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Abstract
In this research we concern with the comparison between the two ways of

providing redundant units for a system:-
1. Component redundancy.
2. System redundancy.

The comparison between these ways is carried out by comparing the random
variable representing the lifetime of the system resulted from applying component
redundancy with the random variable representing the lifetime of that resulted from
applying system redundancy using some types of stochastic orderings, namely:
(1) usual stochastic ordering, (2) failure rate ordering, (3) likelihood ratio ordering,
(4) reversed failure rate ordering and (5) mean residual life ordering.

Introduction

Reliability of a unit (component or system of
components) is defined as its ability to perform
its intended function for a specified interval of
time and in stated environmental conditions.
Reliability subject deals with improving the
performance of devices.
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In this research, we present the method of
increasing reliability known redundancy; which
is a technique for improving reliability via
connecting one or more additional units in
parallel with the original ones. These additional
units, which may be identical or not to the
original ones, are called, spare (redundant) units.
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When the original unit fails, the spare unit
replaces it and carries out its function.
We consider three basic types of redundancy:

(1) Active redundancy (hot or parallel
redundancy) [1].
(2) Cold-standby redundancy (or passive

redundancy) [1].
(3) Partially energized standby redundancy
[2].
Two ways of providing each type of redundancy
are studied: (1) component redundancy, that is,
providing component(s) as spare(s) to each
individual component in the system and (2)
system redundancy, that is, providing system(s)
as spare(s) to the whole system.
In this research, we have compared between
component and system redundancy using some
of the stochastic orderings. In some of these
results, we have assumed the redundant units to
be identical with the original unit. In the results
concerning cold-standby redundancy and
partially energized standby redundancy, we also
take account of the case of perfect switching and
that of imperfect switching.

Notation
iid independent, identically distributed.

Ty /\T2/\ - /\Ty min{7Ty, Ty, -+, Ty}

r‘rl\/ TZ\/"'\/TH InaX{leT2J"'JTn}
Ti.n the ith order statistic, Ti,=ith min {T;, T,
voes Tn}
Tn:G the lifetime random variable of the k-out-
of-n: G system of n components whose
independent lifetime random variables are Ty,
T2, ooy Tn
Tin:F the lifetime random variable of the k-out-
of-n:F system of n components whose
independent lifetime random variables are Ty,
T2, ooy Tn
7, (T\/U) min{T,\/U,,T,\/U,,;--T,.\/U,}
T ne(T+U) max{T, +U,, T, +U,;-- T +U, }
70 (T+U) min{T, +U,, T, +U,;--T, +U, }

7’-l—n::F (T )+ Tl—n::F (U )

min{T,, T,,--,T, }+min{U,,U,,-- U, }
Tl—n::G (T )+ Tl—n::G (U )

max{T,, T,;--.T, }+max{U,,U,;-- U, }
o(T) T AT/,

R(t) the reliability of the unit.
r(t) the failure rate function.
f(t) the density function.
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F(t) the reversed failure rate function of the life

distribution F.

Ke (1) the mean residual life function.

Let T, and T, be random variables representing
the lifetimes of two different units, the reliability
function, distribution function, density function
and mean residual life function of T; are
respectively R;, Fj, fi, and g, i=1,2. Comparison
between T; and T, based on functions such as:
reliability function, failure rate function, mean
residual life function and other suitable
functions of probability distributions usually
establish partial orders between them. We call
them as stochastic orderings.

A random variable T, is said to be stochastically
smaller than another random variable T,
(Tis4Ty) if Ry (t) <R, (t); forallt. [3]

And T, is said to be smaller than T, in the
failure rate ordering sense (T1<,T,) if
r; (t) =1, (t); forallt. [4]

T, is said to be smaller than T2 in the likelithood

o 6(t)
) iff n

18

ratio ordering sense (T1 <0 1

increasing in t. [5]

T, is said to be smaller than T, in
the reversed failure rate ordering sense
(T, <5 Tp) if T1(t) < 13(t)for all t. [5]

T, is said to be smaller than T, according to
mean  residual life (MRL)  ordering
TS T if e < g (V120 [6]

The definitions of failure rate ordering and
reversed failure rate ordering have equivalent
statements as given in the next theorem.

Theorem
Let T, and T, be two absolutely continuous
random variables, [4,5].

R, (1)

R,

function of t.

F, (1)

(1) T1 < Ty iff is an increasing

(1) Ty < T, iff is an increasing
1

function of t.
In the next theorem, we present the relations
among some of the stochastic orderings.
Theorem
Let T, and T, be two absolutely continuous
random variables, [5,6].

1O i T=2T1 <, T =T Ts
(11) Tl Sfr T2:>T1 Smrl T2
() 1< T2 < T =T < T
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In our study, we assume the following:

1. The lifetime random variables of all the
units are independent.

2. The lifetime random variables of the
systems in system level redundancy are
independent.

3. The reliability of every unit is not

affected by the type of redundancy.

Active redundancy
In the case of active redundancy all the units
(the original and the spare units) are functioning
simultaneously. Assume that the lifetimes of the
original and the spare units are denoted by Ty, T,
with reliability functions R; and R,
respectively. The lifetime of the system is the
lifetime of the best of its units. Thus, if T,
denotes the lifetime of the resultant system, then
T=T,VT,
and
Ra (=P (Ta>1)
=1-P (Ta>1)
=1-P (Tl > t) P (T2 > t),
since the unit lifetimes are independent.
Ra (1) =1- (1-R; (1). (1-R; (1))
Figure 1 below depicts this type of redundancy.

1

2
Fig. 1: Acuve Redundancy

Below we compare between component and
system level in the case of active redundancy.
Under certain conditions and considering 1-out-
of-n:F system Boland and EL-Neweihi, 1995 [4]
proved that if T, ,T, ,...,T, are the lifetime
random variables of the original units and U, ,U,
,...,U, are the lifetime random variables of the
spare units such that T; and Uj are iid, 1<i<n,
then

Tk (D\/T1nr(U) <pr T1nr(T\/U)
Since, failure rate ordering implies mean
residual life ordering, then the following claim
is valid.

Claim
Under the same conditions of Boland and
EL-Neweihi and considering 1-out-of-n:F

system if Ty, T,,...,T, are the lifetimes of the
original units and U, U, ...,U, are the lifetimes
of the spare units such that T; and U; are iid.
Then
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Ti—n:F (T)\/Tl—n:F (U) E:mﬂ Ti—n:F (T\/U)

If all units in the redundant group (the original
and the spare units) have iid lifetimes then we
prove, in the next result, that active redundancy
on component level is better than active
redundancy on system level in the likelihood
ratio ordering sense when the original system is
1-out-of-2:F system.

Result-1- (Use assumptions 1-3)
Consider 1-out-of-2: F system. Let Ty, T, Uy,
U, be iid lifetimes with common reliability
function R, where T;, T, are the lifetimes of
the two original units and U;, U, are the
lifetimes of the two spare units. Then

T2 (T\/T12.p(U) =pp T4, (T\/U)

Figure 2 below represents active redundancy on
system and component levels).

(@) (b)
Fig. 2: a) System redundancy, b) component
redundancy
Proof:
fo (D)

It suffices to show that

is an increasing
S

function of t.

Where

fc<t>=—%{p<mm vU)> )

=4fO.L-rO)i-(1-r®))

where f (1) = —% R(t)

and
fi(8) = = P(T1ar M\ /T1—2 (V) > 1)}

=4f().R(0).(1 - R*(D))
Letting
_RO _ 4O -R®)1-(1-R®)
f:() 4f(OR)(1 - R2(1)
_27R(®)
T 1+R(t)

We see that,

g0
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a 3f(t)
a9 = drrE2
This completes the proof.
For the general case when the original system is
1-out-of-n: F system, we put condition under
which the above result is still true as shown
below.
Result -2- (Use assumptions 1-3)
Consider 1-out-of-n: F system. Let Ty, To,...,
T, U;, U,,..., U, be iid lifetimes with
common reliability function R, where T,
T,,..., T, are the lifetimes of the n original
units and Uy, U,,...,U, are the lifetimes of the
n spare units. Then

Tk (TN/T1nr(U) <pp Ty (T\/U)

Figure 3 below represents active redundancy on
system and component levels).

e 0L

(a) (b)
Fig. 3: a) System redundancy, b) component
redundancy
Proof:
f.(®)

It suffices to show that

is an increasing

fo(©)

S
function of t.
Where

fot) = =S P(Tr (T\/U) > 1)}

- —2{r® - R2®)"}
=n2R(t)-R*(t)] " (2 (t)-R(t). £ (t))

d
where f(t)=—R(t
® pm ®)

=2nf(0) - (R®)" - (2—R®)" -
(1-R(®)
and
fi®) = = S P T r (DN /Ty np (U) > ©))
=== (2R"(t) — R™(1))

=2nf(®)- (R(®)" - (1 —R"(1)

Letting
. f(©
90 =%o
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_2nf-(R®)" - (2-R®)" - (1-R®)
nf@ - (R®)" - (1 - R*(@)
_(-R@)"-(1-R(1))
(1-R™(t))
To show that g(t) is an increasing function of t,

we must show thatdg g(t)>0
t
But
d
I g(t)

(- 1D(2-R®) O -RO) +

f0)(2 - R(®)" } B
{2 -r®)"(1-r®)}. R (®))
(1 —R™(1))?

{1-R'(®)}- {

1.e., we must show that

nf (D)1 - RN~ R ()2 -R®)"* -
fA-R@)A-R )2 -R(A)"* +
fOA-R"®)2-R(E)"™ —nf (HR™'(1)
(I-R®)2-R(t)"" >0

Notice that,

FOI-R"®)2-R®) T FO(1—RO)(L
—Rr*(1))(2—R(D)"”

- FOQ-R"®)2-R®)" >0

n—2

Since, f(t),(1—R"(t)) and (2 —R(®))" >0
and that,

nf®(1-R®)(1-R"®)(2 - R©®)" " -
nf(OR™(@)(1-R®)(2 - R@®)"
=nf(®)(1-R®)(2-R®)" (1 -2R"1(1)) > 0
under the condition that

(1—2R"1(6)) > 0 i.e., R™L(D) < %
This completes the proof.
Note

Since likelihood ratio ordering implies mean
residual life ordering and reversed failure rate
ordering, then we can say that the previous
results are also true under the mean residual
life ordering and the reversed failure rate
ordering.

Now, consider the parallel-series system of three

units whose lifetime is defined by {T,AT,} VT,
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where T,, T, and T; are its components
lifetimes, T, T, and T; are iid exponentially
distributed random variables with parameter T,
then active redundancy on component level is
better than that on system level in the usual
stochastic ordering sense as proved in the next
result.

Result -3- (Use assumptions 1-3)
Consider the parallel-series system of three
units. If Ty, T,, T3, U;, Uy, Uz are all iid
lifetimes whose common distribution is
exponential with parameter r. T; and U; are the
lifetimes of the ith original and the ith spare
unit, respectively. Then

t(M\/t(U) =5 ©(T\/U)
Figure 4 below represents active redundancy on
system and component levels).

I G

(@) (b)
Fig. 4: a) System redundancy, b) component
redundancy

AT

Proof:

We have,
R (1) = P(t(M)\/7(U) > ) =1— (1 — e 72 (1 -
e—rt)2
R (t) = P(x(T\/U) > t)

=1-(1—-e"*2-(1—-e7)?)
The wanted result can be obtained by proving
that Ry(t) < Rc(t); i.e., by showing that
1-(1—e?)%(1—e)>
<1-(1-e™H*2-1—-eT)); vt
Simplifying this, we get
R, (t) < R.(t) if e’ +1 = 2e™

Since the last inequality is always true, the proof
is completed.
In the previous results we have assumed that the
spares and the original units have iid lifetimes.

Now, we consider the case when the spare units
are not identical with the original ones.

Result -4- (Use assumptions 1-3)
Consider 1-out-of-2: F system. Let T), T, be
iid lifetimes of the original units where T; is
Weibull random variable with shape
parameter o and scale parameter r. Let U;, U,
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be iid lifetimes of the spare units where U; is
Weibull random variable with shape
parameter o and scale parameter r . Then

T1—2. 7 (T\/T1—2.r(U) g T1—2.r(T\/U)

Figure 5 below represents active redundancy on
system and component levels).

(@) (b)
Fig. 5: a) System redundancy, b) component
redundancy
Proof:
We have,

Rs(t) = P(t1—2.¢(T\/T1-2.,(U) = ¥)
= g~ 2(rt)*+(r*t)™) (eztr"t)“ 4 g20rt)™ _ 1)

R.(t) = P(112,,(T\/U) > t)
_ 8—2{(r't)“+iir‘t)°‘j_ {:e(r‘tj‘x + Ei:rt)“ _ 1:)2

Hence,

T12F (T\/T1-2 (V) =5 1125 (T\/U) 1iff Rs(2) =
Rc(t:) ; Vt.

After simplifications we get:

Re(t) < R,(t) iff e/ HODT _ gl _ ("0 4 1

Which holds iff (e™)*>1.

This is always true.

If we consider 1-out-of-2:F system whose
original unit lifetimes are iid exponentially
distributed with parameter o and whose spare
unit lifetimes are iid exponentially distributed
with parameter 0.5 a, the previous result still
valid using the reversed failure rate ordering as
the following result shows:

Result -5- (Use assumptions 1-3)
Consider 1-out-of-2: F system. Let T;, T, be
iid lifetimes of the original units where T; is an
exponential random variable with parameter a.
Let U;, U, be iid lifetimes of the spare units
where U; is an exponential random variable
with parameter 0.5 o. Then

T1 2. (T\/T12,(U) <y T1 2.6 (T\/U)
Proof:
We have,

Fe(t) = P(11,r(T\/U) = 1)
=1- (- (1—e).(1—e705%))?
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Fs(t) = P(11—2.r(D\/11—2.,r(U) = 1)
=(1—e 2", (1—e™™)

_R®_1-0-0-e).a- ey
g(t) = - (l _ e—2ocr). (l _ e—oct:)

1_29—1.50Ct+9 —2oct

1—e 2%t
We need to show that g(t) is increasing in t.

The numerator of

d
E(Q(it))i& (—4 o e72% 4 3 oc g 154

o e735%) which is nonnegative if

3055t 4 g5t > 4

Note that, at t=0 the left hand side is 4 and the
inequality above is true.

Now if we show that the expression in the left
hand side is an increasing function we are
through.

The derivative of the left hand side expression is
(1.5 o (€”“-e"'*™)) which is positive always.
Thus, the left hand side expression is an
increasing function of t, and since it is equal to 4
at t=0, then it is always greater than 4 as
required

Cold- Standby redundancy

In the case of cold-standby redundancy, one
unit is always in operation (the original unit) and
the other units (the spare units) are not operating
they are in the standby position. It is assumed
that the standby redundant units neither degrade
nor fail while in standby state. When the standby
redundant unit takes the place of the failed unit
in the redundant group (the original unit and the
spare unit), its state is new.
To replace the failed unit by the standby one we
need a switching device as shown in figure 6.

1

L~ ] 2

Fig. 6: Cold-Standby Redundancy

Here, we discuss cold-standby redundancy on
component and system levels using an automatic
switching device, which instantaneously inserts
the next unit when the original unit has failed.
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In the first step, we assume that the switching
device is absolutely reliable (has reliability
equal to one) this switching is described as
perfect switching.

To derive the reliability function of the resultant
system, where the switching is absolutely
reliable, assume that T, and T, are independent
lifetimes, where T, represents the operating unit
lifetime and T, represents the lifetime of the
standby unit. Let F; be the distribution function
of T;, i=1,2 and T.= T+ T, be the lifetime of the
resultant system, that the lifetime of the original
unit plus that of the cold-standby unit.

R(t)=P(T,>t)=1—-P(T, =t)
=1-P(Ty+T, =t)

But, P(T+T,<t) is the distribution function of
the sum of the two independent random
variables T and T,, so it is given by the formula
t

PTi+T, =t) = f F(t —x)dF(x)
0

Thus,

t
RAﬂ:l—fﬁu—xmau)
0

In the next result, we prove that if the spare units
do not match the original units and the original
system is l-out-of-n: G system, then cold-
standby redundancy on system level is better
than that on component level in the usual
stochastic ordering sense.

Result -6- (Use assumptions 1-3)
Consider 1-out-of-n: G system. Let Ty, Ty,...,
T3, be the lifetimes of the original units and let
Ui, Uy,..., U, be the lifetimes of the spare
units. Then
T1—n:6 (T + U) =st T1-n:6 (T) + T1n:G (Uj
Figure 7 Dbelow represents cold-standby
redundancy on system and component levels).

.

@) (b)
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Fig. 7: a) System redundancy, b) component
redundancy
Proof:
Obviously, we have to show that the inequality

Tng(T +U) = 14_n,6(T) + 11,6 (U)

holds.
As it is obvious that for any two finite sets of
real numbers A and B,

max {A+B} <max {A}+ max{B}
and since,

Tina(T) =max {Ty, T,,..., T3}
and

Tl—n:G(U) = max {Ub UZ:'H: U3}
One may conclude that
Tina(THU) < T1nia(T) + Trne(U)

This means that the reliability function of
the system whose lifetime is t,..6(T+U) is
not greater than that of the system whose
lifetime 1S T1.n:6(T) + Tin:c(U).

Consider the case of 1-out-of-2: F system whose
original unit lifetimes are iid exponentially
distributed with parameter o and whose spare
unit lifetimes are iid exponentially distributed
with parameter 0.50. In the next result we show
that cold-standby redundancy on component
level is better than that on system level in the
likelihood ratio ordering sense.

Result -7- (Use assumptions 1-3)

Consider 1-out-of-2:F system. Let T, T, be iid
lifetimes of the original units. T; is an
exponential random variable with parameter .
Let Uy, U, be iid lifetimes of the spare units. Uj;
is an exponential random variable with
parameter 0.5c. Then

7127 (T) + 11 2., (U) <pp Ty 2.r(T + U)
(Figure 8) below represents cold-standby
redundancy on system and component levels).

- -
(@) (b)
Fig. 8: a) System redundancy, b) component
redundancy
Proof:

Define the distribution function of t2.¢(T) by
(1-e) and that of 7,.¢(U) by (1-e™) we have,
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F(t) = P(t1—2,(T) + 112, (U) = 1)
zf;(l _ e—:x[:t—x}) d('l _ 8—200:)
=[5(1—e™ ) (2 0 e72¥)dx

=14 g2t gt

and

d
£© =B

=2 (e—oct _ 8—2:xt)
The distribution function of T;+ Uj is defined by:

t
P(Ti+U; =t)= f (1—e =) g(1—e™)
0

=14 et _ ZE—U.SKt
Thus,

F(t) =Pt (T+U) =0)
“1-(1-P(T,+U, = 1))’
=1 — (28—0.5'xt _ e—:xtj)E

and

_ d E(
£:(0) == E.(©)

=2 x (ze—le + E—EOCt _ 39—1.56{1':)

let,

; ﬁ‘(r) 2 (Ze_“t 4 g 2wt _ 38—'1.5:<t:)
g(t) = = : S
fs(t) 2 o (E —e )

o —l:xt+e —20(5_39 —1.5ct

ot _g—2oct

We need to show that g(t) is an increasing
function of t.

The numerator of L is given by:
dt(g(t))

1.5e2%+1 57" 3¢ and is greater than 0 if
e”-2e"°"+1>0 which is always true since e-
2e"°"+1 = (e°"-1)* > 0 always.

When the original system is 1-out-of-n:F system
with unit lifetimes are iid exponentially
distributed with parameter a and the spare unit
lifetimes are iid exponent-tially distributed with
parameter 0.5 a, then the previous result is still
true under certain condition as shown below.

Result -8- (Use assumptions 1-3)
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Consider 1-out-of-2: F system. Let Ty, To,...,
T, be iid lifetimes of the original units. T; is an
exponential random variable with parameter a.
Let Uy, U,,..., U, be iid lifetimes of the spare
units. U; is an exponential random variable
with parameter 0.5 o. Then

T (T) + Ty (U) =pp Ty p (T + U)

Figure 9 ©below represents cold-standby
redundancy on system and component levels.

- -
@ (b)
Fig. 9: a) System redundancy, b) component
redundancy
Proof:

Define the distribution function of t,.,.r(T) by
(1-e™) and that of 7,,.x(U) by(1-e°") we
have,

Es(t) = P(Tl—n:F‘(T) + Tl—‘n:F(U) = t)
1 - 050 a1 — o
:J-Dr(l — g0 (p oc @ NN )iy

=1+ E,—noct . 2E—ﬂ.5n-xt

and

d
(O =—E®

=n o B—O.Snxt(l o B—O.Enoct)

The distribution function of Ti+ Uj is defined by:

t
P(T,+ U, =t) = f (1 — e 039 d(1 — ™)
0

=1+ ot _ EE—G.EDE

Thus,
E(t) =Pty nr(T+U) <1)

=1-(1-P(T,+U, =0)"

1— (ZS—O.SKt o e—::cr:}ﬂ

and

f(t) = S E(t)
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=1 E—O.Sn:h:t(z _ e—D.S:h:r)n—l_ (1 _ e—-D.S-xr)

Let,
R
g(t) ="
f: (@)
n oc E—U.Em,otf (2 _ E—O.Sxt')?’t—l. (l _ e—U.SOCt)
n o< S—D.S'ncxt(l _ e—D.Sn:xt')

n-1 (1 B e—O.Sat)
. (1 _ e—O.Snat)
To prove the required result, we need to show

that g (t) is an increasing function of t.
Letting,

Ll(t) — (2 _ e—O.SD{t)n—l

(2- e—o.sm)

and
(l _ 8_0'53#)

g(t) = Ly (t). La(t)

It is obvious that L, (t) is an increasing function
of t.
Now, by proving that L,(t)is an increasing

Ly(t) =

function of t we get the required result.
d
The numerator of a L,(t)is 0.50e

0.50e ™D 0.5n0e " + 0.5nae 3
We can notice that

-0.5a(n+)t _ -0.5a(n+1)t
(0.5nae 0.50e )
=0.5ae """ (n-1)>0
and that
(0.50e°°"- 0.5nae™"™) > 0 if
(1_ ne—045 (n-1) (It) > O

21In(n)
a(h—1)

Thus, %Lz(t)>0under the condition that

re.,if t>

2In() anq L,(t) is increasing for all t.
a(n-1)

Hence, g(t) is an increasing function of t under

t>

the condition t>m and this completes
a(n-1)

the proof.

For 1-out-of-n:F system, suppose that the

lifetimes of all the units in the redundant group
(the original units and the spare units) are iid
random variables with common distribution
function  F(t)=1-e™, then  cold-standby
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redundancy on component level is better in the
sense of likelihood ratio ordering.

Result -9- (Use assumptions 1-3)

Let Ty, T»,..., T, be the lifetimes of the original
units and U, U,,..., U, be the lifetimes of the
spare units. And suppose that all the lifetimes
are iid exponentially distributed with parameter
r. Then

T1—.r(T) + Ty p(U) = 11 p (T + U)

Proof:

Define the distribution function of t,.,.r(T) by
(l—e'm). The distribution function of t;n.p(U) is
defined similarly.

We have,

Fs&) = P(:’fl—ra:F(:T) + T'l—n:F(U) = I)
=fﬂt(l P {r—xj) d(l _ e—m'x)

zjg.t(l _ e—m‘{t—x)) ] {:nre—ru‘x :)dx
=1 — e ™ (1 + nrt)

and,

d :
£:0) = —F(®

— ?12'."2 te it

The distribution function of Ti+ U; is defined to
be
t
P(T;+U; =t) = J‘ (1 — g—?‘(f—x)) d(1—e™™™)
0
=1-e"(1+rD)

Thus,
F(t) =Pt (T+U) =0)
—1-(1-PT;+U; =)"

=1 —e ™t (1l +rt)"

and,
() = nrite ™t (1 + )1
Let,
g _ff‘(tj_l ewn—1
g(t) = £© " n (1+7t)

Which is an increasing function of t and hence
the result.

In the second step, we consider the case in
which the reliability of the switching device is
less than one. In this case the switching is
described as imperfect.
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To calculate the reliability of the resultant
system, consider the case of two units in standby
system the unit lifetimes are iid exponentially
distributed random variables with parameter r,
let T be the lifetime of the resultant system. Let
A denotes the event that the switching device
fails and A, denotes the event that the switching
device operates successfully and let Ps be the
probability of successful operation of the
switching device. Denote by Q; the unreliability
of the original unit with successfully operating
switching and by Q, the unreliability of the two
units standby system with successfully operating
switching. Then from the formula for total
probabilities, and since Q, is a statement about
the convolution of the distributions of the two
units we have,

P(T =t) = P(A1).Q:(t) + P(42).Q2(2)
=(1—P).(l—e™™)+P.(1—e —rte™™)
=1— (e + Parte ™)
Thus,

P(T >t)=e".(1+ Brt)
Result -10- (Use assumptions 1-3)
Let the spare and the original unit lifetimes be

iid exponentially distributed random variables
with parameter r. Then

T—n:r(T) + 11— (U) =fr T1—p.r(T + U)
Where T=(Ty, T,

original unit lifetimes and U=(Uy, Uy, ...
the vector of the spare unit lifetimes.

..,1n) be the vector of the
,Un) be

Proof:

Clearly, the distribution function of t,.,.¢(T) and

Trn-p(U) 1 (l—e'm), then the reliability function

of Tyn-p(T) + 11.n:p(U) is defined as:
R.(t)=1—P(ty_pr(T)+ 115 r(U) =t)
=1-((1-B)(1—e™)+P.(L—e™ —nrte ™))
=e ™t (1 + P.onrt)

The reliability function of T;+ U; is defined as:

P(T; + U; > t) = e "t. (1 + Brt)
Thus,
Rc(t) = P(:Tl—n:F(jT + U) = t)
=e ™" (14 Brt)™

Let,
R (A +PEBrt)”

90 - 2 @ TrBnD
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The numerator of ) is given by:

d(g ()
NPr(1+Psrt)™" (Pgrt-Pgrt),
positive.

Obviously, g(t) is an increasing function of t and
this completes the proof.

this function is

1
In the next result we prove that, if T > _P then
r

S

the previous result is still true when the
comparison is carried out according to the
likelihood ratio ordering.

Result -11- (Use assumptions 1-3)

Let the spare and the original unit lifetimes be
iid exponentially distributed random variables
with parameter r. Then

T r (D) + Ty p(U) <pp Ty p (T + U)

Proof:
We have,

t) = —ER t
fo®) = =R

d g n ,—nrt
= —dt[(_l + Prt)t. e
and,

- d
£i(®) = =R ()

d
= [(1+ Pnrt).e™™*]

To prove that, T4:¢(T) + Ty n:r(U) <ip T1n:p(THU)
it is enough to show that

L —%[(1 + Psrt)”.e’“"]

f.(® —%[(1 +Prt)e™]

Simplifying g(t) we get,

(1+Prt)* L. (1-P. + Prt)
(1—F; + Fnrt)

is increasing in t.

9 =

gt) =

After simplification, the numerator of
dt(g(t))
will be
P.r(n—1(1—P, + Pnrt)(1 — B, + Prt)(1 + Pre)" 2
+ Pr(1 4 Port)" (1 — P, + Ponrt)
—nrP (1 — P, + Prt)(1+ Part)*1
Therefore, g(t) will be increasing if the
numerator is positive which is reduced to
—nP(1—P)+n%rtP(1—-P) +P(1—P) —
nrtP,(1—P.) +nr’t?Pi(n—1) = 0

. 1
Now, assuming thatt > — we have,

S
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—nP.(1—P)+P(1—-P)+nrit?P2(n—1)>
—nP(l1-P)+P(1-P)+nn—1)=nn—1)(n—
E(1—F))

Which is positive always.

Partially Energized Standby redundancy
In the case of partially energized standby
redundancy, the spare units are in a partially
energized state up to the instant they replace the
primary units and then begin to operate in
normal operating conditions. During period they
are in standby state, they can fail but their
probability of failure is less than that while in an
operating state.
Here, we discuss partially energized standby
redundancy on component and system levels
using an automatic switching device, which
instantaneously inserts the next unit when the
original unit has failed.
In the first step, we consider the case of two
exponentially distributed units in standby system
for which r; is the failure rate of the normal
operating unit, r, is the failure rate of the
standby unit when operating and r1; is its failure
rate when in a standby situation. Also, we
consider that the switching device is absolutely
reliable (has reliability one) this switching is
described as perfect switching.
The standby system operates successfully during
(0, t] if the first unit does not fail during the
interval (0, t) or the first unit fails by time t;, t;<t
and the standby unit does not fail during
(0, t;] and does not fail while operating during
(ti, t].

Thus, the reliability function of this system is
t

P(T >t)=e"t +f rie it g7ty e a(t7t) gy

t,=0

=e 1t 41 J'ot e~ ((rs+r)ta+n2(t=t1)) g¢,
-nt t —(n=r+r)t, -t
=e +rlIOe R et

. _ 1—e (r1—r2tr3)t
=e ML e 2L, (—

T —T2+73

:Es—T‘lt N ,.Ie—rgt _Tle—{?‘1+r3)£

ri—T2+73 ri—Tr2+73

Result -12- (Use assumptions 1-3)

Consider 1-out-of-2:F system. Let T, ,T, be the
lifetimes of the original units and U, ,U, be the
lifetimes of the spare units. If Ti~NE(r),
U~NE(r), r =a r;, a > 1. Then partially
energized standby redundancy on component
level is better than that on system level under the
usual stochastic ordering.
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Proof:
r T
R.(t) = e 2", (1 +———e T3t
3 T3

)2
roor
R (t) = e72"L, (1 +—— —e‘z"ﬁ)

3 T3
R.(t) = R(0) iff (1+0oc —oc e7™¥8)2 > 14oc —oc g 273t
After simplification conclude that

Ru(t) = Ry(t) iff &*(1—e ™ ] +a(l—e™ f 20
and the result.

In the second step, we consider the case in
which the reliability of the switching device is
less than one. In this case the switching is
described as imperfect.

To calculate the reliability of the resultant
system, consider the case of two exponentially
distributed units in standby system for which r;
is the failure rate of the normal operating unit, r,
is the failure rate of the standby unit when
operating and r; is its failure rate when in a
standby situation. We also consider that the
switching device is imperfect, has reliability less
than one, and the probability of successful
operation of the switching device is denoted by
P..

The standby system may survive (0, t] if the first
unit does not fail in (0, t] or the first unit fails by
time t;, t;<t, the switching device is able to
activate the standby unit and the standby unit
does not fail during (0, t], is activated at time t;,
and does not fail while operating during (t;, t].
Let T be the lifetime of the resultant system.
Thus, the reliability function of this system is
P(T>t).

w¢e

t
= g Mt ¢ J' E . ne—?'lﬂ_e—'f'sn _pTait—t1) dity
ty=0

& . ( e_rzt _ e—(:l‘I-I-Y‘g)I)

T —ra+13

= —rit +

Result -13- (Use assumptions 1-3)

Consider 1-out-of-2: F system. Let Ty, T, be the
lifetimes of the original units and U; ,U, be the
lifetimes of the spare units. If T,~NE(r),
U~NE(r), r =a r;, a > 1. Then partially
energized standby redundancy on component
level is better than that on system level under the
usual stochastic ordering.

Proof:

: r r
R,(t) = 72", (1 +—P, ——P e 2t

3 r3
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: =2rt |- r r —rat ’
R.(t)=e " |1+—P. ——P. e
r3 I3
R.(t) = Rs(t) iff (1+o< P—ox P e™"3")? = 140 P~
oc ‘DS 6—2?"3t
After simplification we conclude that

RU(D=R(1) iffa’P?(1—e ™ f +aP,(1—e ™ 20
iff and the result.

Conclusions

In this research, we put some conditions
under which we conclude that providing cold-
standby redundancy on component level may be
more effective, according to some types of
stochastic orderings, than that on system level.
The reverse may be true under some other
suggested conditions. If we consider the case of
active redundancy, we conclude that, under
some conditions, active redundancy on
component level is the best according to some
types of stochastic orderings. With respect to
partially energized standby redundancy, we have
the result that, under some conditions, partially
energized standby redundancy on component
level is the best according to the usual stochastic
ordering.

References

1. Ebeling, Charles E. 1997. An introduction to
reliability and maintainability engineering.
The McGRAW-HILL companies, inc.
Gnedenko, B.V.; Belyayev, Yu. and
Solovyev, A.D. 1969. Mathematical
methods of reliability theory. New York:
Academic Press.

Baha- Eldin Khaledi and Subhash Kochar
2002. Stochastic orderings among order
statistics and sample spacings. Indian
Statistical Institute, Delhi Centre 7, SJSS
Marg, New Delhi-110016,India.

Boland, P.J. and EL-Neweihi, E. 1995.
Component  redundancy vs  system
redundancy in the hazard rate ordering.
IEEE Trans. Reliability, 44(4):614-619.
Dykstra, R.; Kochar, S.C. and Rojo, J. 1997.
Stochastic comparisons of parallel systems
of heterogeneous exponential components.J.
Statist. Plann. Inference, 65:203-211.

Bruno Bassan, Fabio Spizzichino and
Subhash Kochar 2002. Some bivariate
notions of IFR and DMRL and related
properties. Indian Statistical Institute, Delhi
Centre 7, SISS Marg, New Delhi-110016,
India.



