
Rashid Iraqi Journal of Science, Vol.51, No.٣, 2010, PP.504-509

 504

TRIE TREE ALGORITHM WITH MODIFIED KEY SAMPLING

FUNCTION

Taghrid Abdul majeed Rashid
Department of Computer, College of Education Ibn Al Haitham, University of Baghdad.

Baghdad- Iraq.

Abstract
 The ongoing changes in computer performance are affecting the efficiency of
string searching algorithms. The size of main memory in typical computers
continues to grow, but memory accesses require increasing numbers of instruction
cycles.
One of the most important data structure which is used to improve the string
searching is the Trie tree.
The name Trie comes from the word “retrieval”. This data structure dose not store
the data as specific elements, but rather as a path through the tree.
This research aims to improve the performance of the Trie tree by using a proposed
sample function in trie algorithm which improve space utilization and decrease the
number of the search levels in the trie tree. i.e. decrease the time of searching
because it searches less number of levels than the standard sample function.

 فيدالة افتراضية لتحسين أداء خوارزمية البحث عن السلاسل الرمزية

 Trie treeالـ

 تغريد عبد المجيد رشيد
 .العراق -بغداد. بغداد، جـــامـــعة ابن الهيثمـــلية الـــتربية ، كعلوم الحاسبات قسم

 الخلاصة

الذاكرة الرئيسية الى تغييـر فـي كفـاءة أدت التطورات المستمرة في إمكانيات الحاسوب ونمو حجم

ومن أهم الطـرق المسـتخدمة) strings(خوارزميات البحث وبشكل خاص البحث عن السلاسل الرمزية

) retrieval(والتي إشتق إسمها من كلمة) Trie tree(لتحسين طرق البحث عن هذا النوع من البيانات هو

).paths(ر حيث تخزن السلاسل الرمزية كطريق في الأشجا

والتي وفرت المساحات) Trie tree(في بحثنا تم إستخدام دالة إفتراضية لتحسين وتطوير كفاءة الـ

 .الخزنية وقللت عدد مستويات البحث عن المعلومة في الشجرة مقارنة بالدالة القياسية المستخدمة سابقا

Introduction
With the ever-increasing influence of the Word
Wide Web (WWW) and the Internet, the
importance of data structure and algorithm,
engineering principles has significantly
increased. Internet algorithmic focuses on topics
of algorithm and data structure design and

engineering for combinatorial problems whose
primary motivation comes from Internet
applications. [1]
One of a very important data structure is a tree.
A general tree (T) is a finite set of one or more
nodes such that there is one designated node R,
called the root of T. The remaining nodes in

Rashid Iraqi Journal of Science, Vol.51, No.٣, 2010, PP.504-509

 505

(T –{R}) are partitioned into n>=0 disjoint
subsets T1, T2, …, Tn each of which are
children of R.
Trie trees, which come from the word
“retrieval”, data structure is used to store an
associative information. Unlike other data
structures, the data are not stored as specific
elements, but rather as a path through the tree.
This allows optimal searching even for very
large databases, although it can be memory-
inefficient at times.
A trie tree is commonly used in Dictionaries,
Phone directories, Bioinformatics applications,
Searching algorithms, Cache-efficient string sort
and used to represent the layout of a website
consisting of a root index page followed by a
hierarchy of subpages. [2]
This paper proposes a modified trie tree
algorithm mainly consists of two phases. The
first phase concerns with building the trie tree
using a proposed key sampling function. The
second phase of the algorithm on the other hand,
concerns with how to retrieve information from
the constructed trie tree.
Performance of the trie tree with the proposed
key sampling function is evaluated using
different sets of words and compared with the
standard trie tree algorithm.

Trie tree
 A trie tree is a tree of degree m>=2 (where m
is the maximum number of branches in any node
of the tree) in which the branching at any level
determined not by the entire key but by only a
portion of it. The trie contains two types of
nodes:

The first type represents a leaf node which
contains the string. The second is a branch node
which contains 27 link fields (depends on
number of alphabet characters).
All characters in the key values are assumed to
be one of the 26 letters of the alphabet and the
blank.
The standard Algorithm used to build the trie
tree is: [3]

 At level 1 all key values are partitioned
into 27 disjoint classes depending on their
first character, on the j-th level the
branching is determined by the j-th
character.

 When a subtrie contains only one key
value, it is replaced by a node of type
string.

 The number of levels in the trie depends
on the strategy or key sampling function
used to determine the branching at each
level.

The standard sampling function:
 (sample (x,i)) used to build the trie ,which
appropriately sample x, for branching at the ith
level in the tries tree is :
 SSample (x, i) = ith character of x --- (1)
Given the following set of key values to be
represented in an index:
Bluebird, bunting, cardinal, chickadee, godwit,
goshawk, gull, oriole, thrasher, thrush and wren.
Figure 1 shows the created trie tree using
characters of key value from left to right, one at
a time. In Figure 1, branch nodes are represented
by rectangles while ovals are used for
information nodes.

Figure 1: A Trie tree using standard key sampling function

P= t b A B C G O T W
nil nil δ ••• γ

β
P= δ L U

•••
A

 O U

 A U

 D S
P=σ R

P=γ H

blue bird

bunting

P=β
cardinal chickadee

oriole

thrush thrasher

goshawk godwit

wren

gull

Rashid Iraqi Journal of Science, Vol.51, No.٣, 2010, PP.504-509

 506

When inserting any new key to the tree, a search
operation must be perform before the insertion
to find the suitable location for a new word.
Searching a trie for a key value x requires
breaking up x into its constituent characters and
following the branching patterns determined by
these characters.
The algorithm trie, [p is a pointer variable used
to search for any key] assumes that p=nil is not a
branch node and that p^. Key is the key value
represented in p if p is an information node.

function trie (var t,p: trieptr; x : string) : trieptr;
 {search a trie for key value x, it is assumed that

branching on the ith level is determined by the
ith character of the key value. where the root is
given by pointer variable t}

 var c : char ; I , k :integer;
begin
{assume we can always concatenate at least 1

trailing blank to x }
 k :=x; concatenate (k,' ');
 i:=1; p:=t;
 while p is a branch node do
 begin
 c:= i-th character of k;
 p:= p^.link[c];
 i := i+ 1;
 end;
 if p = nil or p^.key < > x

 then trie := nil
 else trie := p
end ; { of trie }
For example search for word (bunting) using
function trie and trie tree in figure 1, the result
is found in location given by pointer variable p,
as shown in Figure 2.
But if we search any word not exist in the trie
tree in Figure 1 for example word (then).
The value of p is nil which means not found. As
shown in Figure 3.
Note that the main advantages of trie tree are
• The time to find a match is related to the

length of the match not the number of items
in the data structure.

• A significant improvement in speed can be
get by using trie tree.

• There is a property that the trie structure is
independent of the order in which the keys
are inserted, there is a unique trie for any
given set of distinct keys.

The main disadvantages of the trie tree are
• The mount of wasted space for unused links.
• They can be applied to strings of elements

or elements with an efficiently reversible
mapping (injection) to strings.

• They lack the full generality of balanced
search trees, which apply to any data type
with a total ordering.

Figure 2 Search for word bunting

Figure 3: Search for word then

 b A B C G O T W
nil nil δ ••• P=t

 U
P=δ

bunting P=β

β

 b A B C G O T W
nil nil ••• γP=t

P=γ

P=σ

 H
σ

 H E
 nil

P=nil

Rashid Iraqi Journal of Science, Vol.51, No.٣, 2010, PP.504-509

 507

Proposed algorithm
An index structure that is particularly useful
when key values are of varying size is the trie.
The height of a trie is the length of the longest
key in the trie which can be memory-inefficient
at times because of the large number of levels.
Using different sample functions one may
construct key value sets for which that particular
function is best, i.e. it results in a trie with the
fewest number of levels.
In this research a new proposed key sampling
function is defined to reduce the number of
levels in the trie tree which will reduce the
overall required memory space to store the tree.
The proposed key sampling function is:

() ()
)2(

odd is i if X 1i/2

even is i ifX 2/2-i-n
i x, PSample −−−

+
=
⎪⎩

⎪
⎨
⎧

Where i is the ith character in the string
 n is the last character in the string
The trie tree [4], in the proposed algorithm
contains two types of nodes:
First type is the external node: represent a leaf
node which contains two fields:

1. leaf :(string) key
2. is-leaf : (Boolean) flag

Second type is internal node: represent a branch
node also contains two fields:

1. branch: contains 27 link fields to other
nodes.

2. is-leaf : Boolean
The three suggested operations performed on the
trie are:
1. Initialization: This step concerns with trie

tree creation and initialization values:
Initialize a node object which corresponds to
the root of the trie by:
1. Filling all 27 link fields with nil value.

2. Filling is-leaf field with false value.
2. Insertion:

1. Find the place at which the string is to be
inserted by starting the search from the root
node and continue the searching through the
characters of the string.

2. If there is no item , just insert the string as a
leaf node, as in other types of tree ,and set
is-leaf field with true value.

3. If there is something on the leaf node (if the
value of is-leaf field is true), then this leaf
node becomes a new inner node and build a
new subtree (or subtrees) to that inner node
depending on the string to be inserted and
the string that was in the leaf node. The
branch in the tree depending on the charac-
ters of the string at level 1, character in
position 1 is used, at level 2 character in
position N is used, at level 3 character in
position 2 is used, at level 4 character in
position N-1 is used , and so on until an
external node is encountered.

4. Create a new leaf node where the new string
is stored.
Figure 4 shows a created trie tree using the
proposed sample function for the same keys
used in Figure 1.
(Bluebird, bunting, cardinal, chickadee,
godwit, goshawk, gull, oriole, thrasher,
thrush and wren).

3. Searching:
1. Start from the root node and from the most

significant character in the string.
2. Branch in the tree in the same manner used

in insertion operation until the leaf node is
found (i.e. until the value of is-leaf field is
true)

3. Check if the string is in the leaf node or not.

Figure 4: A Trie tree using the proposed key sampling function

a b A B C G O T W
nil nil ••• β

β
σ D G

•••
L E

 K L T H R
blue bird

bunting

ρ
cardinal chickadee

oriole

thrush

thrasher
goshawk godwit

wren

gull

β

Rashid Iraqi Journal of Science, Vol.51, No.٣, 2010, PP.504-509

 508

Test and results
 The suggested algorithm is tested together
with the standard algorithm on a different sets of
words.
The following tables 1, 2, 3, and 4 show the
number of levels for each given word using the
standard sample function (SSample) and the
proposed sampling function (PSample).

Table1

 Key
No of levels

using SSample

No of levels

using PSample

1 bluebird 2 2

2 bunting 2 2

3 Cardinal 2 2

4 Chickadee 2 2

5 Godwit 3 2

6 Goshawk 3 2

7 Gull 2 2

8 Oriole 1 1

9 Thrasher 4 2

10 Thrush 4 2

11 Wren 1 1

12 And 2 2

13 apple 5 2

14 Apply 5 2

15 badly 4 2

16 Bat 3 2

17 Some 5 2

18 Abacus 3 2

19 Something 5 2

20 abracadabra 3 3

21 This 3 2

22 Somerest 5 2

Table2

 Key No of levels
using SSample

No of levels
using PSample

1 bluebird 2 1
2 bunting 2 1
3 Cardinal 2 2
4 Chickadee 2 2
5 Godwit 3 1
6 Goshawk 3 1
7 Gull 2 2
8 Oriole 1 2
9 Thrasher 4 1

10 Thrush 4 1
11 Wren 1 1

Table3

 Key
No of levels

using SSample
No of levels

using PSample
1 bluebird 2 2
2 bunting 2 2
3 Cardinal 2 2
4 Chickadee 2 2
5 Godwit 3 2
6 Goshawk 3 2
7 Gull 2 2
8 Oriole 1 1
9 Thrasher 4 2

10 Thrush 4 2
11 Wern 1 1
12 Joe 3 3
13 John 5 2
14 Johnny 5 2
15 Jane 3 3
16 Jack 3 2
17 adams bt 1 1
18 Cooper cc 8 4
19 Cooper pj 8 2
20 Cowans dc 3 4
21 Maguire wh 2 2
22 Mcguire dd 2 2
23 Spanner dw 5 2
24 Span kd 6 3
25 Sefton sd 2 2
26 Span la 6 2
27 Zarda jm 7 2
28 Zarda pw 7 2

Rashid Iraqi Journal of Science, Vol.51, No.٣, 2010, PP.504-509

 509

Table 4

 Key
No of levels

using SSample
No of levels

using PSample

1 bluebird 2 3

2 Bunting 2 2

3 Cardinal 2 2

4 Chickadee 2 2

5 Godwit 3 2

6 Goshawk 3 2

7 Gull 2 2

8 Oriole 1 1

9 Thrasher 4 2

10 Thrush 4 2

11 Wren 1 1

12 Some 5 2

13 Something 5 2

14 Abacus 3 2

15 Some rest 5 2

16 This 3 2

17 adams bt 2 2

18 Cooper cc 8 4

19 Cooper pj 8 2

20 Cowans dc 3 4

21 Maguire wh 2 2

22 Meminger dd 2 2

23 Spanner dw 5 2

24 Span kd 6 3

25 Sefton sd 2 3

26 Span la 6 2

27 Zarda jm 7 2

28 Zarda pw 7 2

29 Mcguire al 2 2

30 Abracadabra 3 3

31 And 2 2

32 Apple 5 2

33 Apply 5 2

34 Bad 4 3

35 Badly 4 2

36 Bat 3 2

Conclusion
 The results in table 5 give a clear evidence
that the performance(in term of efficiency) of
the trie tree with the proposed key sampling
function is better than that of the standard trie
tree. With respect to the total number of levels
in each trie tree, the proposed key sampling
function gains reduction in both computation
time (search time for the required word) and
memory space . Shortly speaking, as the total
number of levels is reduced (via proposed key
sampling function), we get more efficient results
in term of both time and space.

Table 5: shows the comparison between the
results get from the four tables

Table
no.

N
o.

 o
f w

or
ds

 Comparison between no. of levels
using SSample and PSample

L
es

s t
ha

n

eq
ua

l

gr
ea

te
r

 th
an

L
es

s t
ha

n

eq
ua

l

gr
ea

te
r

th

an

Table 1 22 0 9 13 0% 40.9% 59.1%
Table 2 11 1 4 6 9.09% 36.36% 54.54%
Table 3 28 1 13 14 3.57% 46.43% 50%
Table 4 36 3 11 22 8.33% 30.56% 61.11%

References
1. Goodrich, M.T. and Tamassia, R. 2001.

Algorithm Engineering. John Wiley and
Sons, New York, pp.129-133.

2. Heinz, S. and Zobel, J. 2002 Practical data
structures for managing small sets of
strings. In M. Oudshoorn, editor Proc.
Australasian computer science Conf., pages
75-84, Melbourne, Australia.

3. Ellis Horowitz. Sartaj Sahni. 1994,
Fundamentals of data structures in Pascal.
Copyright computer science press, Inc,
pp.512-520.

4. Heinz, S.; Zobel, J. and Williams, H. E..
2002. Burst tries: A fast, efficient data
structure for string keys. ACM Transactions
on Information systems, 20(2):192-223

