Abed and Jabir

Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx
DOI: 10.24996/ij5.2026.67.1.39

Iraqi
Journal of
Science

N
ISSN: 0067-2904

Enhanced Manta Ray Foraging Algorithm for Scheduling Scientific
Workflows in Cloud Computing Environments Using Levy Flight and

Heuristic Operator

Mohanad Awad Abed*, Adnan Jumaa Jabir
Department of Computer Since, Collage of Since, University of Baghdad, Baghdad, Iraq

Received: 19/9/2024 Accepted: 28/1/2025 Published: xx

Abstract

In modern computing, efficient task scheduling in cloud environments, especially
for large-scale scientific workflows, presents a significant challenge as it is classified
as a NP-hard problem. This study introduces an improved version of the Manta Ray
Foraging Optimization Algorithm, named Lévy-Heuristic Manta Ray Foraging
Optimization Algorithm (LH-MRFOA), which is enhanced with Lévy flight and
heuristic search techniques to address these challenges. The Lévy flight mechanism
is integrated to enhance the algorithm’s exploration capabilities, allowing it to avoid
local optima effectively and achieve global convergence. Meanwhile, the heuristic
search method is employed to improve the exploitation capability of the algorithm
while ensuring more efficient resource utilization and reduced processing time. The
proposed LH-MRFOA, which mimics the natural foraging behavior of manta rays,
combines these enhancements to deliver superior performance in task scheduling by
minimizing makespan, processing cost, storage cost, and bandwidth utilization across
varying workflow sizes. Experimental evaluations on a heterogeneous cloud
infrastructure reveal that the LH-MRFOA outperforms bio-inspired algorithms such
as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), particularly in
scenarios that require high scalability and balanced resource allocation. This research
substantially advances cloud task scheduling optimization, offering a robust solution
for enhancing resource management and cost efficiency in real-world cloud
applications.

Keywords: Cloud computing, Lévy flight, MET, MRFOA, Scientific workflows,
Task scheduling, Workflow simulator.

Fﬁa\dﬁub@hﬂ\ Lujﬂ\iﬁye,ﬁgdd\ Jand) i ddgaad dilaall janl) Uasd dia) s

AL Jalally Al

Al dras lise Fae dge diga

Léb’d\ ¢Alars calar daals ‘fajﬁﬂ\ < ‘ujmla.n (:‘53: fa.ué

dadal)
Gumy D€ Gaad Gl daasly Anlaaad) i) 3 A6l olgall dlgas i Zoall dawsal) Jle b
Conl daa)lsd (pe Aiens Aisi Auahl) 038 2085 L (250a]) Baaxie) Aares Aie gl o Lghiaa 5 43

*Email: mohannad.abd2201m@sc.uobaghdad.edu.iq

mailto:mohannad.abd2201m@sc.uobaghdad.edu.iq

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

o sy o) (Manta ray) dleul sl Slas lls (MRFOA) ol s dlant aledall oo
13 dallead V0] Gnd) ity 5)shaall (LH-MRFOA) Zus) s cansi Ainenall dially ¢ alalall
Heuristic) JYxiuwy) Jale as (Lévy flight) 4us)))sal calisiny) Al ad & Cam ibaal) (4 g
Adad) Jolall vie Cagdgll uiaty Ll e Laa (MRFOA) 4 yl5al aliSian) iy cpwal (search
5 Gl VY] Gl Bl aladial iy At il iy aeg) Gl Gaiats Jled (<
LH- Gaa)lss mend dallaall cdy Juliig ST 50l ylsall pladiul laa ge applsall Pl
LS il cdy Jlis PIA G plgal) Agan 3 (giie el mait] sl 838 (g s jiial) MRFOA
Cilapiil) i€ ailg At Jee il DA Livaall L) ylsal) elal [lasl 23 3 sl LalS dalladl)
slagivsall Gl yleall e G LH-MRFOA [duilaidl e dulad) dasil) dadl e Zonyail
Glagyliadl & daliy ((PSO) clasall Gl daa sy (GA) Ll duajslsal) e Laslsnll e
g pend (G NS L Gl 138 s - lsie U)lsall Gareadsy aussill dle 446 Gallaws)

1. Introduction

Presently, cloud computing serves as a key facilitator for digital transformation, changing
how businesses consider IT services and infrastructures via the strategic importance of cloud
computing in enhancing productivity, flexibility, and competitiveness in the digital era,
especially with the present massive demand for cloud computing applications. The primary
benefits of cloud computing are that users do not need to own or manage physical
infrastructure, such as servers or networking equipment; instead, users can access computing
resources on-demand from cloud service providers. This model offers several advantages,
including cost savings, scalability, and resource allocation flexibility. Users can scale their
resources up or down based on their needs, in addition to enforcing deadlines and constraints
on tasks running within the cloud environment [1]. Cloud computing leverages virtualization
technology to transform physical resources into virtual instances, streamlining the allocation
and management of computing, storage, and networking resources. This abstraction enables
seamless dynamic provisioning and scaling of resources in response to user demand, resulting
in optimized resource utilization and cost-effectiveness.
Nevertheless, cloud computing encounters numerous obstacles, the most significant being the
efficient utilization of computing resources. Efficient resource allocation is then translated into
that the cloud provider can maximize the utilization of their infrastructure, as much as it enables
users to obtain the best value for their investment in cloud services from performance to overall
cost. Cloud orchestration systems, i.e., brokers and schedulers, map and assign workloads
containing dependent and independent tasks to available resources in a process known as task
scheduling. Task scheduling is critical in ensuring efficient resource utilization, optimal
performance, and cost-effectiveness. It refers to the process of assigning incoming tasks to
suitable virtual machines (VMs) or cloud resources within a cloud environment. Task
scheduling complexity arises due to several factors, including the dynamic nature of cloud
available resources, task dependencies such as scientific workflows, and user-defined
constraints [2]. Such complexity makes reaching optimal task scheduling decisions regarded
and recognized as NP-hard problem [3]. Effective task scheduling is crucial for achieving
several key advantages in cloud computing i.e., enhancing performance, improving resource
utilization, reducing costs, optimizing quality of services (QoS), and increasing scalability. As
a result, finding an optimal scheduling solution typically requires exponential time in relation
to the number of tasks and resources involved.
Scientific workflows are organized and represented using direct acyclic graphs (DAGs). In
such representation, a task is defined as a node in the graph, and the dependencies among tasks
(nodes) are represented as directed edges.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Scheduling optimization of scientific workflows has received great attention within academic
literature, and it is an active and evolving field of research that emphasizes the importance of
efficient cloud resource utilization [4][5]. Such interest is primarily driven by the widespread
adoption of cloud-based services and solutions and the important role scheduling optimization
plays in cost minimization and efficiency of cloud resource utilization. To address this
challenge, researchers explored heuristic, metaheuristic, and several nature-inspired
optimization algorithms to approximate near-optimal task scheduling solutions within
reasonable time and other user defined constraints. Upon examining recent research [9-12], it
is evident that various improvements have been made to enhance the convergence of several
optimization algorithms to determine the optimal global-best task scheduling solution within
cloud environments.

However, several limitations and drawbacks have been identified. Primarily, the research often
confines its evaluation to small-scale test datasets, limiting the generalization of the findings.
Second, several of the proposed hybrid approaches frequently exhibit high computational
complexity, while others achieved marginal improvements compared to alternative
optimization algorithms. The cumulative impact of these limitations can be significant in
convergence to optimal solution in the optimization of large-scale tasks. Last, a certain number
of studies suffer from poor selection of virtual machines configuration to accommodate the aim
of their study, such as employing a small number of virtual machines in large and high-
performance tasks scheduling cloud environments or an excessive number of virtual machines
to investigate scheduling of small and limited number of tasks. From this standpoint, the main
contributions of our work comprise:

1. To enhance the efficiency of scientific workflow task scheduling in cloud environments,
emphasizing minimizing both makespan and costs (including processing, bandwidth, and
storage) across workflows of various sizes (small, medium, and large).

2. The Manta Ray Foraging Optimization Algorithm (MRFOA) is introduced as a solution
for optimizing task scheduling. MRFOA is recognized for its robust and fast convergence in
large-scale optimization problems. Thus, MRFOA is particularly well-suited for handling the
complexities of large-scale multi-objective task scheduling in cloud environments

3. An enhanced version of the Manta Ray algorithm, termed Lévy-Heuristic Manta Ray
Optimization Algorithm (LH-MRFOA), is proposed. LH-MRFOA incorporates Lévy flight
randomness and heuristic approach to enhance further the convergence towards global near to
optimal solution, hence, more suited to address optimization challenges inherent in complex
workflows.

4. The proposed algorithm undergoes comprehensive tests on heterogeneous cloud
infrastructure characterized by different processing speeds (slow, moderate, fast) and costs.
This rigorous examination aims to thoroughly evaluate the effectiveness of the proposed
approach in real-world cloud computing scenarios.

The subsequent sections of this paper are organized as follows: Section 2 thoroughly
examines recent literature on multi-objectives task scheduling optimization with an analysis of
various methodologies employed and critical evaluations of their weaknesses. Section 3 details
the definition of the problem and the objective function in scientific workflow task scheduling.
Section 4 presents MRFOA as the proposed algorithm and proposed improvements by
employing Lévy flight-heuristic as a search factor. Our experimental setup is explained in
Section 5. The evaluation of performance is discussed in Section 6, while Section 7
encompasses the conclusion and outlines avenues for future research endeavors.

2. Related Work
Scheduling in cloud computing has been an object of extensive research since it has been
classified as an NP-hard problem. Such complexity lies in the combinatorial nature inherent to

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

the resource allocation and coordination of task execution. Researchers have been considering
different heuristic and metaheuristic approaches for solutions [6], with a special emphasis on
optimization techniques recently. Y. Zhang et al., 2023 [7] proposed a Dynamic Multi-
Objective Evolutionary Algorithm (DMOEA) for workflow scheduling in dynamic cloud
environments. The work has emphasized the necessity of adaptation to the dynamically priced
spot resources and was focused on the maximization of reliability and minimization of cost and
makespan. However, the approach has high computational and space complexity, which is
unsuitable for large-scale datasets. Adnan Talha et al. (2022) [8] proposed Oppositional-Based
Learning (OBL) integrated with the Pathfinder Algorithm (PFA) to improve the performance
of task scheduling in large-scale workflows. Although the hybrid approach improved the
exploration and exploitation abilities, the study did not have theoretical advances in the chosen
algorithms.

N. Manikandan et al. (2022) [9] carried out task scheduling using a hybrid Whale

Optimization Algorithm (WOA) combined with mutation-based Bees optimization. Despite
achieving remarkable improvement in resource utilization and operational cost, the method
showed high computational time for large-scale scenarios, but it was not tested on benchmark
datasets. Haithem Hafsi et al. [10], in 2022, proposed the genetically modified multi-objective
particle swarm optimization algorithm with a novel two-dimensional encoding for task-
resource mapping in high-performance hybrid cloud environments. While the approach has
reached faster solution convergence, it was only tested with a small number of virtual machines
and medium-scale datasets, which can hardly be generalized.
Junlong Zhou et al. (2019) [11] proposed an improved genetic algorithm for hybrid cloud
scheduling to minimize cost and makespan under SLA constraints. The two-stage approach in
this work improved solution quality at the expense of heavy computational overhead and,
hence, was unsuitable for a dynamic environment with large-scale workflows. To deal with
large-scale optimization, Bilal H. Abed-Alguni et al. (2021) [12] introduced a Distributed Grey
Wolf Optimizer (DGWO). The technique organized candidate solutions into islands for parallel
evaluation, improving the exploration capabilities. However, the approach lacked statistical
analysis of migration strategies, which reduced the insight into solution quality for high data
transmission tasks.

J. Kok Konjaang et al. (2021) [13] proposed a three-stage task scheduling method
combining the Cost Optimized Heuristic Algorithm (COHA) and Multi-Objective Workflow
Optimization Strategy (MOWOS). Despite achieving cost and makespan reductions, the study
did not include bandwidth and storage metrics in its evaluation, making it less comprehensive.
In QoS-oriented optimization, Xianyong Wei (2020) [14] proposed an ACA with dynamic
pheromone update strategy and load balancing strategies. While the method achieved a very
high improvement in dynamic resource allocation, it still suffered from small-scale task
evaluation and homogeneous virtual machine configurations. Hatem Aziza et al. [15], 2020,
integrated the Heterogeneous Earliest Finish Time (HEFT) with the Genetic Algorithm for
scientific workflows and proposed new crossover and mutation operators. However, the fitness
function was very basic, and the approach did not significantly improve in most of the test
cases. Ali Mohammad Zadeh et al., 2021 [16] used the Sine Cosine Algorithm with chaotic
randomness to modify the Ant Lion Optimization algorithm to green cloud computing. While
the approach was efficient at a low workload, computational overhead was high at a high
workload.

Abed and Jabir Iragi Journal of Science, 2026, Vol. xx, No. x, pp: xx
Table 1: A Comparison of the Current Workflow Task Scheduling
Ref. Metrics Method Limitations
L Dynamic multi-objective . High computational complexity
Reliability, L
[7] makespan. cost optimization evolutionary . High space complexity (weights vectors)
pan, algorithm (DMOEA). . Only small and medium size datasets were tested.
Makespan, cost, Hy.b.rld Pathfinder and. . No theoretical improvements in the selected
[8] resource oppositional-based Learning alorithms
utilization (OBLPFA). & :
. High computational and time complexity due to
Makespan, cost, | Hybrid Whale and mutation- | double adaptive weight and random spare scheme,
[9] energy based Bee optimization especially for large scale workflow tasks.
consumption algorithms. . Workflow standard benchmark datasets were not
tested.
. The proposed work aimed at high performance
hybrid cloud scenarios, yet only six VMs were
configured (one free and five paid). A large number
Genetically modified of VMs must be tested.
Makespan, cost, Particle swarm algorithm . Synthetic extra-large workflow tasks should be
[10] SLA factors (GMPSO) and novel two- considered such as [8] and [14].
such as budget dimensional encoding for . In terms of evaluation metrics IGD (inverted
task and resource mapping. generational distance) and Hv (Hypervolume), the
performance of the proposed GMPSO is relatively
close, if not worse, when compared to NSGAIL.
Better results are obtained only in higher iterations.
Makespan, Enhanced genetic algorithm . The proposed two-stage solution is slow in a
monetary cost, (improved chromosome . .
[11] . . dynamic cloud environment.
SLA encoding and hybrid
. . Only small workflow workloads were tested.
constraints. Crossover).
. The proposed distribution is to increase the
number of parallel workflow evaluations and not to
. enhance the GWO algorithm.
Computation . Lo
. . The maximum tested data transmission is 5GB, a
and data Distributed grey wolf . .
[12] . . bigger value should be considered.
transmission optimizer (DGWO). o . . L.
costs . No statistical analysis of solutions migration
' among islands.
. The impact of the best and worst solutions from
one island to another was not presented.
. Tasks splitting approach effect was not measured
Hybrid cost optimized during the evaluation. It must be included in the
heuristic and multi-objective Fitness function.
[13] | Makespan, cost workflow optimization . Tasks splitting was based on task length, which is
pan, strategy (MOWOS), with accommodated by splitting the task’s bandwidth,
improved task schedular storage, each of which was not covered.
using MinVM and MaxVM. . MinVM and MaxVM scheduling effects on the
overall obtained results were not measured.
. Proposed Cloudlets properties share the same file
input and outsize.
. Presented VMs’ configurations are not
Makespan, cost, | Hybrid Chemical Reaction heterogeneous and are relatively the same.
[14] energy, SLA Optimization (CRO), and . The maximum number of tested tasks is 300, large
deadline Particle Swarm Optimization tasks number should be tested.
constraints (PSO). . No standard workflow benchmark datasets were
tested.
. The time complexity of the proposed CR-PSO is
high
Dynamic . A large number of tasks should be considered, the
Improved Ant Colony ;
resources . . maximum number of tasks tested was only 200.
oy Algorithm (ACA) with . .
[15] availability, . . The number of VMs in the experimental results
L reward and punishment S R
dynamic prices . was 80, which is rather large considering the small
coefficient to enhance
of cloud number of tasks tested.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

resources, pheromone updating strategy | . No standard workflow benchmark datasets were
makespan, QoS of ant colony. tested.
Hybrid Genetic Algorithm . The proposed approach can be improved, and
Makespan, cost and Heterogeneous earliest better results were obtained in only half of the
[16] deadline b’u dget’ finish time HEFT, performed workflow tests.
tournament crossover, and | . The proposed Fitness function is composed of two
random mutation operator. subfunctions and it can be improved
. The number of VMs’ in the experimental setup is
Eneray !mprox./ed Ant Lion . set to 1000 VM. .
[17] | makespan ’an d thlmlzgtlon (ALQ) using . The largesF workflow tested load only contain
resources’cos ¢ Sine Cosine Algorithm and 1000 tasks, bigger workflow should be considered
Chaotic randomness. given the large number of VMs, such as [5] and

[10].

3. Scientific Workflow Task Scheduling

Scientific workflows are sequences of tasks used by scientific research to test the efficiency
of task scheduling algorithms in the cloud environment. Workflows are systematic sequences
of activities or tasks aimed at generating scientific results or solving complex problems.
Workflows are typically represented in a directed acyclic graph (DAG). The term "acyclic"
implies no cycles or loops in the graph, meaning that tasks can be executed in a specific order
without encountering circular dependencies. Each node in the graph represents a task or a
computation along with other task related attributes, such as task length, and data required for
input and output. Edges, on the other hand, indicate the dependencies between tasks. An edge
from task A to task B indicates that task B depends on the output of task A. This dependency
structure ensures that tasks are executed in the correct order, with prerequisite tasks completed
before their dependent tasks can begin. Fig 1 [17] shows the DAG representation of five
scientific workflows utilized in this study: Montage (a), CyberShake (b), Epigenomics (c),
Inspiral (d), SIPHT (e).

L4

sOk \
(C 000
‘O_

P
\
) e /\)‘ ‘ bt

Figure 1: DAG structure of scientific workflows [17].

DAG is mathematically represented as G = (T,E). Where T = {T;, T4, T,, T,} denote
the set of vertices or nodes (tasks). And E represents the set of directed edges among nodes,
where E = {Ey, Ey, E,,, E,}. For instance, a directed edge of E (T3, T,) indicates a direct
dependency between task T3 and Tj. In other words, the fourth task cannot be executed until
the third task has been completed. Therefore, E can be rewritten as a set of ordered pairs of
vertices, E = { (Ti, T]) | T;,T; € T}. Where T; is the predecessor task and T; is successor task.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Each task T; in DAG workload has additional attributes or metadata. These attributes help in
optimizing task execution and resource allocation within the workflow, such as:

e Inputdata: [= {ly, [, ,,I,,}, where I; represents input data required by task T;.
e Output data: 0 = {0y, 04,04, 0, }, where O; represent output data produced by
task T;.

e Task length: length(T;), is a measure of computational effort required to complete task
T;. It is typically expressed in terms of the number of instructions or the amount of competition
(e.g., in millions of instructions). In workflow simulations, task length is used to estimate the
makespan or the time required to complete the task, assuming certain computational resources
are available.

In the realm of Infrastructure as a Service (IaaS), computing resources are commonly
provisioned in the form of virtual machines (VMs). These VMs are simulated computing
environments operating independently within a physical server. Users of laaS platforms
leverage these VMs to deploy and run their applications, software, and computational
workloads in a flexible and scalable manner.

Cloud Scheduler

Q
Q

Task Task Task Task
to to to to
wm ™ ™ M

Cloud \

Workflow | | QOrchestration

Layer ﬁD
yel -E

[«

' -~

D v | ¥

Cloud Broker

Figure 2: Workflow and Cloud tasks scheduling

3.1 Problem Formulation

The context of this study aims to present and develop a multi-objective task scheduling
optimization algorithm. This algorithm aims to address the complexities inherited in task
scheduling within cloud computing environments. By the above given definitions for the
workflows and tasks, our primary objective is to minimize critical factors associated with task
scheduling on cloud resources. These factors encompass the makespan, processing costs,
storage costs, and bandwidth utilization. Each of these factors can be defined as follows:

1. Makespan: the total time required to complete all tasks within a given workflow, starting
from the initiation of the first task to the completion of the last task. Consider the following
workflow, G = (T, E), where T = {T;, Ty, T,, ..., T, } represent the set of tasks (both dependent

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

and independent), and E is a set of all edges or dependency connections among tasks. Each
connection is denoted as E; = (T}, T;), and belongs to E = {Ey, Ey, Es, ..., Ep}.

A task T;with dependencies, dep (T;) will not start unless all its dependent tasks have been
executed. If a task has no dependencies (e.g., entry tasks), dep (T;) = @. The finish time FT7,

for task T; is defined as the sum of its execution time and the execution times of all dependent
tasks [12]:
FTr; = (XZoET (dep(Ty) + ET(T)) (1)

Where n is the number of dependent tasks and ET = length(T;)/(MPIS,y,; * PE;). Where
MIPSvm; is processing power of VM; measured in MIPS, and PE; is the number of available
virtual cores (Processing Entity); Makespan can be measured as:

Makespan = maxy¢qsis (FT) 2)
Where FT = {FT,,FTy,FT,, ...,FT,}.

2. Processing Cost: The cost associated with executing task T; on resource VM;. In
workflow simulation, processing cost P; for task T; is calculated as [12]:

PL' = ETi*COStj (3)
Where ET; is execution time for task T; and Cost; is the Processing Cost of V M; per time unit.
The total processing cost for the entire workload can be determined as:

PCostiprar = 2?:0 p; 4)

3. Storage Cost: The expenditure associated with storing data related to tasks on cloud
storage services. The storage requirement S; for the task Tj, is the sum of all its output file

sizes hence [12]:
n
Si = z 01]
=

J
Where 0;; is the jj, output file for the task T;. Then storage cost SC; for task T; is:

SC; = (S;/SVM;) = SCVM;
Where SV M; is the total storage available for VM;, and SCV M; is the storage cost of V M;.

the total storage cost for the workflow is:
n

Total storage cost = Z SC;
i=0
4. Bandwidth Cost: Refers to the network bandwidth consumption during data transfer
operations in the cloud. The required bandwidth B; for the task T; is the sum of all input file

sizes [12]:
Bi = ZIU
j=0

Where [;; is the jp, input file for the task T;. Then bandwidth cost BC; for task T is:
BC; = (B; / BVM;) = BCVM;

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Where BV M; is the total bandwidth available for VM;, and BCV M; is the bandwidth cost
of VM;. The total bandwidth cost for the workflow is:

n
Total bandwidith cost = 2 BC;
i=0
3.2 Objective Function
In this research, we aim to decrease task execution time and cost while maximizing resource
utilization across all VMs in a cloud environment. Workflow scheduling in dynamic
environments is more challenging and realistic compared to static environments. Cloud
resources must be allocated precisely to fulfill user service agreements while maximizing
resource utilization. Large scale with multi-objectives optimization is inherently complex, and
optimal solutions require efficient scheduling algorithms and more importantly, accurate
objective function. Considering this, the objective function of this study is focused primarily
on minimizing the following fitness function:

F = (wy * MS + w; * PCrorqr + W3 * SCiotar + Wy * BCrotar)

Where MS is MakeSpan, PCiyq; 1 the total Processing Cost, SCyrotq; 18 the total Storage Cost,
and B Cy¢q; 18 the total Bandwidth Cost. And w; represents the weight, w; € [0, 1], and w; +
wy, +ws +w, = 1.

Weights are used in optimization functions to assign relative importance or priority to different
objectives or criteria. In a cloud environment, such decisions are entirely dependent on user
preferences and on the specification of the workflow at hand. Objectives with higher weights
are given more emphasis, leading to solutions prioritizing those objectives over others.
Additionally, it provides against contradictory objectives such as makespan and processing
costs.

4. Proposed LH-MRFOA Algorithm
This section presents the original MRFO algorithm along with the proposed improvements.

4.1 Manta Ray Foraging Optimization Algorithm (MRFOA)

Manta Ray Foraging Optimization Algorithm (MRFOA) is a metaheuristic optimization
method first proposed by Zhao in 2020. It is inspired by the effective and cooperative foraging
behavior of manta rays. MRFOA has successfully imitated three major foraging behaviors of
manta rays, including chain foraging, cyclone foraging, and somersault foraging. The behavior
1s customized for optimization tasks with a good balance between exploration and exploitation
to find the global optimum in complex search spaces.

4.1.1 Manta Ray Structure and Foraging Behavior

Manta rays are large, flat, aquatic animals with terminal mouths; they forage using their
cephalic lobes to direct the plankton into the mouth. Manta rays portray peculiar foraging
behavior, such as looping and somersaulting motions. Figures 3(A) and 3(B) [20] depict a
manta ray in action and its structure.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Cephalic lobe
A B ;

Mouth ... /!

> Pectoral fin

s
Eye

T il

Figure. 3: (A) A foraging manta ray, and (B) structure of a manta ray [20]

Chain foraging, Figure 4 depicts the 2-D foraging behavior of cyclones. Instead of merely
following the meal in front of it, the individual moves in a circular pattern in that direction. In
two dimensions, the spiral motion of manta rays is described by the mathematical
expression:x{ (t + 1) =

X (©) + 7. (tflge (8) = x3(0)) + . (xfhese () — 28 () i =1

x (@) + 7. (1 (0) = 21 (©) + @ (xfese(O) — x(®)) i=2,..,N
a=2.r.\/|log ()| (2)

where, x& (t) is the position of ith individual at time t in dth dimension, r is a random vector
within the range of [0,1], a is a weight coefficient, x,(t) is the plankton with high
concentration. Fig. 4 depicts this foraging behavior in a 2-D space. The position update of the

ith individual is determined by the position x;_4(t) of the (i-1) th current individual and the
position x4 (t) of the food.

(1

Figure 4: Chain foraging behavior in 2-D space [20]

- Cyclone foraging: Figure 4 depicts the 2-D foraging behavior of cyclones. Instead of
merely following the meal in front of it, the individual moves in a circular pattern in that
direction. In two dimensions, the spiral motion of manta rays is described by the mathematical
expression:

{xi(t +1) = Xpest + 7 (xi_l) — x; (t)) + ebv . cos(an) . Xpest — xi(t))
xi(t+1) = xpest + 7. (xi_l (t) — x; (t)) + ebv . sin(an) . Xpest — xi(t))
(3)

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

where w is a random number in [0, 1], this motion behavior may be extended to a n-D space.
For simplicity, this mathematical model of cyclone foraging can be defined as:

xgest +r. (xgest(t) - xld (t)) + ﬁ : (xgest(t) - xid (t)) i=1
Xfese + 7. (xL1 () = xf (t)) +B . (tfse () = xF () = i=2,.,N

p = 2¢" T sin (2mry) (5)
where r_1 is the rand number in [0, 1], T is the maximum number of repetitions, and f is the
weight coefficient.

The equation for this mechanism may be seen below. As seen in the illustration below, it
focuses mostly on exploration, enabling MRFO to conduct an extensive worldwide search:
x4 4 = Lb* +1r.(Ub% — Lb%) (6)

xl()iest t+r. (xbest X (t)) + .8 (Xrand — xid (t)) i=1

xi(t +1) = @)

xL(t+1) =)) _ (7)
Xpest T T.(Xi—1 — X (t)) +p. (Xrand — Xi (t)) i=2,..,N
Xh"st(\() Xi+1(2)
Y A,
xi(2+1)
B+ (x, (1) —x,(1))
o — ‘\f

Figure.5: Cyclone forging behavior in 2-D space [20]

- Somersault foraging: The food's location is seen as a pivot in this behavior. Every manta
ray tends to swim around the pivot and somersault into a different position. As a result, they
constantly adjust their positions to reflect the best position thus far. The following is one way
to develop the mathematical model:

xA(t+1) = x2(t) +S.(r2 X — T3 .xid(t)), i=1,..,N (8)

where S is the somersault factor that decides the somersault range of manta rays and S = 2,
1, and r3 are two random numbers in [0, 1].

+ =
A"
%

%~ (72 Xpesdt) — r3xi(t)) = -.- ________________ "(

Figure 6: Cyclone foraging behavior in 2-D space [20]

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Algorithm I, shows the pseudo code for the basic specifications of the MRFO algorithm [20]

Algorithm I: MRFO Algorithm

Input Parameters//

N: Population size (number of manta rays).

T max: Maximum number of iterations.

x_1: Lower boundary of the search space (problem domain).

u_x: Upper boundary of the search space (problem domain).

S: Somersault factor.

Fitness Function f(x): Objective function to be minimized or maximized.
Output//

x_best : The best solution found by the algorithm.

f(x_best): The fitness value of the best solution.
Initialize population //
Initialize the size of population N, the maximal number of iterations 7" and each manta ray
x;(t) = x; + rand (x,, — x;) fori=1, Nand t=1.
Compute the fitness of each individual f; = f(x;) and obtain the best solution found so far
Xpest, Where x;, and x; are the upper and lower boundaries of problem space, respectively.
Iterative optimization //
WHILE stop criterion is not satisfied do
FOR i=1 TO N DO
IF rand <0.5 THEN //Cyclone foraging

IF t/Tax < rand THEN
Xrana = X +rand . (x, — x;)

x-(t n 1) _ {Xrand +7. (xrand] (t)) + ﬂ . (xmnd - X (t)) i=1
l xrand + r. (xi_l (t) - xl (t)) + ﬁ . (xrand — xl (t)) l — 2' ...,N
ELSE
xi(t+1) = { Xrana T T (xbeSt - X (t)) +B. (xbest - X (t)) i=1
l Xrana T T (xi_l (&) — x; (t)) +B. (xbest - X (t)) i=2,..,N
END IF.
ELSE // Chain foraging
x(t+1) = { Xrana T T (xbeSt - X (t)) ta. (xbest - X (t)) i=1
| Xrana + 7 (X1 () = % O) + @ (Vpese = 5 () i=2,.,N
END IF.

Compute the fitness of each individual f(x;(¢+1))
IF f(xi(t+1)) < f(xbest)

THEN xpese = x;(t + 1)

END IF

/I Somersault foraging
FOR i=1 TO N DO

Xie+1) = Xy TS - (Tz-xbest — T3 -xi(t))
Compute the fitness of each individual f(x;+1))

IF f(xi(t+1)) < f(xbest)
THEN xpese = x;(t + 1)

END IF

END FOR.

END WHILE.

Return the best solution found so far x4

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

In several technical disciplines i.e., geophysics [21], energy allocation [22], image
processing [23], and electric power [24], the MRFO algorithm performs exceptionally well and
exhibits a wide range of optimization talents. The MRFO has proven to be a conducive
approach to resolving several intricate real-world issues through these successful applications
[25]. Despite being a member of the meta-heuristic algorithm domain, MRFO differs greatly
from other popular meta heuristics in philosophy and design. i.e., in comparison with Particle
Swarm Optimization (PSO), MRFO and PSO they differ primarily in their biological actions.
While MRFO draws inspiration from manta ray social foraging activities, PSO is motivated by
the movement of bird flocks in the natural world. The way the two hunt for solutions differs
significantly from one another [26]. The global best solution is combined with other solutions
to create PSO solutions. A further notable distinction between the two is the method used to
look for solutions. The global best solution found so far, the local best solution, and the
individual movement velocities combine to produce the solutions in PSO; in contrast, the
global best solution found so far, and the solution in front of it combine to produce the solutions
in MRFO by switching different movement strategies [27]. Another comparison in the same
domain with Genetic Algorithm (GA) in contrast to the communal foraging activities of manta
rays in MRFO, GA is based on Darwin's theory of evolution. The representation of problem
variables is the second distinction. Whereas the issue variables in MRFO are utilized directly,
in GAs, they are represented as a sequence of fixed-length bit strings. Better solutions also have
a higher chance of generating new solutions in GAs when the roulette wheel selection approach
is used, and inferior solutions will likely be replaced by better new solutions [28]. While in
MRFOA every member of the population has an equal chance of improving their solutions.

4.2 Improved MFROA

Our proposal for a hybrid Lévy-Heuristic Manta Ray Foraging Optimization Algorithm for
multiple critical objectives in workflow scheduling: makespan minimization, processing cost
reduction, storage cost optimization, and bandwidth utilization minimization. One of the new
improvements embeds the Lévy flight mechanism in the MRFOA, enabling it to take big
probabilistic leaps in search space. This addition elevates the exploration capabilities greatly
and therefore escapes local optimum and finds globally optimal solutions. On the other hand,
we suggest a different enhancement that involves addressing dependency management. This
process begins by iterating over each task and identifying whether it has any dependent tasks
(parent tasks). If a task has no parent tasks (independent tasks), it is processed directly without
needing dependency handling. However, if a task has one or more parent tasks (dependent
tasks), the algorithm will initiate a procedure to optimize resource allocation for these
dependent tasks. The Heuristic Dependency Management (HDM) mechanism is the second
enhancement in LH-MRFOA, addressing task dependencies in workflow scheduling. It focuses
on optimizing the allocation of dependent tasks to ensure efficient resource utilization and
adherence to dependency constraints. Initially, the dependent tasks are temporarily stored and
cleared from previous iterations to ensure accurate processing without conflicts. For each
parent task, the algorithm evaluates the performance of assigning the task to different virtual
machines (VMs). It calculates the expected execution time for each task on every available VM
based on the task's computational requirements and the VM's capabilities.
Algorithm II shows the pseudo code for the first improvement of the MRFO algorithm by
employing Lévy-flight technique to enhance the exploration of the algorithm.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Algorithm II: Lévy-Manta ray Algorithm (L-MRFOA).
MRFO Original initialization

/ICyclone foraging

ELSE // Chain foraging
//" First Improvement: introduce Lévy flight mechanism for enhancing exploration by
generating step sizes based on a Lévy distribution, introducing variability that allows the
algorithm to take occasional large steps, improving its ability to explore the search space and
avoid local minima.
Leves = Leévy ()
If i =1THEN

Xie+1) = Xigry + levies [i] % (Xpesery — Xiy) + @ * (Kpest(r) — Xi(e))

ELSE

Xie+1) = Xigey + levies [i] % (xi_1) = Xiw)) + & * (Kpese(ry — Xico)
END IF
END IF.
// Ensure the new positions are within search space boundaries

x;(t +1) = Bounds X;(41y, X1, Xy)
Compute the fitness of each individual f(x;(¢+1))
IF f(xi(t+1)) < f(xpest)
THEN Xpese = Xi(t+1)
END IF
END FOR
/I Somersault foraging
FOR i=1 TO N DO
Xi(t+1) = Xi@e) TS * (12 * Xpese — T3 * xi(t))
// Ensure the new positions are within search space boundaries
Xit+1) = Bound x;11y, X1, %y)

Compute the fitness of each individual f(x;(;+1))
IF f(xi(t+1)) < f(xbest)
THEN xpp5r = Xi(t+1)
END IF
END FOR.
END WHILE.
Return the best solution found so far xpe4:
After calculating these values, the algorithm identifies the VM that offers the shortest execution
time for the task. The task is then assigned to the VM with the optimal performance. After
assigning the tasks, the overall effectiveness of the current solution is evaluated, considering
both the execution time and cost. If the new allocation improves the solution, it is retained;
otherwise, the algorithm reverts to the previous allocation. Finally, once all tasks have been
processed, whether independent or dependent, the fitness of the current solution is recalculated
to ensure that only the best task-to-VM allocation is preserved. H-MRFOA, as illustrated in the
results below in the Pseudo code

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Algorithm III: Heuristic Manta ray Algorithm (H-MRFOA).
MRFO Original initialization

/ICyclone foraging
/I Chain foraging
/I Somersault foraging

Return the best solution found so far x;
// Second Improvement: heuristic dependency management, tackling the dependency for
tasks that allocated among available virtual machines (VMs)Initialize task list, available
VMs, and other necessary parameters in work environment
Set best solution x_best to the best solution found so far
FOR each taski in taskList DO
/I Check for dependencies (parent tasks)
/I Store dependent tasks temporarily
FOR each parent of taski DO
Add parent to parentList
END FOR
// For each parent task, optimize resource allocation
FOR each parent in parentList DO
// Initialize best allocation for current task
Copy current best solution x_best to t best
fitness = calculate Fitness(x_best)
// Calculate execution time for each VM
FOR each vm in available VMs DO
MET [vm]=Execution time of parent on vin
END FOR
// Find the VM with the shortest execution time
/I Assign the parent task to the best VM
X best[parent] = MIN(MET)
// Check if the new allocation improves the solution
IF calculate fitness(x_best) < fitness THEN
// Keep the new allocation
continue for next parent task
ELSE
// Revert to the previous allocation
retrieve previous best solution x_best to t_best
END IF
END FOR
END FOR
// Return the best solution found so far
Return the best solution x_best

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

The final stage of optimization leverages a hybrid approach, combining two powerful
techniques: Lévy flight and Heuristic Dependency Management (HDM). This strategy aims to
balance global exploration and local exploitation in the search for an optimal solution. Lévy
flight enables the algorithm to perform large jumps in the solution space, helping avoid local
optima by exploring new regions that incremental steps might miss. Meanwhile, HDM
enhances the algorithm's ability to refine these potential solutions, particularly in optimizing
task dependencies. By incorporating Lévy flight, the algorithm gains the ability to cover diverse
areas of the solution space using a probability distribution (Lévy distribution) that favors small
steps but allows for large leaps. This structured randomness ensures that unexplored areas are
efficiently reached, improving the chances of finding a globally optimal solution. On the other
hand, HDM plays a crucial role in the local exploitation phase. Once promising solutions are
identified, HDM fine-tunes them by analyzing task dependencies and VM loads, ensuring that
tasks are assigned to minimize overall completion time. This practical optimization is essential
for improving real-world performance in distributed systems.

The integration of HDM as a second improvement ensures that solutions are not only
theoretically optimal but also practical in execution. It enhances the algorithm’s ability to
handle complex optimization problems where efficient resource management and task
scheduling are key. In essence, this hybrid approach combines the exploratory power of Lévy
flights with the precise, task-optimized benefits of HDM, making the algorithm more robust,
adaptive, and capable of delivering high-performance results in real-world applications that
resulting in a more comprehensive and effective optimization algorithm as illustrated in below
Pseudo code for Lévy-Heuristic Manat ray Algorithm (LH-MRFOA).
Algorithm IV: Lévy-Heuristic Manat ray Algorithm (LH-MRFOA).
MRFO Original initialization

/ICyclone foraging
// First improvement: introduce Lévy flight mechanism for enhancing exploration

/I Chain foraging

/I Somersault foraging
Return the best solution found so far x4

// ' Second improvement: heuristic dependency management
// Return the best solution found so far
Return the best solution x_best

END FUNCTION

5. Experimental Setup
5.1 Workflow Simulation Platform.

A workflow simulation platform (WFS) is essential for testing and enhancing job scheduling
algorithms in research and academic settings, especially in cloud computing. This platform
ensures that the findings are consistent, reproducible, and applicable to real-world settings by

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx
offering a controlled environment for the testing and comparing alternative scheduling
techniques under diverse conditions [29]. WFS is designed to model and simulate the execution
of workflows in distributed computing environments. These platforms allow researchers to
emulate the behavior of complex workflows, which are often represented as Directed Acyclic
Graphs (DAGs) [30]. Each node in the DAG represents a specific task, while the edges signify
dependencies between these tasks. The primary goal of using a WFS is to analyze the
performance of different scheduling algorithms, particularly in terms of key metrics such as
makespan, processing cost, resource utilization, and energy consumption. In cloud computing,
task scheduling is a complex problem due to the dynamic nature of cloud resources and the
diverse requirements of scientific workflows. Workflow simulation platforms are particularly
valuable in this domain because they allow for testing scheduling algorithms under different
configurations of virtual machines, resource availability, and workload sizes. This is critical
for understanding how algorithms perform under varying conditions, which is essential for
optimizing cloud resource management. The WFS allows researchers to assess the algorithm's
effectiveness in minimizing makespan and cost. By simulating different workload scenarios,
including those with varying task complexities and interdependencies, the WES can provide
insights into the scalability and robustness of the proposed algorithms.

5.2 Virtual Machines (VMs) Setup

The task scheduling experiment was conducted using a workflow simulator configured to
run on 15 virtual machines distributed among three different groups: slow, moderate, and fast.
This grouping ensures a fair distribution of tasks across various types of VMs, reflecting a
range of computational capabilities as illustrated in the table below (2). Available VMs are
grouped into three categories based on their computational power. This allows the task
scheduler to allocate tasks to VMs with appropriate resources, depending on the task's
computational requirements. within each group, the MIPS (Million Instructions Per Second)
value is randomly assigned within a specified range. This randomization simulates a more
realistic cloud environment where VM capabilities can vary even within the same category.
RAM and bandwidth are also set according to the VM group. The 'slow' group has lower RAM
and MIPS values, while the 'fast' group has higher values, making it suitable for more
computationally intensive tasks. The setup mimics a typical cloud environment where
resources are heterogeneous by ensuring that tasks are distributed among VMs with different
capabilities. This helps to test the robustness of the scheduling algorithm across various
conditions. Using WFS provides a controlled environment for simulating the task scheduling
process, making it possible to evaluate the effectiveness of the proposed algorithm under
different VM configurations. This setup is essential for evaluating the performance of the task
scheduling algorithm in a realistic cloud computing environment, ensuring that it can
effectively manage and distribute workloads across VMs with varying capabilities.

Table 2: Specifications of Virtual Machines Used in Workflow Simulations

Group# # of VMs RAM Range MIPS
G1: Slow 5 512 (0-4) 1000-3000
G2: Moderate 5 512 (5-9) 3000-6000
G3: Fast 5 1024 (10-14) 6000-10000

5.3 Experimental Process

We developed a run processing system within our workflow simulator that executes each
algorithm ten times to evaluate makespan and processing cost using a weighted summation
formula. The comparison conducted among (MRFOA) and its updated versions Lévy-Manta
ray Foraging Algorithm (L-MRFOA), Heuristic-Manta ray Foraging Algorithm (H-

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

MRFOA), Lévy Heuristic-Manta ray Foraging Algorithm (LH-MRFOA) and the top of bio-
inspired algorithms (GA) and (PSO), by using five standard data sets fig (1) with different
scales and considering the average of ten times of the whole run-in process of workflow
simulator table (2), table (3) and table (4).

6. Results and Discussion
6.1 Empirical Results

The empirical results offer a thorough evaluation of the performance characteristics of the
algorithms under study, focusing on key metrics such as makespan, cost, and fitness. These
metrics provide essential insights into how each algorithm manages task scheduling within
complex cloud computing environments. Through rigorous testing across diverse workloads.
This section delves into the performance test's quantitative outcomes, highlighting each
algorithm's strengths and weaknesses.

The results reveal significant distinctions in how these algorithms handle various scheduling
challenges, with LH-MRFOA frequently outperforming other algorithms, GA and PSO. The
findings underscore the robust capability of LH-MRFOA to optimize resource allocation,
minimize execution time, and reduce operational costs, making it an optimal solution for
dynamic and large-scale cloud environments. In terms of makespan, the LH-MRFOA
consistently outperformed its counterparts, demonstrating a remarkable ability to minimize the
total time required for task completion. Across various datasets, LH-MRFOA achieved
significantly lower makespan values, particularly in scenarios involving large and complex
workloads during testing makespan as shown in Table (3). This reduction in makespan is
crucial in cloud computing environments, where time efficiency directly impacts overall
system performance and user satisfaction. The algorithm's advanced heuristic strategies and
robust search capabilities enable it to navigate and optimize scheduling tasks more effectively
than traditional algorithms such as GA and PSO.

Table 3: Best Makespan

Data set GA PSO MRFOA L-MRFOA H-MRFOA MI%E(') A
1. Inspiral 30 3389.13 3107.70 2860.94 2976.31 2875.47 2799.32
2. Inspiral 1000 255438.98 | 210553.27 | 236622.81 | 198138.36 | 115326.90 | 101372.02
3.| CyberShake 30 287.83 270.75 24431 236.80 232.47 218.99
4.| CyberShake 1000 | 14872.72 14781.01 13621.18 13439.58 11222.14 | 10860.59
5. Montage 25 245.08 216.51 231.44 223.30 217.71 187.45
6. Montage 100 6301.10 5364.55 4830.51 4913.52 3761.60 3752.01
7. Sipht_30 2767.21 2620.10 2684.59 2616.49 2612.90 2612.01
8. Sipht_1000 3403423 | 32856.94 | 27482.56 | 32199.65 | 20732.19 | 19652.69
9.| Epigenomics 24 2375.01 2580.19 2363.02 2360.27 2238.06 2146.30
10| Epigenomics 997 | 973484.72 | 882633.77 | 856202.79 | 824748.70 | 410740.87 | 398818.30

Turning to the cost, the LH-MRFOA also proved highly effective in minimizing the operational
expenses associated with task scheduling. Cost efficiency is a critical factor in cloud
computing, where resource utilization directly translates to financial expenditure.

LH-MRFOA demonstrated a consistent ability to reduce costs across diverse workload
scenarios, outperforming other algorithms by optimizing resource allocation and reducing the
computational overhead, as illustrated in Table (4). This cost-effectiveness makes LH-MRFOA
an attractive option for cloud service providers aiming to maximize profitability while
maintaining high levels of performance. By achieving lower costs without compromising on

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

efficiency or scalability, LH-MRFOA positions itself as a superior solution for managing the
economic demands of cloud-based operations.

Table 4: Best Cost

LH-
Data set GA PSO MRFOA L-MRFOA H-MRFOA MRFOA
11 Inspiral 30 647.65 632.94 583.29 575.21 572.24 556.10
12 Inspiral 1000 24430.67 24080.96 24036.85 22860.16 23443.54 22301.88

13| CyberShake 30 19839.65 19695.84 19687.56 19690.19 19646.01 19645.61

14| CyberShake 1000 | 106270.17 | 104056.90 | 102352.58 | 102785.97 | 94176.64 93953.63
15 Montage 25 135.08 136.16 125.93 129.67 124.77 121.51
16 Montage 100 576.67 588.74 535.21 540.06 542.31 516.74
17 Sipht 30 529.02 538.16 512.41 513.08 511.22 506.60
18 Sipht 1000 20810.20 20519.92 20954.26 21020.73 19976.43 19729.46

19| Epigenomics 24 3393.01 3229.67 3164.84 3228.88 3166.17 3165.74
20| Epigenomics 997 680448.43 | 635623.36 | 631217.41 | 58484597 | 579503.43 | 558601.39

Finally, when considering fitness, which provides a comprehensive measure of an
algorithm’s overall performance, LH-MRFOA once again demonstrated its superiority. Fitness
encapsulates various aspects of task scheduling, including the balance between exploration and
exploitation, efficiency in resource use, and the ability to adapt to varying workloads. LH-
MRFOA consistently achieved higher fitness scores across different datasets, reflecting its
robust capability to optimize multiple performance criteria simultaneously, as illustrated below
in Table (5). This high fitness indicates that LH-MRFOA is not only effective in specific
metrics like makespan and cost but is also versatile enough to maintain strong performance
across a range of conditions. This makes LH-MRFOA a highly reliable choice for real-world
applications, where diverse and dynamic cloud environments demand an algorithm that can
consistently deliver optimal results.

Table 5: Best Fitness

LH-
Data set GA PSO MRFOA L-MRFOA H-MRFOA MRFOA
21 Inspiral 30 2176.51 1865.10 1883.92 1933.19 1832.15 1800.98

22 Inspiral 1000 143684.31 | 12337091 | 119832.70 | 115946.63 68411.38 66834.45
23| CyberShake 30 10040.82 9994.98 9930.06 9932.40 9932.80 9928.21
24| CyberShake 1000 60581.67 57353.46 56657.83 56988.78 52021.07 51923.83

25 Montage 25 213.82 197.64 190.03 200.59 180.44 176.41

26 Montage 100 3575.65 3168.25 3052.49 2893.94 2264.96 2214.69
27 Sipht 30 1750.57 1667.66 1664.87 1665.31 1550.08 1541.81
28 Sipht 1000 27606.74 25750.23 26657.38 25113.37 20247.89 19201.83

29| Epigenomics 24 2980.56 2856.72 2791.28 2755.68 2761.34 2661.55

30| Epigenomics 997 908657.14 | 801416.80 | 781958.68 | 738252.03 | 523809.04 | 492700.21

6.2 Performance Variability Analysis

Task scheduling in the cloud should be very unpredictable in nature. While observing the
facts, the prior result proved that GA was found to be performing variably over the datasets.
For instance, with the best cost scenario in GA, it was found to be constant in performing well
at low iterations but losing hold in the latter iterations against LH-MRFOA. This trend can be

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

seen in the best cost in Fig (7), where LH-MRFOA clearly had better performance as the
algorithm continued, with better lower costs from further iterations.

On the other hand, as shown in Fig (8) best makespan, GA had consistent performance across
the iteration but was greatly surpassed by the LH-MRFOA, mainly in the minimizing makespan
measure. The LH-MRFOA not only showed superiority in the reduction of makespan but also
in the improved consistency across further iterations. Similarly, from the best fitness analysis
Fig (8), GA remained strong in performance at the start, and it was only later surpassed by both
the L-HMRFOA and LH-MRFOA algorithms, especially as alternating count increased. There
are apparent fluctuations in the outcome due to the variability necessary to select the algorithm,
which then counts with the explicit nature of the workload. Different scenarios expose the
strengths and weaknesses of each algorithm. The LH-MRFOA showed the best performance
regarding all the applied criteria; this was carried out due to its hybrid nature. Therefore, it is a
generalized approach that can underpin any cloud computing activity.

6.3 Scalability Analysis

Adaptive scalability regarding the available resources to be provisioned forms the most
critical issue in the task scheduling algorithm. This becomes acute in nature for the cloud
computing system in which resource adaptability and dynamic provisioning are applied in
relation to the change of workload. The results obtained from the three different applied
criteria, designated as best cost, best fitness, and best makespan were used in scaling the
algorithm's behavior regarding L-MRFOA and its heuristic extension. These algorithms were
not only holding their performance but further improving as the iteration counts went up, thus
showing an adaptability to increasing workload sizes. GA was competitive in the lower initial
stages or with lower iterations but generally struggled in the best makespan and best fitness
figures, where GA predictably leveled off in performance or even declined in the face of
increasing workload size, while the LH-MRFOA continued to optimize effectively. These
results show that the scalability of LH-MRFOA is a better fit for a larger and more dynamic
cloud environment.

6.4 Consistency Evaluation

An algorithm representative of its reliability and stability is consistent throughout varied
workloads. LH-MRFOA, according to the results obtained on the best cost, best fitness, and
best makespan figures, is proven to be reasonably consistent throughout varied situations. It
outperformed other algorithms, like GA and PSO, for different iteration numbers, as seen
below. The algorithm's consistency indicates that it is powerful and effective enough to handle
diversified task scheduling scenarios and therefore clearly establishes its candidature for real-
world deployment in a cloud environment. However, it is also evident from these figures that
in the case of extreme workloads, represented by the best makespan dataset, the performance
gaps between algorithms became more pronounced. The effectiveness of the LH-MRFOA is
seen in its ability to hold performance by retaining robustness in resource allocation
frameworks for a high-demand cloud environment.

6.5 Complexity vs. Performance Trade-off

The performance of complex algorithms, e.g., L-MRFOA and its heuristic variant, versus
simpler algorithms, e.g., GA and PSO, tends to be proportional to workload or iteration count;
see the figures. It is not universal; at a good cost Fig.8, GA and PSO remain competitive in the
earlier iterations, meaning that an increase in algorithmic complexity does not always bring
better performance. This indicates the necessity of a delicate evaluation that will consider both
complexity and performance outcomes while selecting the right approach to be used
specifically in scheduling tasks for the cloud environment. Whereas this LH-MRFOA offers
huge competitive advantages in most scenarios, at the cost of performance, some simpler

Abed and Jabir Iragi Journal of Science, 2026, Vol. xx, No. x, pp: xx

algorithms will remain good enough in the simpler contexts or when computational efficiency

1S a must.

Best Cost Inspiral 30 Best Cost Inspiral 1000
$700 \ 524,500
5680
524,000
5660 \
8.3000 2 523,500
3 3
Y 5620 &
600 523,000
5580
$22,500
5560
) 20 a0 50 80 100 20 40 60 80 100
Iteration Iteration
Orginal ManzaRay == Heunstic MantsRay — GA Original MantaRay ~—— Heuristic MantaRay
Levy Mant, —— Levy Heurlstic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay

are(a)

(b)

Best Cost Cybershake 30 Best Cost Cybershake 1000
—\ $108,000 l\—
$19.850 $106,000
$104,000
519,800
@ 3 $102,000
§ s19.750 S 100,000
$98,000
519,700
596,000
$19,650 594,000
0 20 a0 60 80 100 20 a0 60 80 100
Iteration Iteration
—_— GA Original MantaRay =~ = Heuristic MantaRay — GA Original MantaRay aistic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay P50 ¥ Heuristic MantsRay
Best Cost Montage 25 Best Cost Montage 100
5136 \ $590
5134 $580 \—
132 5570
~ 5130 o, 3798
e &
i q
8§ s128 § 9530
5126 5540
s124 $530
5122 $520
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
—GA Original MantaRay ~—— Heuristic MantaRay — GA Original MantaRay ~ —— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay
Best Cost Sipht 30 Best Cost Sipht 1000
4560 521,000
520,800
$550
$20,600
G $540 &
7 \ G 520,400
o o
$530
520,200
1
$520 $20,000
$510 519,800
0 20 20 60 80 100 20 40 50 80 100
Iteration Iteration
—_— GA Original MantaRay ~ = Heuristic MantaRay — GA Original MantaRay =~ = Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay

)

(h)

Abed and Jabir

Iragi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Best Cost Epigenomics 24 Best Cost Epigenomics 997
$3,900f
5680,000
$3,800
$660,000
$3,700 |
$640,000
$3,600
& &
q @ $620,000
8 3500 S
$3,400 5600,000
$3,300 $580,000
$3,200
$560,000
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
— GA Original MantaRay ~—— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PSC Levy MantaRay ~—— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay
.
.
Figure 7: best cost
Best Makespan Inspiral 30 Best Makespan Inspiral 1000
350,000 ms
4,400 ms
4,200 ms
4 300,000 ms
4,000 ms
3,800 ms 250,000 ms
w w
£ E
< 3,600 ms -
£ £
E F 200,000 ms
3,400 ms
3,200 ms .-
150,000 ms
3,000 ms
2,800 ms 100,000 ms
[] 20 40 60 80 100 0 20 20 60 80 100
Iteration Iteration
— GA Original MantaRay ~—— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay SO Levy MantaRay —— Levy Heuristic MantaRay

(2)

(b)

Best Makespan Cybershake 30

Best Makespan Cybershake 1000

380 ms
360z 16,000 ms
340 msf 7
15,000 ms
320 ms
7 7
£ 300ms £ 14,000 ms
P 1
£ £
= £
280ms 13,000 ms
260 ms
12,000 ms
240 ms
Sme 11,000 ms
0 20 0 60 80 100 0 20 30 50 30 100
Iteration Iteration
—GA Original MantaRay ~—— Heuristic MantaRay —GA Original MantaRay ~—— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay [} Levy MantaRay —— Levy Heuristic MantaRay
Best Makespan Montage 25 Best Makespan Montage 100
9,000 ms
375 ms
350 ms bibms
325 ms
7,000 ms
= 300 ms -
E E
o m
2 275ms g
5 £ 6.000ms
250 ms
5,000 ms
225 ms
200ms 4,000 ms
0 20 20 50 80 00 [20 a0 60 50 100
Iteration Iteration
—_— G Original MantaRay ~ —— Heuristic MantaRay —_— GA Original MantaRay =~ = Heuristic MantaRay
P50 Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay

(e)

®

Abed and Jabir Iragi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Best Makespan Sipht 30 Best Makespan Sipht 1000
3,800 ms 50,000 ms.
3,600 ms 45,000 ms
3,400 ms 40,000 ms
T G
E E
23,200ms £ 35,000 ms
= S
3,000 ms 30,000 ms
2,800 ms 25,000 ms.
2,600 ms 20,000 ms.
[} 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
— GA Original MantaRay ~—— Heuristic MantaRay —GA Original MantaRay ~—— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay ~— Levy Heuristic MantaRay
Best Makespan Epigenomics 24 Best Makespan Epigenomics 997
3,000 ms
1,000,000 ms
2,800 ms 900,000 ms
800,000 ms
£ 2,600 ms 2
o o
H 2 700,000 ms,
E S
2,400 ms 600,000 ms|
500,000 ms|
2,200 ms
400,000 ms|
[] 20 40 60 80 100 0 20 20 50 80 100
Iteration Iteration
— GA Original MantaRay =~ = Heuristic MantaRay — GA Original MantaRay =~ = Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay
Best Fit Inspiral 30 Best Fit Inspiral 1000
180000
2800
e
160000 \——-—-\
2600
\ =
140000
F]
£ 2400 £
& & —
&£ & 120000
i i
& 2200 8
100000
2000
80000 1
1800 —
0 20 a0 60 50 100 0 20] 50 30 00
Iteration Iteration
— GA Original MantaRay ~—— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PsO Levy MantaRay ~— Levy Heuristic MantaRay PsO Levy MantaRay ~—— Levy Heuristic MantaRay
Best Fit Cybershake 30 Best Fit Cybershake 1000
10125}
62000
10100
10075 60000
g 10050 E
3 & 58000
= 10025 =
g g
@ 10000 @ 56000
9975
54000
9950
5025 52000
0 20 40 60 80 100 0 20 20 60 80 100
Iteration Iteration
— GA Original MantaRay ~ —— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PSO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Best Fit Montage 25 Best Fit Montage 100
550 4250 =
4000
260 3750
7 \— Z 3500
£ 240 = 2
s — =
£ n—__\ = 3250
[o
@ 220 =aY g
g T TE—— 3 3000
2750
200
2500
180 2250
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
— GaA Original MantaRay ~—— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
Pso Levy MantaRay = Levy Heuristic MantaRay PSO Levy MantaRay —— Levy H stic MantaRay
Best Fit Sipht 30 Best Fit Sipht 1000
2600 32000
30000
1900 1
2 5 28000
2 1800 s
& = 26000
& &
1700 24000
22000
1600
\ 20000
0 20 20 60 80 100 0 20 20 60 80 100
Iteration Iteration
—_— GA Original MantaRay == Heuristic MantaRay — GA Original MantaRay =~ = Heuristic MantaRay
SO Levy MantaRay —— Levy Heuristic MantaRay PSO Levy MantaRay —— Levy Heuristic MantaRay
Best Fit Epigenomics 24 Best Fit Epigenomics 997

900000
3600

3800 —\'——\—
3400 3 800000
& 2
[~ [
4 3200 \ﬁ +: 700000
3 3
@ @
3000 o
600000
2800
500000 l
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
— cA Original MantaRay ~—— Heuristic MantaRay — GA Original MantaRay ~—— Heuristic MantaRay
PSO Levy MantaRay — Levy Heuristic MantaRay PSO Levy MantaRay — Levy Heuristic MantaRay

Figure 9: best fitness

6.6 Discussion

The LH-MRFOA is a potent step forward in optimization task scheduling for cloud
computing. With the utilization of the Lévy flight search strategies in optimizing landscapes,
LH-MRFOA has shown a better balance between exploitation and exploration. The results
shown in the best cost, Best makespan, and best fitness figures show that the LH-MRFOA
outperform standard bio-inspired algorithms like GA and PSO in most cases, especially when
higher scalability and consistency are required. Among all, the LH-MRFOA especially can
scale up to an increased iteration count or workload size where it either maintained or improved
performance compared to the other algorithms that failed. The experimental platform,
constructed with rich configurations in virtual machines, represents more precisely the actual
cloud environment's complexity and makes the research outcome more applicable. The
scalability spoken about by LH-MRFOA speaks to its overall suitability for workload
conditions with increased magnitude without degradation of performance and, as such, is an
ideal candidate for dynamic, changing cloud computing situations.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

7. Conclusion

This work has fully investigated the efficiency and effectiveness of different task scheduling
algorithms within the cloud computing environment, emphasizing the LH-MRFOA. The
analysis has dealt with some critical issues such as performance variability, scalability,
consistency, and the complexity-performance trade-off, and arrived at some significant results.
The final results underline the subtleties of task scheduling optimization since the performance
of an algorithm varies quite significantly according to the workload. Another nature-based
algorithm, like GA and PSO, has shown initial efficiencies, especially under scenarios with
less workload. Advanced methods like LH-MRFOA were consistently outperforming as the
workload increased with the increase in both the aspects of size and complexity. Furthermore,
the superiority of these techniques is highly visible for later iterations as well, where the LH-
MRFOA outperforms, especially its Lévy Heuristic variant, in minimizing the cost, optimizing
the fitness, and reducing makespan. Results of the scalability analysis position LH-MRFOA at
good adaptability to various workload demands since it can utilize properly available resources
and optimize an assignment of tasks in a dynamic cloud environment. In contrast, GA and PSO
failed in scalability for more complex scenarios, where LH-MRFOA kept its performance
constant or even improved when the number of iterations and the size of workloads increased.
Real-world cloud computing applications greatly require this adaptability since the demand for
resources is constantly changing. Consistency evaluation further proved the reliability and
robustness of LH-MRFOA. Regardless of scheduling scenarios of diverse tasks, LH-MRFOA
performs well when it uses Lévy flight strategies compared with other algorithms. This
consistency across different metrics/iterations further confirms that LH-MRFOA has the
potential to be applied effectively to real-world problems by capturing the deployment
challenges of cloud resource management.
Moreover, this work has also outlined one significant trade-off between the complexity of an
algorithm and its performance. While more complex algorithms, such as LH-MRFOA, often
outperformed simpler variants, especially for large and iteratively solved scenarios, there were
cases when GA and PSO remained competitive. This henceforth explains why a delicate
approach in the evaluation criteria, such as adaptability and optimization of efficiency in
resource utilization through scalability, has to be applied to task scheduling algorithms for the
cloud environment. In summary, the LH-MRFOA is one approach essential for task scheduling
optimization, which outperforms existing ones in improved performance, scalability, and
reliability. These features become necessary in dealing with complex and dynamic workloads
consistently for different metrics and render it a viable solution for managing cloud resources.
Further research can be conducted to enhance LH-MRFOA further and apply it in other
optimization areas related to cloud computing to continuously improve cloud resource
management and optimization techniques. Therefore, this research contributes to the ever-
growing scientific knowledge base on improving efficiency and effectiveness in task
scheduling within cloud computing to enhance overall performance and reliability in cloud-
based systems.

References

[1] M. F. Younis, "Enhancing cloud resource management based on intelligent system," Baghdad
Science Journal, vol. 21, no. 6, pp. 2156-2156, 2024.

[2] D. R. Abdulrazzaq, N. M. Shati, and H. K. Hoomod, "Task scheduling in a cloud environment
based on meta-heuristic approaches: A survey," Iraqgi Journal of Science, vol. 65, no. 2, pp. 1001—
1023, 2024.

[3] J. Yu, R. Buyya, and C. K. Tham, "Cost-based scheduling of scientific workflow applications on
utility grids," in Proc. First Int. Conf. e-Science Grid Comput. (e-Science'05), Melbourne, VIC,
Australia, Dec. 2005, pp. 8-147, doi: 10.1109/E-SCIENCE.2005.26.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

[4] W. Viriyasitavat, L. D. Xu, G. Dhiman, A. Sapsomboon, V. Pungpapong, and Z. Bi, "Service
workflow: State-of-the-art and future trends," /EEE Transactions on Services Computing, vol. 16,
no. 1, pp. 757-772, 2021.

[S] H. Kchaou, Z. Kechaou, and A. M. Alimi, "A PSO task scheduling and IT2FCM fuzzy data
placement strategy for scientific cloud workflows," Journal of Computational Science, vol. 64, p.
101840, 2022.

[6] I A. Abduljabbar and S. M. Abdullah, "An Evolutionary Algorithm for Solving Academic Courses
Timetable Scheduling Problem," Baghdad Science Journal, vol. 19, no. 2, pp. 399-408, Apr. 2022.
DOI: 10.21123/bsj.2022.19.2.0399.

[71 Y.Zhang, L. Wu, M. Li, T. Zhao, and X. Cai, "Dynamic multi-objective workflow scheduling for
combined resources in cloud," Simulation Modelling Practice and Theory, vol. 129, p. 102835,
2023.

[8] A. Talha, A. Bouayad, and M. O. C. Malki, "An improved pathfinder algorithm using opposition-
based learning for tasks scheduling in cloud environment," Journal of Computational Science, vol.
64, p. 101873, 2022.

[9] N. Manikandan, N. Gobalakrishnan, and K. Pradeep, "Bee optimization-based random double
adaptive whale optimization model for task scheduling in cloud computing environment,"
Computer Communications, vol. 187, pp. 35-44, 2022.

[10] H. Hafsi, H. Gharsellaoui, and S. Bouamama, "Genetically-modified multi-objective particle
swarm optimization approach for high-performance computing workflow scheduling," Applied
Soft Computing, vol. 122, p. 108791, 2022.

[11] J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei, and M. Chen, "Cost and makespan-aware workflow
scheduling in hybrid clouds," Journal of Systems Architecture, vol. 100, p. 101631, 2019.

[12] B. H. Abed-Alguni and N. A. Alawad, "Distributed Grey Heuristic for scheduling of workflow
applications in cloud environments," Applied Soft Computing, vol. 102, p. 107113, 2021.

[13] J. K. Konjaang and L. Xu, "Multi-objective workflow optimization strategy (MOWOS) for cloud
computing," Journal of Cloud Computing, vol. 10, no. 1, p. 11, 2021.

[14] X. Wei, "Task scheduling optimization strategy using improved ant colony optimization algorithm
in cloud computing," Journal of Ambient Intelligence and Humanized Computing, pp. 1-12, 2020.

[15] H. Aziza and S. Krichen, "A hybrid genetic algorithm for scientific workflow scheduling in cloud
environment," Neural Computing and Applications, vol. 32, no. 18, pp. 15263—-15278, 2020.

[16] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, and A. Jafarian, "A hybrid multi-
objective metaheuristic optimization algorithm for scientific workflow scheduling," Cluster
Computing, vol. 24, pp. 1479-1503, 2021.

[17] N. Anwar and H. Deng, "A hybrid metaheuristic for multi-objective scientific workflow scheduling
in a cloud environment," Applied Sciences, vol. 8, no. 4, p. 538, 2018.

[18] S. Kumar and R. Buyya, "Green cloud computing and environmental sustainability," in Harnessing
Green IT: Principles and Practices, pp. 315-339, 2012.

[19] M. A. Rodriguez and R. Buyya, "Deadline-based resource provisioning and scheduling algorithm
for scientific workflows on clouds," IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp.
222-235,2014.

[20] W. Zhao, Z. Zhang, and L. Wang, "Manta ray foraging optimization: An effective bio-inspired
optimizer for engineering applications," Engineering Applications of Artificial Intelligence, vol.
87, p. 103300, 2020.

[21] H. Dewar, P. Mous, M. Domeier, A. Muljadi, J. Pet, and J. Whitty, "Movements and site fidelity
of the giant manta ray, Manta birostris, in the Komodo Marine Park, Indonesia," Marine Biology,
vol. 155, pp. 121-133, 2008.

[22] U. C. Ben, A. E. Akpan, C. C. Mbonu, and E. D. Ebong, "Novel methodology for interpretation of
magnetic anomalies due to two-dimensional dipping dikes using the manta ray foraging
optimization," Journal of Applied Geophysics, vol. 192, p. 104405, 2021.

[23] A. M. Shaheen, A. R. Ginidi, R. A. El-Sehiemy, and S. S. Ghoneim, "Economic power and heat
dispatch in cogeneration energy systems using manta ray foraging optimizer," IEEE Access, vol.
8, pp. 208281-208295, 2020.

[24] E. H. Houssein, . E. Ibrahim, N. Neggaz, M. Hassaballah, and Y. M. Wazery, "An efficient ECG
arrhythmia classification method based on manta ray foraging optimization," Expert Systems with
Applications, vol. 181, p. 115131, 2021.

Abed and Jabir Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

[25] S. Duman, A. Dalcali, and H. Ozbay, "Manta ray foraging optimization algorithm-based
feedforward neural network for electric energy consumption forecasting," International
Transactions on Electrical Energy Systems, vol. 31, no. 9, p. €12999, 2021.

[26] S. A. Alsaidy and N. A. Abdullah, "Power-efficient virtual machine placement in cloud datacenters
using heuristic-assisted enhanced discrete particle swarm optimization," Iraqi Journal of Science,
vol. 63, no. 10, pp. 44994517, 2022.

[27] Y. Liao, W. Zhao, and L. Wang, "Improved manta ray foraging optimization for parameters
identification of magnetorheological dampers," Mathematics, vol. 9, no. 18, p. 2230, 2021.

[28] M. P. Calasan, A. Jovanovi¢, V. Rubezié, D. Muyji¢i¢, and A. Deriszadeh, "Notes on parameter
estimation for single-phase transformer," IEEE Transactions on Industry Applications, vol. 56, no.
4, pp- 3710-3718, 2020.

[29] H. S. Ramadan and A. M. Helmi, "Optimal reconfiguration for vulnerable radial smart grids under
uncertain operating conditions," Computers & Electrical Engineering, vol. 93, p. 107310, 2021.

[30] W. Chen and E. Deelman, "WorkflowSim: A toolkit for simulating scientific workflows in
distributed environments," in Proc. 2012 IEEE 8th Int. Conf. e-Science, Chicago, IL, USA, Oct.
2012, pp. 1-8, doi: 10.1109/eScience.2012.6404430.

