main 

contributions of our work comprise:  

1. To enhance the efficiency of scientific workflow task scheduling in cloud environments, 

emphasizing minimizing both makespan and costs (including processing, bandwidth, and 

storage) across workflows of various sizes (small, medium, and large). 

2. The Manta Ray Foraging Optimization Algorithm (MRFOA) is introduced as a solution 

for optimizing task scheduling. MRFOA is recognized for its robust and fast convergence in 

large-scale optimization problems. Thus, MRFOA is particularly well-suited for handling the 

complexities of large-scale multi-objective task scheduling in cloud environments 

3. An enhanced version of the Manta Ray algorithm, termed Lévy-Heuristic Manta Ray 

Optimization Algorithm (LH-MRFOA), is proposed. LH-MRFOA incorporates Lévy flight 

randomness and heuristic approach to enhance further the convergence towards global near to 

optimal solution, hence, more suited to address optimization challenges inherent in complex 

workflows.  

4. The proposed algorithm undergoes comprehensive tests on heterogeneous cloud 

infrastructure characterized by different processing speeds (slow, moderate, fast) and costs. 

This rigorous examination aims to thoroughly evaluate the effectiveness of the proposed 

approach in real-world cloud computing scenarios. 

 

     The subsequent sections of this paper are organized as follows: Section 2 thoroughly 

examines recent literature on multi-objectives task scheduling optimization with an analysis of 

various methodologies employed and critical evaluations of their weaknesses. Section 3 details 

the definition of the problem and the objective function in scientific workflow task scheduling. 

Section 4 presents MRFOA as the proposed algorithm and proposed improvements by 

employing Lévy flight-heuristic as a search factor. Our experimental setup is explained in 

Section 5. The evaluation of performance is discussed in Section 6, while Section 7 

encompasses the conclusion and outlines avenues for future research endeavors. 

 

2. Related Work 

     Scheduling in cloud computing has been an object of extensive research since it has been 

classified as an NP-hard problem. Such complexity lies in the combinatorial nature inherent to 
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the resource allocation and coordination of task execution. Researchers have been considering 

different heuristic and metaheuristic approaches for solutions [6], with a special emphasis on 

optimization techniques recently. Y. Zhang et al., 2023 [7] proposed a Dynamic Multi-

Objective Evolutionary Algorithm (DMOEA) for workflow scheduling in dynamic cloud 

environments. The work has emphasized the necessity of adaptation to the dynamically priced 

spot resources and was focused on the maximization of reliability and minimization of cost and 

makespan. However, the approach has high computational and space complexity, which is 

unsuitable for large-scale datasets. Adnan Talha et al. (2022) [8] proposed Oppositional-Based 

Learning (OBL) integrated with the Pathfinder Algorithm (PFA) to improve the performance 

of task scheduling in large-scale workflows. Although the hybrid approach improved the 

exploration and exploitation abilities, the study did not have theoretical advances in the chosen 

algorithms. 

 

     N. Manikandan et al. (2022) [9] carried out task scheduling using a hybrid Whale 

Optimization Algorithm (WOA) combined with mutation-based Bees optimization. Despite 

achieving remarkable improvement in resource utilization and operational cost, the method 

showed high computational time for large-scale scenarios, but it was not tested on benchmark 

datasets. Haithem Hafsi et al. [10], in 2022, proposed the genetically modified multi-objective 

particle swarm optimization algorithm with a novel two-dimensional encoding for task-

resource mapping in high-performance hybrid cloud environments. While the approach has 

reached faster solution convergence, it was only tested with a small number of virtual machines 

and medium-scale datasets, which can hardly be generalized. 

Junlong Zhou et al. (2019) [11] proposed an improved genetic algorithm for hybrid cloud 

scheduling to minimize cost and makespan under SLA constraints. The two-stage approach in 

this work improved solution quality at the expense of heavy computational overhead and, 

hence, was unsuitable for a dynamic environment with large-scale workflows. To deal with 

large-scale optimization, Bilal H. Abed-Alguni et al. (2021) [12] introduced a Distributed Grey 

Wolf Optimizer (DGWO). The technique organized candidate solutions into islands for parallel 

evaluation, improving the exploration capabilities. However, the approach lacked statistical 

analysis of migration strategies, which reduced the insight into solution quality for high data 

transmission tasks. 

 

     J. Kok Konjaang et al. (2021) [13] proposed a three-stage task scheduling method 

combining the Cost Optimized Heuristic Algorithm (COHA) and Multi-Objective Workflow 

Optimization Strategy (MOWOS). Despite achieving cost and makespan reductions, the study 

did not include bandwidth and storage metrics in its evaluation, making it less comprehensive. 

In QoS-oriented optimization, Xianyong Wei (2020) [14] proposed an ACA with dynamic 

pheromone update strategy and load balancing strategies. While the method achieved a very 

high improvement in dynamic resource allocation, it still suffered from small-scale task 

evaluation and homogeneous virtual machine configurations. Hatem Aziza et al. [15], 2020, 

integrated the Heterogeneous Earliest Finish Time (HEFT) with the Genetic Algorithm for 

scientific workflows and proposed new crossover and mutation operators. However, the fitness 

function was very basic, and the approach did not significantly improve in most of the test 

cases. Ali Mohammad Zadeh et al., 2021 [16] used the Sine Cosine Algorithm with chaotic 

randomness to modify the Ant Lion Optimization algorithm to green cloud computing. While 

the approach was efficient at a low workload, computational overhead was high at a high 

workload. 
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Table 1: A Comparison of the Current Workflow Task Scheduling 

Ref. Metrics Method Limitations 

[7] 
Reliability, 

makespan, cost 

Dynamic multi-objective 

optimization evolutionary 

algorithm (DMOEA). 

. High computational complexity 

. High space complexity (weights vectors) 

. Only small and medium size datasets were tested. 

[8] 

Makespan, cost, 

resource 

utilization 

Hybrid Pathfinder and 

oppositional-based Learning 

(OBLPFA). 

. No theoretical improvements in the selected 

algorithms. 

[9] 

Makespan, cost, 

energy 

consumption 

Hybrid Whale and mutation-

based Bee optimization 

algorithms. 

. High computational and time complexity due to 

double adaptive weight and random spare scheme, 

especially for large scale workflow tasks. 

. Workflow standard benchmark datasets were not 

tested. 

[10] 

Makespan, cost, 

SLA factors 

such as budget 

Genetically modified 

Particle swarm algorithm 

(GMPSO) and novel two-

dimensional encoding for 

task and resource mapping. 

. The proposed work aimed at high performance 

hybrid cloud scenarios, yet only six VMs were 

configured (one free and five paid). A large number 

of VMs must be tested. 

. Synthetic extra-large workflow tasks should be 

considered such as [8] and [14]. 

. In terms of evaluation metrics IGD (inverted 

generational distance) and Hv (Hypervolume), the 

performance of the proposed GMPSO is relatively 

close, if not worse, when compared to NSGAII. 

Better results are obtained only in higher iterations. 

[11] 

Makespan, 

monetary cost, 

SLA 

constraints. 

Enhanced genetic algorithm 

(improved chromosome 

encoding and hybrid 

crossover). 

. The proposed two-stage solution is slow in a 

dynamic cloud environment. 

. Only small workflow workloads were tested. 

[12] 

Computation 

and data 

transmission 

costs. 

Distributed grey wolf 

optimizer (DGWO). 

. The proposed distribution is to increase the 

number of parallel workflow evaluations and not to 

enhance the GWO algorithm. 

. The maximum tested data transmission is 5GB, a 

bigger value should be considered. 

. No statistical analysis of solutions migration 

among islands. 

. The impact of the best and worst solutions from 

one island to another was not presented. 

[13] Makespan, cost 

Hybrid cost optimized 

heuristic and multi-objective 

workflow optimization 

strategy (MOWOS), with 

improved task schedular 

using MinVM and MaxVM. 

. Tasks splitting approach effect was not measured 

during the evaluation. It must be included in the 

Fitness function. 

. Tasks splitting was based on task length, which is 

accommodated by splitting the task’s bandwidth, 

storage, each of which was not covered. 

. MinVM and MaxVM scheduling effects on the 

overall obtained results were not measured. 

[14] 

Makespan, cost, 

energy, SLA 

deadline 

constraints 

Hybrid Chemical Reaction 

Optimization (CRO), and 

Particle Swarm Optimization 

(PSO). 

. Proposed Cloudlets properties share the same file 

input and outsize. 

. Presented VMs’ configurations are not 

heterogeneous and are relatively the same. 

. The maximum number of tested tasks is 300, large 

tasks number should be tested. 

. No standard workflow benchmark datasets were 

tested. 

. The time complexity of the proposed CR-PSO is 

high 

[15] 

Dynamic 

resources 

availability, 

dynamic prices 

of cloud 

Improved Ant Colony 

Algorithm (ACA) with 

reward and punishment 

coefficient to enhance 

. A large number of tasks should be considered, the 

maximum number of tasks tested was only 200. 

. The number of VMs in the experimental results 

was 80, which is rather large considering the small 

number of tasks tested. 
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resources, 

makespan, QoS 

pheromone updating strategy 

of ant colony. 

. No standard workflow benchmark datasets were 

tested. 

 

[16] 
Makespan, cost, 

deadline budget 

Hybrid Genetic Algorithm 

and Heterogeneous earliest 

finish time HEFT, 

tournament crossover, and 

random mutation operator. 

. The proposed approach can be improved, and 

better results were obtained in only half of the 

performed workflow tests. 

. The proposed Fitness function is composed of two 

subfunctions and it can be improved 

[17] 

Energy, 

makespan, and 

resources cost 

Improved Ant Lion 

Optimization (ALO) using 

Sine Cosine Algorithm and 

Chaotic randomness. 

. The number of VMs’ in the experimental setup is 

set to 1000 VM. 

. The largest workflow tested load only contain 

1000 tasks, bigger workflow should be considered 

given the large number of VMs, such as [5] and 

[10]. 

 

3. Scientific Workflow Task Scheduling 

     Scientific workflows are sequences of tasks used by scientific research to test the efficiency 

of task scheduling algorithms in the cloud environment. Workflows are systematic sequences 

of activities or tasks aimed at generating scientific results or solving complex problems. 

Workflows are typically represented in a directed acyclic graph (DAG). The term "acyclic" 

implies no cycles or loops in the graph, meaning that tasks can be executed in a specific order 

without encountering circular dependencies. Each node in the graph represents a task or a 

computation along with other task related attributes, such as task length, and data required for 

input and output. Edges, on the other hand, indicate the dependencies between tasks. An edge 

from task A to task B indicates that task B depends on the output of task A. This dependency 

structure ensures that tasks are executed in the correct order, with prerequisite tasks completed 

before their dependent tasks can begin. Fig 1 [17] shows the DAG representation of five 

scientific workflows utilized in this study: Montage (a), CyberShake (b), Epigenomics (c), 

Inspiral (d), SIPHT (e). 

 

 

 
Figure 1: DAG structure of scientific workflows [17]. 

 

DAG is mathematically represented as 𝐺 = (𝑇, 𝐸). Where 𝑇 = {𝑇1, 𝑇1, 𝑇2, … … . . , 𝑇𝑛} denote 

the set of vertices or nodes (tasks). And 𝐸 represents the set of directed edges among nodes, 

where 𝐸 = {𝐸0, 𝐸1, 𝐸2, … … . , 𝐸𝑛}. For instance, a directed edge of 𝐸(𝑇3, 𝑇4) indicates a direct 

dependency between task 𝑇3 and 𝑇4. In other words, the fourth task cannot be executed until 

the third task has been completed. Therefore, 𝐸 can be rewritten as a set of ordered pairs of 

vertices, 𝐸 = { (𝑇𝑖, 𝑇𝑗) | 𝑇𝑖, 𝑇𝑗  ∈ 𝑇}. Where 𝑇𝑖 is the predecessor task and 𝑇𝑗 is successor task. 
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Each task 𝑇𝑖 in DAG workload has additional attributes or metadata. These attributes help in 

optimizing task execution and resource allocation within the workflow, such as: 

• Input data: 𝐼 = {𝐼0, 𝐼1, 𝐼2, … … . . 𝐼𝑛}, where 𝐼𝑖  represents input data required by task 𝑇𝑖.  

• Output data: 𝑂 = { 𝑂0, 𝑂1, 𝑂2, … … . . 𝑂𝑛}, where 𝑂𝑖 represent output data produced by 

task 𝑇𝑖.  

• Task length: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑖), is a measure of computational effort required to complete task 

𝑇𝑖. It is typically expressed in terms of the number of instructions or the amount of competition 

(e.g., in millions of instructions). In workflow simulations, task length is used to estimate the 

makespan or the time required to complete the task, assuming certain computational resources 

are available. 

In the realm of Infrastructure as a Service (IaaS), computing resources are commonly 

provisioned in the form of virtual machines (VMs). These VMs are simulated computing 

environments operating independently within a physical server. Users of IaaS platforms 

leverage these VMs to deploy and run their applications, software, and computational 

workloads in a flexible and scalable manner.  

 

 

Figure 2: Workflow and Cloud tasks scheduling 

 

3.1 Problem Formulation 

     The context of this study aims to present and develop a multi-objective task scheduling 

optimization algorithm. This algorithm aims to address the complexities inherited in task 

scheduling within cloud computing environments. By the above given definitions for the 

workflows and tasks, our primary objective is to minimize critical factors associated with task 

scheduling on cloud resources. These factors encompass the makespan, processing costs, 

storage costs, and bandwidth utilization. Each of these factors can be defined as follows: 

 

1. Makespan: the total time required to complete all tasks within a given workflow, starting 

from the initiation of the first task to the completion of the last task. Consider the following 

workflow, 𝐺 = (𝑇, 𝐸), where 𝑇 = {𝑇1, 𝑇1, 𝑇2, … , 𝑇𝑛} represent the set of tasks (both dependent 
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and independent), and 𝐸 is a set of all edges or dependency connections among tasks. Each 

connection is denoted as 𝐸𝑖 = (𝑇𝑖, 𝑇𝑗), and belongs to 𝐸 = {𝐸0, 𝐸1, 𝐸2, … . , 𝐸𝑛}.  

A task 𝑇𝑖with dependencies, dep (𝑇𝑖) will not start unless all its dependent tasks have been 

executed. If a task has no dependencies (e.g., entry tasks), dep (𝑇𝑖) = ∅. The finish time 𝐹𝑇𝑇𝑖
 

for task 𝑇𝑖 is defined as the sum of its execution time and the execution times of all dependent 

tasks [12]: 

𝐹𝑇𝑇𝑖 = (∑ 𝐸𝑇𝑛
𝑖=0 (𝑑𝑒𝑝(𝑇𝑖)) +  𝐸𝑇(𝑇𝑖)                                     (1) 

 

Where 𝑛 is the number of dependent tasks and 𝐸𝑇 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑖)/(𝑀𝑃𝐼𝑆𝑣𝑚𝑗 ∗ 𝑃𝐸𝑗). Where 

𝑀𝐼𝑃𝑆𝑣𝑚𝑗 is processing power of 𝑉𝑀𝑗 measured in 𝑀𝐼𝑃𝑆, and 𝑃𝐸𝑗  is the number of available 

virtual cores (Processing Entity); Makespan can be measured as: 

 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥∀𝑡𝑎𝑠𝑘𝑠(𝐹𝑇)                                           (2) 

 

Where 𝐹𝑇 = {𝐹𝑇0, 𝐹𝑇1, 𝐹𝑇2, … , 𝐹𝑇𝑛}. 

 

2. Processing Cost: The cost associated with executing task 𝑇𝑖 on resource 𝑉𝑀𝑗. In 

workflow simulation, processing cost 𝑃𝑖 for task 𝑇𝑖 is calculated as [12]: 

 

𝑃𝑖 = 𝐸𝑇𝑖 ∗ 𝐶𝑜𝑠𝑡𝑗                                                           (3) 

Where 𝐸𝑇𝑖 is execution time for task 𝑇𝑖 and 𝐶𝑜𝑠𝑡𝑗 is the Processing Cost of 𝑉𝑀𝑗  per time unit.     

The total processing cost for the entire workload can be determined as: 

 

𝑃𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑃𝑖
𝑛
𝑖=0                                                     (4) 

 

3. Storage Cost: The expenditure associated with storing data related to tasks on cloud 

storage services. The storage requirement  𝑆𝑖 for the task 𝑇𝑖, is the sum of all its output file 

sizes hence [12]: 

𝑆𝑖 =  ∑ 𝑂𝑖𝑗

𝑛

𝑗=0

 

Where 𝑂𝑖𝑗 is the 𝑗𝑡ℎ output file for the task 𝑇𝑖. Then storage cost 𝑆𝐶𝑖 for task 𝑇𝑖 is:  

 

𝑆𝐶𝑖 = ( 𝑆𝑖 / 𝑆𝑉𝑀𝑗)  ∗ 𝑆𝐶𝑉𝑀𝑗  

Where 𝑆𝑉𝑀𝑗 is the total storage available for 𝑉𝑀𝑗, and 𝑆𝐶𝑉𝑀𝑗  is the storage cost of 𝑉𝑀𝑗.  

the total storage cost for the workflow is: 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 =  ∑ 𝑆𝐶𝑖

𝑛

𝑖=0

 

4. Bandwidth Cost: Refers to the network bandwidth consumption during data transfer 

operations in the cloud. The required bandwidth 𝐵𝑖 for the task 𝑇𝑖 is the sum of all input file 

sizes [12]: 

𝐵𝑖 =  ∑ 𝐼𝑖𝑗

𝑛

𝑗=0

 

 

           Where 𝐼𝑖𝑗 is the 𝑗𝑡ℎ input file for the task 𝑇𝑖. Then bandwidth cost 𝐵𝐶𝑖 for task 𝑇𝑖 is:  

𝐵𝐶𝑖 = ( 𝐵𝑖 / 𝐵𝑉𝑀𝑗)  ∗ 𝐵𝐶𝑉𝑀𝑗 
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         Where 𝐵𝑉𝑀𝑗 is the total bandwidth available for 𝑉𝑀𝑗, and 𝐵𝐶𝑉𝑀𝑗 is the bandwidth cost 

of   𝑉𝑀𝑗. The total bandwidth cost for the workflow is: 

𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑖𝑡ℎ 𝑐𝑜𝑠𝑡 =  ∑ 𝐵𝐶𝑖

𝑛

𝑖=0

 

3.2 Objective Function 

     In this research, we aim to decrease task execution time and cost while maximizing resource 

utilization across all VMs in a cloud environment. Workflow scheduling in dynamic 

environments is more challenging and realistic compared to static environments. Cloud 

resources must be allocated precisely to fulfill user service agreements while maximizing 

resource utilization. Large scale with multi-objectives optimization is inherently complex, and 

optimal solutions require efficient scheduling algorithms and more importantly, accurate 

objective function. Considering this, the objective function of this study is focused primarily 

on minimizing the following fitness function:  

 

𝐹 =  ( 𝑤1 ∗ 𝑀𝑆 + 𝑤2 ∗ 𝑃𝐶𝑡𝑜𝑡𝑎𝑙 + 𝑤3 ∗ 𝑆𝐶𝑡𝑜𝑡𝑎𝑙 + 𝑤4 ∗ 𝐵𝐶𝑡𝑜𝑡𝑎𝑙) 

 

Where 𝑀𝑆 is 𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛, 𝑃𝐶𝑡𝑜𝑡𝑎𝑙 is the total Processing Cost, 𝑆𝐶𝑡𝑜𝑡𝑎𝑙 is the total Storage Cost, 

and 𝐵𝐶𝑡𝑜𝑡𝑎𝑙 is the total Bandwidth Cost. And 𝑤𝑖 represents the weight, 𝑤𝑖  ∈ [0, 1], and 𝑤1 +
𝑤2 + 𝑤3 + 𝑤4 = 1.  

Weights are used in optimization functions to assign relative importance or priority to different 

objectives or criteria. In a cloud environment, such decisions are entirely dependent on user 

preferences and on the specification of the workflow at hand. Objectives with higher weights 

are given more emphasis, leading to solutions prioritizing those objectives over others. 

Additionally, it provides against contradictory objectives such as makespan and processing 

costs.  

 

4. Proposed LH-MRFOA Algorithm 

     This section presents the original MRFO algorithm along with the proposed improvements. 

 

4.1 Manta Ray Foraging Optimization Algorithm (MRFOA) 

     Manta Ray Foraging Optimization Algorithm (MRFOA) is a metaheuristic optimization 

method first proposed by Zhao in 2020. It is inspired by the effective and cooperative foraging 

behavior of manta rays. MRFOA has successfully imitated three major foraging behaviors of 

manta rays, including chain foraging, cyclone foraging, and somersault foraging. The behavior 

is customized for optimization tasks with a good balance between exploration and exploitation 

to find the global optimum in complex search spaces. 

 

4.1.1 Manta Ray Structure and Foraging Behavior 

     Manta rays are large, flat, aquatic animals with terminal mouths; they forage using their 

cephalic lobes to direct the plankton into the mouth. Manta rays portray peculiar foraging 

behavior, such as looping and somersaulting motions. Figures 3(A) and 3(B) [20] depict a 

manta ray in action and its structure. 
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Figure. 3: (A) A foraging manta ray, and (B) structure of a manta ray [20] 

 

Chain foraging, Figure 4 depicts the 2-D foraging behavior of cyclones. Instead of merely 

following the meal in front of it, the individual moves in a circular pattern in that direction. In 

two dimensions, the spiral motion of manta rays is described by the mathematical 

expression:𝑥𝑖
𝑑(𝑡 + 1) =

 {
𝑥𝑖

𝑑(𝑡) + 𝑟. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) −  𝑥𝑖

𝑑(𝑡)) + 𝛼 . (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) −  𝑥𝑖

𝑑(𝑡))  𝑖 = 1

𝑥𝑖
𝑑(𝑡) + 𝑟. (𝑥𝑖−1

𝑑 (𝑡) −  𝑥𝑖
𝑑(𝑡)) + 𝛼 . (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) −  𝑥𝑖
𝑑(𝑡))   𝑖 = 2, … , 𝑁

                               (1) 

𝛼 = 2 . 𝑟. √|log (𝑟)|                                                 (2)                                                                                                      

      where, 𝑥𝑖
𝑑(𝑡) is the position of 𝑖th individual at time t in 𝑑th dimension, r is a random vector 

within the range of [0,1], a is a weight coefficient, 𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) is the plankton with high 

concentration. Fig. 4 depicts this foraging behavior in a 2-D space. The position update of the 

𝑖th individual is determined by the position 𝑥𝑖−1(𝑡) of the (i-1) th current individual and the 

position 𝑥𝑏𝑒𝑠𝑡(𝑡) of the food. 

 
Figure 4: Chain foraging behavior in 2-D space [20] 

 

- Cyclone foraging: Figure 4 depicts the 2-D foraging behavior of cyclones. Instead of 

merely following the meal in front of it, the individual moves in a circular pattern in that 

direction. In two dimensions, the spiral motion of manta rays is described by the mathematical 

expression: 

{ 
𝑥𝑖(𝑡 + 1) =  𝑥𝑏𝑒𝑠𝑡 + 𝑟. (𝑥𝑖−1 (𝑡) −  𝑥𝑖 (𝑡)) + 𝑒𝑏𝑤 .  𝑐𝑜𝑠(2𝜋𝑤) .  𝑥𝑏𝑒𝑠𝑡 −   𝑥𝑖(𝑡)) 

𝑥𝑖(𝑡 + 1) =  𝑥𝑏𝑒𝑠𝑡 + 𝑟. (𝑥𝑖−1 (𝑡) −  𝑥𝑖  (𝑡)) + 𝑒𝑏𝑤 .  𝑠𝑖𝑛(2𝜋𝑤) .  𝑥𝑏𝑒𝑠𝑡 −  𝑥𝑖(𝑡))
                     

(3)                                
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where w is a random number in [0, 1], this motion behavior may be extended to a n-D space. 

For simplicity, this mathematical model of cyclone foraging can be defined as:  

𝑥𝑑
𝑖 (𝑡 + 1) =  {

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟. (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) −  𝑥𝑖
𝑑  (𝑡)) + 𝛽 . (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) −  𝑥𝑖
𝑑  (𝑡))     𝑖 = 1             

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟. (𝑥𝑖−1

𝑑 (𝑡) −  𝑥𝑖
𝑑  (𝑡)) + 𝛽 . (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) −  𝑥𝑖
𝑑  (𝑡)) =    𝑖 = 2, … , 𝑁

   (4) 

𝛽 = 2𝑒𝑟1
𝑇−𝑡+1

𝑇  . sin (2𝜋𝑟1)                                                         (5)                                                                                 

where r_1 is the rand number in [0, 1], T is the maximum number of repetitions, and 𝛽 is the 

weight coefficient. 

The equation for this mechanism may be seen below. As seen in the illustration below, it 

focuses mostly on exploration, enabling MRFO to conduct an extensive worldwide search: 

𝑥𝑟𝑎𝑛𝑑 
𝑑 = 𝐿𝑏𝑑 + 𝑟. (𝑈𝑏𝑑 − 𝐿𝑏𝑑)                                                                                                           (6)                                                              

𝑥𝑑
𝑖 (𝑡 + 1) =  {

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟. (𝑥𝑏𝑒𝑠𝑡

𝑑 − 𝑥𝑖
𝑑  (𝑡)) + 𝛽 . (𝑥𝑟𝑎𝑛𝑑

𝑑 −  𝑥𝑖
𝑑  (𝑡))       𝑖 = 1             

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟. (𝑥𝑖−1

𝑑 − 𝑥𝑖
𝑑  (𝑡)) + 𝛽 . (𝑥𝑟𝑎𝑛𝑑

𝑑 −  𝑥𝑖
𝑑  (𝑡))        𝑖 = 2, … , 𝑁 

      (7)       

                            
Figure.5: Cyclone forging behavior in 2-D space [20] 

 

- Somersault foraging: The food's location is seen as a pivot in this behavior. Every manta 

ray tends to swim around the pivot and somersault into a different position. As a result, they 

constantly adjust their positions to reflect the best position thus far. The following is one way 

to develop the mathematical model: 

- 𝑥𝑖
𝑑(𝑡 + 1) =  𝑥𝑖

𝑑(𝑡) + 𝑆 . (𝑟2 . 𝑥𝑏𝑒𝑠𝑡
𝑑 − 𝑟3  . 𝑥𝑖

𝑑(𝑡)) , 𝑖 = 1, … , 𝑁                     (8)                                                                                                                                                

      where S is the somersault factor that decides the somersault range of manta rays and 𝑆 = 2, 

𝑟2 and 𝑟3 are two random numbers in [0, 1]. 

 
Figure 6: Cyclone foraging behavior in 2-D space [20] 
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 Algorithm I, shows the pseudo code for the basic specifications of the MRFO algorithm [20] 

Algorithm I: MRFO Algorithm 

Input Parameters// 

 N: Population size (number of manta rays). 

 T_max: Maximum number of iterations. 

 x_l: Lower boundary of the search space (problem domain). 

 u_x: Upper boundary of the search space (problem domain). 

 S: Somersault factor. 

 Fitness Function f(x): Objective function to be minimized or maximized. 

Output// 

 x_best : The best solution found by the algorithm. 

 f(x_best): The fitness value of the best solution. 

Initialize population // 

Initialize the size of population N, the maximal number of iterations T and each manta ray  

𝑥𝑖(𝑡) = 𝑥𝑙 + 𝑟𝑎𝑛𝑑 (𝑥𝑢 − 𝑥𝑙) for i=1 …., N and t=1.  

Compute the fitness of each individual 𝑓𝑖 = 𝑓(𝑥𝑖) and obtain the best solution found so far 

𝑥𝑏𝑒𝑠𝑡,  Where 𝑥𝑢 𝑎𝑛𝑑 𝑥𝑙   are the upper and lower boundaries of problem space, respectively. 

Iterative optimization // 

WHILE stop criterion is not satisfied do  

FOR i=1 TO N DO 

IF rand <0.5 THEN //Cyclone foraging  

        IF 𝑡/𝑇𝑚𝑎𝑥 < 𝑟𝑎𝑛𝑑 THEN 

         𝑥𝑟𝑎𝑛𝑑 =  𝑥𝑙 + 𝑟𝑎𝑛𝑑 . (𝑥𝑢 −  𝑥𝑙) 

𝑥𝑖(𝑡 + 1) =  { 
𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑟𝑎𝑛𝑑 −  𝑥𝑖 (𝑡)) + 𝛽 . (𝑥𝑟𝑎𝑛𝑑 −  𝑥𝑖  (𝑡))                     𝑖 = 1             

𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑖−1 (𝑡) −  𝑥𝑖 (𝑡)) + 𝛽 . (𝑥𝑟𝑎𝑛𝑑 −  𝑥𝑖  (𝑡))                 𝑖 = 2, … , 𝑁
 

              ELSE 

𝑥𝑖(𝑡 + 1) =  {
𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑏𝑒𝑠𝑡 −  𝑥𝑖  (𝑡)) + 𝛽 . (𝑥𝑏𝑒𝑠𝑡 −  𝑥𝑖  (𝑡))             𝑖 = 1

𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑖−1 (𝑡) −  𝑥𝑖  (𝑡)) + 𝛽 . (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖  (𝑡))             𝑖 = 2, … , 𝑁
 

             END IF. 

        ELSE      // Chain foraging  

𝑥𝑖(𝑡 + 1) =  {
𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑏𝑒𝑠𝑡 −  𝑥𝑖  (𝑡)) + 𝛼 . (𝑥𝑏𝑒𝑠𝑡 −  𝑥𝑖 (𝑡))             𝑖 = 1

𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑖−1 (𝑡) − 𝑥𝑖 (𝑡)) + 𝛼 . (𝑥𝑏𝑒𝑠𝑡 −  𝑥𝑖  (𝑡))             𝑖 = 2, … , 𝑁
 

END IF. 

Compute the fitness of each individual 𝑓(𝑥𝑖(𝑡+1)) 

𝐼𝐹  𝑓(𝑥𝑖(𝑡+1)) < 𝑓(𝑥𝑏𝑒𝑠𝑡) 

THEN 𝑥𝑏𝑒𝑠𝑡 =  𝑥𝑖(𝑡 + 1) 

END IF 

// Somersault foraging  

FOR i=1 TO N DO 

          𝑥𝑖(𝑡+1) =  𝑥𝑖(𝑡) + 𝑆 . (𝑟2. 𝑥𝑏𝑒𝑠𝑡 −  𝑟3 . 𝑥𝑖(𝑡)) 

Compute the fitness of each individual 𝑓(𝑥𝑖(𝑡+1)) 

𝐼𝐹  𝑓(𝑥𝑖(𝑡+1)) < 𝑓(𝑥𝑏𝑒𝑠𝑡) 

THEN 𝑥𝑏𝑒𝑠𝑡 =  𝑥𝑖(𝑡 + 1) 

 

END IF 

END FOR. 

END WHILE. 

Return the best solution found so far 𝑥𝑏𝑒𝑠𝑡 
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     In several technical disciplines i.e., geophysics [21], energy allocation [22], image 

processing [23], and electric power [24], the MRFO algorithm performs exceptionally well and 

exhibits a wide range of optimization talents. The MRFO has proven to be a conducive 

approach to resolving several intricate real-world issues through these successful applications 

[25]. Despite being a member of the meta-heuristic algorithm domain, MRFO differs greatly 

from other popular meta heuristics in philosophy and design. i.e., in comparison with Particle 

Swarm Optimization (PSO), MRFO and PSO they differ primarily in their biological actions. 

While MRFO draws inspiration from manta ray social foraging activities, PSO is motivated by 

the movement of bird flocks in the natural world. The way the two hunt for solutions differs 

significantly from one another [26]. The global best solution is combined with other solutions 

to create PSO solutions. A further notable distinction between the two is the method used to 

look for solutions. The global best solution found so far, the local best solution, and the 

individual movement velocities combine to produce the solutions in PSO; in contrast, the 

global best solution found so far, and the solution in front of it combine to produce the solutions 

in MRFO by switching different movement strategies [27]. Another comparison in the same 

domain with Genetic Algorithm (GA) in contrast to the communal foraging activities of manta 

rays in MRFO, GA is based on Darwin's theory of evolution. The representation of problem 

variables is the second distinction. Whereas the issue variables in MRFO are utilized directly, 

in GAs, they are represented as a sequence of fixed-length bit strings. Better solutions also have 

a higher chance of generating new solutions in GAs when the roulette wheel selection approach 

is used, and inferior solutions will likely be replaced by better new solutions [28]. While in 

MRFOA every member of the population has an equal chance of improving their solutions. 

 

4.2 Improved MFROA  

     Our proposal for a hybrid Lévy-Heuristic Manta Ray Foraging Optimization Algorithm for 

multiple critical objectives in workflow scheduling: makespan minimization, processing cost 

reduction, storage cost optimization, and bandwidth utilization minimization. One of the new 

improvements embeds the Lévy flight mechanism in the MRFOA, enabling it to take big 

probabilistic leaps in search space. This addition elevates the exploration capabilities greatly 

and therefore escapes local optimum and finds globally optimal solutions. On the other hand, 

we suggest a different enhancement that involves addressing dependency management. This 

process begins by iterating over each task and identifying whether it has any dependent tasks 

(parent tasks). If a task has no parent tasks (independent tasks), it is processed directly without 

needing dependency handling. However, if a task has one or more parent tasks (dependent 

tasks), the algorithm will initiate a procedure to optimize resource allocation for these 

dependent tasks. The Heuristic Dependency Management (HDM) mechanism is the second 

enhancement in LH-MRFOA, addressing task dependencies in workflow scheduling. It focuses 

on optimizing the allocation of dependent tasks to ensure efficient resource utilization and 

adherence to dependency constraints. Initially, the dependent tasks are temporarily stored and 

cleared from previous iterations to ensure accurate processing without conflicts. For each 

parent task, the algorithm evaluates the performance of assigning the task to different virtual 

machines (VMs). It calculates the expected execution time for each task on every available VM 

based on the task's computational requirements and the VM's capabilities.  

Algorithm II shows the pseudo code for the first improvement of the MRFO algorithm by 

employing Lévy-flight technique to enhance the exploration of the algorithm. 
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Algorithm II: Lévy-Manta ray Algorithm (L-MRFOA). 

MRFO Original initialization  

. 

. 

 //Cyclone foraging 

. 

.  

        ELSE      // Chain foraging  

// First Improvement: introduce Lévy flight mechanism for enhancing exploration by 

generating step sizes based on a Lévy distribution, introducing variability that allows the 

algorithm to take occasional large steps, improving its ability to explore the search space and 

avoid local minima. 

Leves = Lévy () 

If  𝑖 = 1 THEN 

𝑥𝑖(𝑡+1) =  𝑥𝑖(𝑡) + 𝑙𝑒𝑣𝑖𝑒𝑠 [𝑖] ∗ (𝑥𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) +  𝛼 ∗ (𝑥𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) 

 

              ELSE 

𝑥𝑖(𝑡+1) =  𝑥𝑖(𝑡) + 𝑙𝑒𝑣𝑖𝑒𝑠 [𝑖] ∗ (𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡)) +  𝛼 ∗ (𝑥𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) 

END IF 

END IF. 

// Ensure the new positions are within search space boundaries  

𝑥𝑖(𝑡 + 1) =  𝐵𝑜𝑢𝑛𝑑𝑠 𝑥𝑖(𝑡+1), 𝑥𝑙, 𝑥𝑢) 

Compute the fitness of each individual 𝑓(𝑥𝑖(𝑡+1)) 

𝐼𝐹  𝑓(𝑥𝑖(𝑡+1)) < 𝑓(𝑥𝑏𝑒𝑠𝑡) 

THEN 𝑥𝑏𝑒𝑠𝑡 =  𝑥𝑖(𝑡+1) 

END IF 

END FOR 

// Somersault foraging  

FOR i=1 TO N DO 

          𝑥𝑖(𝑡+1) =  𝑥𝑖(𝑡) + 𝑆 ∗  (𝑟2 ∗ 𝑥𝑏𝑒𝑠𝑡 −  𝑟3 ∗  𝑥𝑖(𝑡)) 

// Ensure the new positions are within search space boundaries  

𝑥𝑖(𝑡+1) =  𝐵𝑜𝑢𝑛𝑑 𝑥𝑖(𝑡+1), 𝑥𝑙 , 𝑥𝑢) 

Compute the fitness of each individual 𝑓(𝑥𝑖(𝑡+1)) 

𝐼𝐹  𝑓(𝑥𝑖(𝑡+1)) < 𝑓(𝑥𝑏𝑒𝑠𝑡) 

THEN 𝑥𝑏𝑒𝑠𝑡 =  𝑥𝑖(𝑡+1) 

END IF 

END FOR. 

END WHILE. 

Return the best solution found so far 𝑥𝑏𝑒𝑠𝑡 

After calculating these values, the algorithm identifies the VM that offers the shortest execution 

time for the task. The task is then assigned to the VM with the optimal performance. After 

assigning the tasks, the overall effectiveness of the current solution is evaluated, considering 

both the execution time and cost. If the new allocation improves the solution, it is retained; 

otherwise, the algorithm reverts to the previous allocation. Finally, once all tasks have been 

processed, whether independent or dependent, the fitness of the current solution is recalculated 

to ensure that only the best task-to-VM allocation is preserved. H-MRFOA, as illustrated in the 

results below in the Pseudo code 
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Algorithm III: Heuristic Manta ray Algorithm (H-MRFOA). 

MRFO Original initialization  

. 

. 

 //Cyclone foraging 

. 

.  

// Chain foraging  

. 

. 

// Somersault foraging  

. 

. 

Return the best solution found so far 𝑥𝑏𝑒𝑠𝑡 

// Second Improvement: heuristic dependency management, tackling the dependency for 

tasks that allocated among available virtual machines (VMs)Initialize task list, available 

VMs, and other necessary parameters in work environment  

Set best solution x_best to the best solution found so far 

    FOR each taski in taskList DO 

             // Check for dependencies (parent tasks) 

             // Store dependent tasks temporarily 

            FOR each parent of taski DO 

                Add parent to parentList 

            END FOR 

            // For each parent task, optimize resource allocation 

            FOR each parent in parentList DO 

                // Initialize best allocation for current task 

                Copy current best solution x_best to t_best 

                fitness = calculate Fitness(x_best) 

                // Calculate execution time for each VM 

                FOR each vm in available VMs DO 

                     MET [vm]=Execution time of parent on vm 

                END FOR 

                // Find the VM with the shortest execution time 

               // Assign the parent task to the best VM 

               X_best[parent] = MIN(MET) 

                // Check if the new allocation improves the solution 

                IF calculate fitness(x_best) < fitness THEN 

                    // Keep the new allocation 

                   continue for next parent task 

                ELSE 

                    // Revert to the previous allocation 

                    retrieve previous best solution x_best to t_best 

                END IF 

        END FOR 

   END FOR 

    // Return the best solution found so far 

Return the best solution x_best 
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     The final stage of optimization leverages a hybrid approach, combining two powerful 

techniques: Lévy flight and Heuristic Dependency Management (HDM). This strategy aims to 

balance global exploration and local exploitation in the search for an optimal solution. Lévy 

flight enables the algorithm to perform large jumps in the solution space, helping avoid local 

optima by exploring new regions that incremental steps might miss. Meanwhile, HDM 

enhances the algorithm's ability to refine these potential solutions, particularly in optimizing 

task dependencies. By incorporating Lévy flight, the algorithm gains the ability to cover diverse 

areas of the solution space using a probability distribution (Lévy distribution) that favors small 

steps but allows for large leaps. This structured randomness ensures that unexplored areas are 

efficiently reached, improving the chances of finding a globally optimal solution. On the other 

hand, HDM plays a crucial role in the local exploitation phase. Once promising solutions are 

identified, HDM fine-tunes them by analyzing task dependencies and VM loads, ensuring that 

tasks are assigned to minimize overall completion time. This practical optimization is essential 

for improving real-world performance in distributed systems. 

 

     The integration of HDM as a second improvement ensures that solutions are not only 

theoretically optimal but also practical in execution. It enhances the algorithm’s ability to 

handle complex optimization problems where efficient resource management and task 

scheduling are key. In essence, this hybrid approach combines the exploratory power of Lévy 

flights with the precise, task-optimized benefits of HDM, making the algorithm more robust, 

adaptive, and capable of delivering high-performance results in real-world applications that 

resulting in a more comprehensive and effective optimization algorithm as illustrated in below 

Pseudo code for Lévy-Heuristic Manat ray Algorithm (LH-MRFOA). 

Algorithm IV: Lévy-Heuristic Manat ray Algorithm (LH-MRFOA). 

MRFO Original initialization  

. 

. 

. 

 //Cyclone foraging 

// First improvement: introduce Lévy flight mechanism for enhancing exploration  

. 

. 

.  

// Chain foraging  

. 

. 

. 

// Somersault foraging  

Return the best solution found so far 𝑥𝑏𝑒𝑠𝑡 

 

// Second improvement: heuristic dependency management 

    // Return the best solution found so far 

Return the best solution x_best 

 

END FUNCTION 

 

5. Experimental Setup 

5.1 Workflow Simulation Platform. 

     A workflow simulation platform (WFS) is essential for testing and enhancing job scheduling 

algorithms in research and academic settings, especially in cloud computing. This platform 

ensures that the findings are consistent, reproducible, and applicable to real-world settings by 
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offering a controlled environment for the testing and comparing alternative scheduling 

techniques under diverse conditions [29]. WFS is designed to model and simulate the execution 

of workflows in distributed computing environments. These platforms allow researchers to 

emulate the behavior of complex workflows, which are often represented as Directed Acyclic 

Graphs (DAGs) [30]. Each node in the DAG represents a specific task, while the edges signify 

dependencies between these tasks. The primary goal of using a WFS is to analyze the 

performance of different scheduling algorithms, particularly in terms of key metrics such as 

makespan, processing cost, resource utilization, and energy consumption. In cloud computing, 

task scheduling is a complex problem due to the dynamic nature of cloud resources and the 

diverse requirements of scientific workflows. Workflow simulation platforms are particularly 

valuable in this domain because they allow for testing scheduling algorithms under different 

configurations of virtual machines, resource availability, and workload sizes. This is critical 

for understanding how algorithms perform under varying conditions, which is essential for 

optimizing cloud resource management. The WFS allows researchers to assess the algorithm's 

effectiveness in minimizing makespan and cost. By simulating different workload scenarios, 

including those with varying task complexities and interdependencies, the WFS can provide 

insights into the scalability and robustness of the proposed algorithms. 

 

5.2 Virtual Machines (VMs) Setup 

     The task scheduling experiment was conducted using a workflow simulator configured to 

run on 15 virtual machines distributed among three different groups: slow, moderate, and fast. 

This grouping ensures a fair distribution of tasks across various types of VMs, reflecting a 

range of computational capabilities as illustrated in the table below (2). Available VMs are 

grouped into three categories based on their computational power. This allows the task 

scheduler to allocate tasks to VMs with appropriate resources, depending on the task's 

computational requirements. within each group, the MIPS (Million Instructions Per Second) 

value is randomly assigned within a specified range. This randomization simulates a more 

realistic cloud environment where VM capabilities can vary even within the same category. 

RAM and bandwidth are also set according to the VM group. The 'slow' group has lower RAM 

and MIPS values, while the 'fast' group has higher values, making it suitable for more 

computationally intensive tasks. The setup mimics a typical cloud environment where 

resources are heterogeneous by ensuring that tasks are distributed among VMs with different 

capabilities. This helps to test the robustness of the scheduling algorithm across various 

conditions. Using WFS provides a controlled environment for simulating the task scheduling 

process, making it possible to evaluate the effectiveness of the proposed algorithm under 

different VM configurations. This setup is essential for evaluating the performance of the task 

scheduling algorithm in a realistic cloud computing environment, ensuring that it can 

effectively manage and distribute workloads across VMs with varying capabilities. 

 

Table 2: Specifications of Virtual Machines Used in Workflow Simulations 

Group# # of VMs RAM Range MIPS 

G1: Slow 5 512 (0-4) 1000-3000 

G2: Moderate 5 512 (5-9) 3000-6000 

G3: Fast 5 1024 (10-14) 6000-10000 

 

5.3 Experimental Process 

     We developed a run processing system within our workflow simulator that executes each 

algorithm ten times to evaluate makespan and processing cost using a weighted summation 

formula. The comparison conducted among (MRFOA) and its updated versions Lévy-Manta 

ray Foraging Algorithm (L-MRFOA), Heuristic-Manta ray Foraging Algorithm (H-
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MRFOA), Lévy Heuristic-Manta ray Foraging Algorithm (LH-MRFOA) and the top of bio-

inspired algorithms (GA) and (PSO), by using five standard data sets fig (1) with different 

scales and considering the average of ten times of the whole run-in process of workflow 

simulator table (2), table (3) and table (4). 

 

6. Results and Discussion 

6.1 Empirical Results  

    The empirical results offer a thorough evaluation of the performance characteristics of the 

algorithms under study, focusing on key metrics such as makespan, cost, and fitness. These 

metrics provide essential insights into how each algorithm manages task scheduling within 

complex cloud computing environments. Through rigorous testing across diverse workloads. 

This section delves into the performance test's quantitative outcomes, highlighting each 

algorithm's strengths and weaknesses.  

 

     The results reveal significant distinctions in how these algorithms handle various scheduling 

challenges, with LH-MRFOA frequently outperforming other algorithms, GA and PSO. The 

findings underscore the robust capability of LH-MRFOA to optimize resource allocation, 

minimize execution time, and reduce operational costs, making it an optimal solution for 

dynamic and large-scale cloud environments. In terms of makespan, the LH-MRFOA 

consistently outperformed its counterparts, demonstrating a remarkable ability to minimize the 

total time required for task completion. Across various datasets, LH-MRFOA achieved 

significantly lower makespan values, particularly in scenarios involving large and complex 

workloads during testing makespan as shown in Table (3). This reduction in makespan is 

crucial in cloud computing environments, where time efficiency directly impacts overall 

system performance and user satisfaction. The algorithm's advanced heuristic strategies and 

robust search capabilities enable it to navigate and optimize scheduling tasks more effectively 

than traditional algorithms such as GA and PSO. 

 

Table 3: Best Makespan 

# Data set GA PSO MRFOA L-MRFOA H-MRFOA 
LH-

MRFOA 

1.  Inspiral_30 3389.13 3107.70 2860.94 2976.31 2875.47 2799.32 

2.  Inspiral_1000 255438.98 210553.27 236622.81 198138.36 115326.90 101372.02 

3.  CyberShake_30 287.83 270.75 244.31 236.80 232.47 218.99 

4.  CyberShake_1000 14872.72 14781.01 13621.18 13439.58 11222.14 10860.59 

5.  Montage_25 245.08 216.51 231.44 223.30 217.71 187.45 

6.  Montage_100 6301.10 5364.55 4830.51 4913.52 3761.60 3752.01 

7.  Sipht_30 2767.21 2620.10 2684.59 2616.49 2612.90 2612.01 

8.  Sipht_1000 34034.23 32856.94 27482.56 32199.65 20732.19 19652.69 

9.  Epigenomics_24 2375.01 2580.19 2363.02 2360.27 2238.06 2146.30 

10.  Epigenomics_997 973484.72 882633.77 856202.79 824748.70 410740.87 398818.30 

 

Turning to the cost, the LH-MRFOA also proved highly effective in minimizing the operational 

expenses associated with task scheduling. Cost efficiency is a critical factor in cloud 

computing, where resource utilization directly translates to financial expenditure.  

LH-MRFOA demonstrated a consistent ability to reduce costs across diverse workload 

scenarios, outperforming other algorithms by optimizing resource allocation and reducing the 

computational overhead, as illustrated in Table (4). This cost-effectiveness makes LH-MRFOA 

an attractive option for cloud service providers aiming to maximize profitability while 

maintaining high levels of performance. By achieving lower costs without compromising on 
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efficiency or scalability, LH-MRFOA positions itself as a superior solution for managing the 

economic demands of cloud-based operations. 

 

Table 4: Best Cost 

# Data set GA PSO MRFOA L-MRFOA H-MRFOA 
LH-

MRFOA 

11.  Inspiral_30 647.65 632.94 583.29 575.21 572.24 556.10 

12.  Inspiral_1000 24430.67 24080.96 24036.85 22860.16 23443.54 22301.88 

13.  CyberShake_30 19839.65 19695.84 19687.56 19690.19 19646.01 19645.61 

14.  CyberShake_1000 106270.17 104056.90 102352.58 102785.97 94176.64 93953.63 

15.  Montage_25 135.08 136.16 125.93 129.67 124.77 121.51 

16.  Montage_100 576.67 588.74 535.21 540.06 542.31 516.74 

17.  Sipht_30 529.02 538.16 512.41 513.08 511.22 506.60 

18.  Sipht_1000 20810.20 20519.92 20954.26 21020.73 19976.43 19729.46 

19.  Epigenomics_24 3393.01 3229.67 3164.84 3228.88 3166.17 3165.74 

20.  Epigenomics_997 680448.43 635623.36 631217.41 584845.97 579503.43 558601.39 

 

     Finally, when considering fitness, which provides a comprehensive measure of an 

algorithm’s overall performance, LH-MRFOA once again demonstrated its superiority. Fitness 

encapsulates various aspects of task scheduling, including the balance between exploration and 

exploitation, efficiency in resource use, and the ability to adapt to varying workloads. LH-

MRFOA consistently achieved higher fitness scores across different datasets, reflecting its 

robust capability to optimize multiple performance criteria simultaneously, as illustrated below 

in Table (5). This high fitness indicates that LH-MRFOA is not only effective in specific 

metrics like makespan and cost but is also versatile enough to maintain strong performance 

across a range of conditions. This makes LH-MRFOA a highly reliable choice for real-world 

applications, where diverse and dynamic cloud environments demand an algorithm that can 

consistently deliver optimal results. 

 

Table 5: Best Fitness 

# Data set GA PSO MRFOA L-MRFOA H-MRFOA 
LH-

MRFOA 

21.  Inspiral_30 2176.51 1865.10 1883.92 1933.19 1832.15 1800.98 

22.  Inspiral_1000 143684.31 123370.91 119832.70 115946.63 68411.38 66834.45 

23.  CyberShake_30 10040.82 9994.98 9930.06 9932.40 9932.80 9928.21 

24.  CyberShake_1000 60581.67 57353.46 56657.83 56988.78 52021.07 51923.83 

25.  Montage_25 213.82 197.64 190.03 200.59 180.44 176.41 

26.  Montage_100 3575.65 3168.25 3052.49 2893.94 2264.96 2214.69 

27.  Sipht_30 1750.57 1667.66 1664.87 1665.31 1550.08 1541.81 

28.  Sipht_1000 27606.74 25750.23 26657.38 25113.37 20247.89 19201.83 

29.  Epigenomics_24 2980.56 2856.72 2791.28 2755.68 2761.34 2661.55 

30.  Epigenomics_997 908657.14 801416.80 781958.68 738252.03 523809.04 492700.21 

 

6.2 Performance Variability Analysis 

     Task scheduling in the cloud should be very unpredictable in nature. While observing the 

facts, the prior result proved that GA was found to be performing variably over the datasets. 

For instance, with the best cost scenario in GA, it was found to be constant in performing well 

at low iterations but losing hold in the latter iterations against LH-MRFOA. This trend can be 
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seen in the best cost in Fig (7), where LH-MRFOA clearly had better performance as the 

algorithm continued, with better lower costs from further iterations. 

On the other hand, as shown in Fig (8) best makespan, GA had consistent performance across 

the iteration but was greatly surpassed by the LH-MRFOA, mainly in the minimizing makespan 

measure. The LH-MRFOA not only showed superiority in the reduction of makespan but also 

in the improved consistency across further iterations. Similarly, from the best fitness analysis 

Fig (8), GA remained strong in performance at the start, and it was only later surpassed by both 

the L-HMRFOA and LH-MRFOA algorithms, especially as alternating count increased. There 

are apparent fluctuations in the outcome due to the variability necessary to select the algorithm, 

which then counts with the explicit nature of the workload. Different scenarios expose the 

strengths and weaknesses of each algorithm. The LH-MRFOA showed the best performance 

regarding all the applied criteria; this was carried out due to its hybrid nature. Therefore, it is a 

generalized approach that can underpin any cloud computing activity. 

 

6.3 Scalability Analysis 

     Adaptive scalability regarding the available resources to be provisioned forms the most 

critical issue in the task scheduling algorithm. This becomes acute in nature for the cloud 

computing system in which resource adaptability and dynamic provisioning are applied in 

relation to the change of workload. The results obtained from the three different applied 

criteria, designated as best cost, best fitness, and best makespan were used in scaling the 

algorithm's behavior regarding L-MRFOA and its heuristic extension. These algorithms were 

not only holding their performance but further improving as the iteration counts went up, thus 

showing an adaptability to increasing workload sizes. GA was competitive in the lower initial 

stages or with lower iterations but generally struggled in the best makespan and best fitness 

figures, where GA predictably leveled off in performance or even declined in the face of 

increasing workload size, while the LH-MRFOA continued to optimize effectively. These 

results show that the scalability of LH-MRFOA is a better fit for a larger and more dynamic 

cloud environment. 

 

6.4 Consistency Evaluation 

     An algorithm representative of its reliability and stability is consistent throughout varied 

workloads. LH-MRFOA, according to the results obtained on the best cost, best fitness, and 

best makespan figures, is proven to be reasonably consistent throughout varied situations. It 

outperformed other algorithms, like GA and PSO, for different iteration numbers, as seen 

below. The algorithm's consistency indicates that it is powerful and effective enough to handle 

diversified task scheduling scenarios and therefore clearly establishes its candidature for real-

world deployment in a cloud environment. However, it is also evident from these figures that 

in the case of extreme workloads, represented by the best makespan dataset, the performance 

gaps between algorithms became more pronounced. The effectiveness of the LH-MRFOA is 

seen in its ability to hold performance by retaining robustness in resource allocation 

frameworks for a high-demand cloud environment. 

 

6.5 Complexity vs. Performance Trade-off 

     The performance of complex algorithms, e.g., L-MRFOA and its heuristic variant, versus 

simpler algorithms, e.g., GA and PSO, tends to be proportional to workload or iteration count; 

see the figures. It is not universal; at a good cost Fig.8, GA and PSO remain competitive in the 

earlier iterations, meaning that an increase in algorithmic complexity does not always bring 

better performance. This indicates the necessity of a delicate evaluation that will consider both 

complexity and performance outcomes while selecting the right approach to be used 

specifically in scheduling tasks for the cloud environment. Whereas this LH-MRFOA offers 

huge competitive advantages in most scenarios, at the cost of performance, some simpler 
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algorithms will remain good enough in the simpler contexts or when computational efficiency 

is a must. 

  
are(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 
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Figure 7: best cost 
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(e) (f) 
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Fig (8) best makespan 
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(c) (d) 
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(g) (h) 

  
(i) (j) 

Figure 9: best fitness 

 

6.6 Discussion 

     The LH-MRFOA is a potent step forward in optimization task scheduling for cloud 

computing. With the utilization of the Lévy flight search strategies in optimizing landscapes, 

LH-MRFOA has shown a better balance between exploitation and exploration. The results 

shown in the best cost, Best makespan, and best fitness figures show that the LH-MRFOA 

outperform standard bio-inspired algorithms like GA and PSO in most cases, especially when 

higher scalability and consistency are required. Among all, the LH-MRFOA especially can 

scale up to an increased iteration count or workload size where it either maintained or improved 

performance compared to the other algorithms that failed. The experimental platform, 

constructed with rich configurations in virtual machines, represents more precisely the actual 

cloud environment's complexity and makes the research outcome more applicable. The 

scalability spoken about by LH-MRFOA speaks to its overall suitability for workload 

conditions with increased magnitude without degradation of performance and, as such, is an 

ideal candidate for dynamic, changing cloud computing situations. 
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7. Conclusion 

     This work has fully investigated the efficiency and effectiveness of different task scheduling 

algorithms within the cloud computing environment, emphasizing the LH-MRFOA. The 

analysis has dealt with some critical issues such as performance variability, scalability, 

consistency, and the complexity-performance trade-off, and arrived at some significant results. 

The final results underline the subtleties of task scheduling optimization since the performance 

of an algorithm varies quite significantly according to the workload. Another nature-based 

algorithm, like GA and PSO, has shown initial efficiencies, especially under scenarios with 

less workload. Advanced methods like LH-MRFOA were consistently outperforming as the 

workload increased with the increase in both the aspects of size and complexity. Furthermore, 

the superiority of these techniques is highly visible for later iterations as well, where the LH-

MRFOA outperforms, especially its Lévy Heuristic variant, in minimizing the cost, optimizing 

the fitness, and reducing makespan. Results of the scalability analysis position LH-MRFOA at 

good adaptability to various workload demands since it can utilize properly available resources 

and optimize an assignment of tasks in a dynamic cloud environment. In contrast, GA and PSO 

failed in scalability for more complex scenarios, where LH-MRFOA kept its performance 

constant or even improved when the number of iterations and the size of workloads increased. 

Real-world cloud computing applications greatly require this adaptability since the demand for 

resources is constantly changing. Consistency evaluation further proved the reliability and 

robustness of LH-MRFOA. Regardless of scheduling scenarios of diverse tasks, LH-MRFOA 

performs well when it uses Lévy flight strategies compared with other algorithms. This 

consistency across different metrics/iterations further confirms that LH-MRFOA has the 

potential to be applied effectively to real-world problems by capturing the deployment 

challenges of cloud resource management. 

Moreover, this work has also outlined one significant trade-off between the complexity of an 

algorithm and its performance. While more complex algorithms, such as LH-MRFOA, often 

outperformed simpler variants, especially for large and iteratively solved scenarios, there were 

cases when GA and PSO remained competitive. This henceforth explains why a delicate 

approach in the evaluation criteria, such as adaptability and optimization of efficiency in 

resource utilization through scalability, has to be applied to task scheduling algorithms for the 

cloud environment. In summary, the LH-MRFOA is one approach essential for task scheduling 

optimization, which outperforms existing ones in improved performance, scalability, and 

reliability. These features become necessary in dealing with complex and dynamic workloads 

consistently for different metrics and render it a viable solution for managing cloud resources. 

Further research can be conducted to enhance LH-MRFOA further and apply it in other 

optimization areas related to cloud computing to continuously improve cloud resource 

management and optimization techniques. Therefore, this research contributes to the ever-

growing scientific knowledge base on improving efficiency and effectiveness in task 

scheduling within cloud computing to enhance overall performance and reliability in cloud-

based systems. 
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