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Abstract 

     In this research we concern with the comparison between the two ways of 
providing redundant units for a system:- 
1. Component redundancy. 
2. System redundancy. 
The comparison between these ways is carried out by comparing the random 
variable representing the lifetime of the system resulted from applying component 
redundancy with the random variable representing the lifetime of that resulted from 
applying system redundancy using some types of stochastic orderings, namely: 
(1) usual stochastic ordering, (2) failure rate ordering, (3) likelihood ratio ordering, 
(4) reversed failure rate ordering and (5) mean residual life ordering. 

 

  مقارنة مستويات المجانبة باستخدام ترتيبات تصادفية
 

  شوقي شاكر، علياء عدنان، حبيب محسن
  .العراق-بغداد. ، جامعة بغدادقسم الرياضيات، كلية العلوم

  
 الخلاصة

  :يهتم هذا البحث بالمقارنة بين طريقتين لتجهيز وحدات اضافية لنظام معين     

  )المجانبة على مستوى المركب(المركب  تجهيز الوحدات الاضافية على مستوى- ١

  )المجانبة على مستوى المنظومة(تجهيز الوحدات الاضافية على مستوى المنظومة  - ٢

ان المقارنة بين هاتين الطريقتين تتم عن طريق مقارنة المتغير العشوائي الذي يمثل فترة الحياة للنظام الناتج 

ب مع المتغير العشوائي الذي يمثل فترة الحياة لذلك النظام عن تجهيز الوحدات الاضافية على مستوى المرك

  :الناتج عن تجهيز الوحدات الاضافية على مستوى المنظومة باستخدام بعض الترتيبات التصادفية منها

ترتيب نسبة الفشل -٤ ترتيب نسبة الامكانية،- ٣ ترتيب نسبة الفشل،-٢ الترتيب التصادفي الاعتيادي،- ١

  .ب متوسط الحياة المتبقيةترتي- ٥ المعكوسة،

  
Introduction 
     Reliability of a unit (component or system of 
components) is defined as its ability to perform 
its intended function for a specified interval of 
time and in stated environmental conditions. 
Reliability subject deals with improving the 
performance of devices. 

In this research, we present the method of 
increasing reliability known redundancy; which 
is a technique for improving reliability via 
connecting one or more additional units in 
parallel with the original ones. These additional 
units, which may be identical or not to the 
original ones, are called, spare (redundant) units. 
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When the original unit fails, the spare unit 
replaces it and carries out its function. 
We consider three basic types of redundancy: 

(1) Active redundancy (hot or parallel 
redundancy) [1]. 

(2) Cold-standby redundancy (or passive 
redundancy) [1]. 

(3) Partially energized standby redundancy 
[2].  

Two ways of providing each type of redundancy 
are studied: (1) component redundancy, that is, 
providing component(s) as spare(s) to each 
individual component in the system and (2) 
system redundancy, that is, providing system(s) 
as spare(s) to the whole system. 
In this research, we have compared between 
component and system redundancy using some 
of the stochastic orderings. In some of these 
results, we have assumed the redundant units to 
be identical with the original unit. In the results 
concerning cold-standby redundancy and 
partially energized standby redundancy, we also 
take account of the case of perfect switching and 
that of imperfect switching. 

Notation 
     iid          independent, identically distributed. 

 
Ti:n the ith order statistic, Ti:n=ith min {T1, T2, 
…, Tn} 
τk-n:G the lifetime random variable of the k-out-
of-n: G system of n components whose 
independent lifetime random variables are T1, 
T2, …, Tn 
τk-n:F the lifetime random variable of the k-out-
of-n:F system of n components whose 
independent lifetime random variables are T1, 
T2, …, Tn 

( ) { }nnFn UTUTUTUT /\,,/\,/\min/\ 2211:1 L−τ
( ) { }nnGn UTUTUTUT ++++− ,,,max 2211::1 Lτ  
( ) { }nnFn UTUTUTUT ++++− ,,,min 2211::1 Lτ  
( ) ( )UT FnFn ::1::1 −− +ττ  
{ } { }nn UUUTTT ,,,min,,,min 2121 LL +  
( ) ( )UT GnGn ::1::1 −− +ττ  
{ } { }nn UUUTTT ,,,max,,,max 2121 LL +  

( ) { } 321 /\/\ TTTTτ  
R(t)             the reliability of the unit. 
r(t)              the failure rate function. 
f(t)              the density function. 

( )tr~  the reversed failure rate function of the life 
distribution F. 
µF (t) the mean residual life function. 
Let T1 and T2 be random variables representing 
the lifetimes of two different units, the reliability 
function, distribution function, density function 
and mean residual life function of Ti are 
respectively Ri, Fi, fi, and µFi, i=1,2. Comparison 
between T1 and T2 based on functions such as: 
reliability function, failure rate function, mean 
residual life function and other suitable 
functions of probability distributions usually 
establish partial orders between them. We call 
them as stochastic orderings. 
A random variable T1 is said to be stochastically 
smaller than another random variable T2 
(T1≤stT2) if    R1 (t) ≤ R2 (t); for all t.    [3] 
And T1 is said to be smaller than T2 in the 
failure rate ordering sense (T1≤frT2) if 
r1 (t) ≥ r2 (t); for all t.   [4] 
T1 is said to be smaller than T2 in the likelihood 

ratio ordering sense ( ) ( )
( )tf
tfiffTT lr

1

2
21 ≤ is 

increasing in t.  [5] 
T1 is said to be smaller than T2 in 
the reversed failure rate ordering sense 
(                                               for all t. [5] 
T1 is said to be smaller than T2 according to 
mean residual life (MRL) ordering 

0)()()(
2121 ≥∀≤≤ tttifTT FFmrl µµ . [6] 

The definitions of failure rate ordering and 
reversed failure rate ordering have equivalent 
statements as given in the next theorem. 

Theorem  
Let T1 and T2 be two absolutely continuous 
random variables, [4,5]. 

(i) T1 ≤fr T2 iff 
)(
)(

1

2

tR
tR

 is an increasing 

function of t. 

(ii) T1 ≤fr T2 iff 
)(
)(

1

2

tF
tF

 is an increasing 

function of t. 
In the next theorem, we present the relations 
among some of the stochastic orderings. 
Theorem  
Let T1 and T2 be two absolutely continuous 
random variables, [5,6]. 

(i) T1 ≤lr T2⇒T1 ≤fr T2 ⇒T1 ≤st T2 
(ii) T1 ≤fr T2⇒T1 ≤mrl T2 
(iii)  T1 ≤lr T2⇒T1 ≤rf T2 ⇒T1 ≤st T2 
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In our study, we assume the following:  
1. The lifetime random variables of all the 

units are independent. 
2. The lifetime random variables of the 

systems in system level redundancy are 
independent. 

3.  The reliability of every unit is not 
affected by the type of redundancy. 

Active redundancy 
     In the case of active redundancy all the units 
(the original and the spare units) are functioning 
simultaneously. Assume that the lifetimes of the 
original and the spare units are denoted by T1, T2 
with reliability functions R1 and R2, 
respectively. The lifetime of the system is the 
lifetime of the best of its units. Thus, if Ta 
denotes the lifetime of the resultant system, then 
  Ta=T1∨T2 

and 
  Ra (t) = P (Ta > t)  

           =1- P (Ta > t) 
          =1- P (T1 > t). P (T2 > t), 
since the unit lifetimes are  independent. 
Ra (t) =1- (1-R1 (t)). (1-R2 (t)) 
Figure 1 below depicts this type of redundancy. 
 
   
 
 
 
 
 
 

Fig. 1: Active Redundancy 
Below we compare between component and 
system level in the case of active redundancy. 
Under certain conditions and considering 1-out-
of-n:F system Boland and EL-Neweihi, 1995 [4] 
proved that if T1 ,T2 ,…,Tn are the lifetime 
random variables of the original units and U1 ,U2 
,…,Un are the lifetime random variables of the 
spare units such that Ti and Ui are iid, 1≤ i ≤ n, 
then 

 
Since, failure rate ordering implies mean 
residual life ordering, then the following claim 
is valid. 

Claim 
     Under the same conditions of Boland and 
EL-Neweihi and considering 1-out-of-n:F 
system if T1, T2,…,Tn are the lifetimes of the 
original units and U1, U2, ...,Un are the lifetimes 
of the spare units such that Ti and Ui are iid. 
Then  

 
If all units in the redundant group (the original 
and the spare units) have iid lifetimes then we 
prove, in the next result, that active redundancy 
on component level is better than active 
redundancy on system level in the likelihood 
ratio ordering sense when the original system is 
1-out-of-2:F system. 

Result-1- (Use assumptions 1-3) 
Consider 1-out-of-2: F system. Let T1, T2, U1, 
U2 be iid lifetimes with common reliability 
function R, where T1, T2 are the lifetimes of 
the two original units and U1, U2 are the 
lifetimes of the two spare units. Then 

 
Figure 2 below represents active redundancy on 
system and component levels). 
 

 
              (a)                                          (b) 

Fig. 2: a) System redundancy, b) component 
redundancy 

Proof: 

     It suffices to show that
)(
)(

tf
tf

s

c is an increasing 

function of t. 
Where 

         )})(({)( :21 tUTp
dt
dtf Fc >∨−= −τ   

                   ( ) ( )( ),)(11.)(1).(4 2trtrtf −−−=  

where )()( tR
dt
dtf −=  

and 

 
Letting  

 

 
We see that, 

   1

   2
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This completes the proof. 
For the general case when the original system is 
1-out-of-n: F system, we put condition under 
which the above result is still true as shown 
below. 
Result -2- (Use assumptions 1-3) 

Consider 1-out-of-n: F system. Let T1, T2,…, 
Tn, U1, U2,…, Un be iid lifetimes with 
common reliability function R, where T1, 
T2,…,Tn are the lifetimes of the n original 
units and U1, U2,…,Un are the lifetimes of the 
n spare units. Then  

 
Figure 3 below represents active redundancy on 
system and component levels). 

 
               (a)                                            (b) 

Fig. 3: a) System redundancy, b) component 
redundancy 

Proof: 

It suffices to show that
)(
)(

tf
tf

s

c is an increasing 

function of t. 
Where 

 

  
( ) ( )( ) ( ) ( ) ( )( )tftRtftRtRn n .2.2 12 −−=

−  

)()( tR
dt
dtfwhere =  

           

              
and 

  

           

           
Letting 

 

 

 
To show that g(t) is an increasing function of t, 
we must show that 0)( >tg

dt
d  

But 

    

 

 
i.e., we must show that 

0))(2))((1(
)()())(2))((1)((

))(2))((1))((1)((
))(2))((1))((1)((

1

11

2

2

>−−

−−−

+−−−

−−−−

−

−−

−

−

n

nnn

nn

nn

tRtR
tRtnftRtRtf

tRtRtRtf
tRtRtRtnf

 

Notice that, 

 
 
Since,  
and that, 

 

 
under the condition that 

 
This completes the proof. 

Note 

Since likelihood ratio ordering implies mean 
residual life ordering and reversed failure rate 
ordering, then we can say that the previous 
results are also true under the mean residual 
life ordering and the reversed failure rate 
ordering. 

Now, consider the parallel-series system of three 
units whose lifetime is defined by {T1∧T2} ∨T3, 
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where T1, T2 and T3 are its components 
lifetimes, T1, T2 and T3 are iid exponentially 
distributed random variables with parameter r, 
then active redundancy on component level is 
better than that on system level in the usual 
stochastic ordering sense as proved in the next 
result. 

Result -3- (Use assumptions 1-3) 
Consider the parallel-series system of three 
units. If T1, T2, T3, U1, U2, U3 are all iid 
lifetimes whose common distribution is 
exponential with parameter r. Ti and Ui are the 
lifetimes of the ith original and the ith spare 
unit, respectively. Then 

 
Figure 4 below represents active redundancy on 
system and component levels). 

 
               (a)                                            (b) 

Fig. 4: a) System redundancy, b) component 
redundancy 

Proof: 
     We have, 

 

 

                    
The wanted result can be obtained by proving 
that Rs(t) ≤  Rc(t); i.e., by showing that  

 
 

Simplifying this, we get 

 
Since the last inequality is always true, the proof 
is completed. 
In the previous results we have assumed that the 
spares and the original units have iid lifetimes. 
Now, we consider the case when the spare units 
are not identical with the original ones.  

Result -4- (Use assumptions 1-3) 
Consider 1-out-of-2: F system. Let T1, T2 be 
iid lifetimes of the original units where Ti is 
Weibull random variable with shape 
parameter α and scale parameter r. Let U1, U2 

be iid lifetimes of the spare units where Ui is 
Weibull random variable with shape 
parameter α and scale parameter r*. Then 

 
Figure 5 below represents active redundancy on 
system and component levels). 

 

               (a)                                            (b) 
Fig. 5: a) System redundancy, b) component 

redundancy 
Proof: 
     We have, 

 

    

    

Hence, 

 

After simplifications we get: 

 

Which holds iff (ert)α≥1. 

This is always true. 

If we consider 1-out-of-2:F system whose 
original unit lifetimes are iid exponentially 
distributed with parameter α and whose spare 
unit lifetimes are iid exponentially distributed 
with parameter 0.5 α, the previous result still 
valid using the reversed failure rate ordering as 
the following result shows: 

Result -5- (Use assumptions 1-3) 
Consider 1-out-of-2: F system. Let T1, T2 be 
iid lifetimes of the original units where Ti is an 
exponential random variable with parameter α. 
Let U1, U2 be iid lifetimes of the spare units 
where Ui is an exponential random variable 
with parameter 0.5 α. Then 

 

Proof: 
     We have, 
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We need to show that g(t) is increasing in t. 

The numerator of 

 

 
Note that, at t=0 the left hand side is 4 and the 
inequality above is true. 
Now if we show that the expression in the left 
hand side is an increasing function we are 
through. 
The derivative of the left hand side expression is 
(1.5 α (e0.5αt-e-1.5αt)) which is positive always. 
Thus, the left hand side expression is an 
increasing function of t, and since it is equal to 4 
at t=0, then it is always greater than 4 as 
required 

Cold- Standby redundancy 
     In the case of cold-standby redundancy, one 
unit is always in operation (the original unit) and 
the other units (the spare units) are not operating 
they are in the standby position. It is assumed 
that the standby redundant units neither degrade 
nor fail while in standby state. When the standby 
redundant unit takes the place of the failed unit 
in the redundant group (the original unit and the 
spare unit), its state is new. 
To replace the failed unit by the standby one we 
need a switching device as shown in figure 6. 

 
Fig. 6: Cold-Standby Redundancy 

Here, we discuss cold-standby redundancy on 
component and system levels using an automatic 
switching device, which instantaneously inserts 
the next unit when the original unit has failed. 

In the first step, we assume that the switching 
device is absolutely reliable (has reliability 
equal to one) this switching is described as 
perfect switching. 

To derive the reliability function of the resultant 
system, where the switching is absolutely 
reliable, assume that T1 and T2 are independent 
lifetimes, where T1 represents the operating unit 
lifetime and T2 represents the lifetime of the 
standby unit. Let Fi be the distribution function 
of Ti, i=1,2 and Tc= T1+ T2 be the lifetime of the 
resultant system, that the lifetime of the original 
unit plus that of the cold-standby unit. 

 

                    
But, P(T1+T2≤t) is the distribution function of 
the sum of the two independent random 
variables T1 and T2, so it is given by the formula 

 
Thus, 

           
In the next result, we prove that if the spare units 
do not match the original units and the original 
system is 1-out-of-n: G system, then cold-
standby redundancy on system level is better 
than that on component level in the usual 
stochastic ordering sense. 

Result -6- (Use assumptions 1-3) 
Consider 1-out-of-n: G system. Let T1, T2,…, 
T3, be the lifetimes of the original units and let 
U1, U2,…, Un be the lifetimes of the spare 
units. Then 

 
Figure 7 below represents cold-standby 
redundancy on system and component levels). 

 
                 (a)                                                (b) 
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Fig. 7: a) System redundancy, b) component 
redundancy 

Proof:   
Obviously, we have to show that the inequality 

 

holds. 
As it is obvious that for any two finite sets of 
real numbers A and B,  

max{A+B} ≤ max {A}+ max{B} 

and since, 

τ1-n:G(T) = max {T1, T2,…, T3} 
and 

τ1-n:G(U) = max {U1, U2,…, U3} 

One may conclude that 

τ1-n:G(T+U) ≤ τ1-n:G(T) + τ1-n:G(U) 

This means that the reliability function of 
the system whose lifetime is τ1-n:G(T+U) is 
not greater than that of the system whose 
lifetime is τ1-n:G(T) + τ1-n:G(U). 
Consider the case of 1-out-of-2: F system whose 
original unit lifetimes are iid exponentially 
distributed with parameter α and whose spare 
unit lifetimes are iid exponentially distributed 
with parameter 0.5α. In the next result we show 
that cold-standby redundancy on component 
level is better than that on system level in the 
likelihood ratio ordering sense. 
Result -7- (Use assumptions 1-3) 

Consider 1-out-of-2:F system. Let T1, T2 be iid 
lifetimes of the original units. Ti is an 
exponential random variable with parameter α. 
Let U1, U2 be iid lifetimes of the spare units. Ui 
is an exponential random variable with 
parameter 0.5α. Then 

 
(Figure 8) below represents cold-standby 
redundancy on system and component levels). 

 
                 (a)                                                (b) 

Fig. 8: a) System redundancy, b) component 
redundancy 

Proof:   
Define the distribution function of τ1-2:F(T) by 
(1-e-2αt) and that of τ1-2:F(U) by (1-e-αt) we have, 

 

                    

                    

                   
and 

 

 
The distribution function of Ti+ Ui is defined by: 

 

                            
Thus, 

 

 

                                
and 

 

 

let, 

 

 
We need to show that g(t) is an increasing 
function of  t. 

The numerator of ( ))(tgdt
d

  is given by: 

1.5e-2.5αt+1.5e-3.5αt -3e-3αt and is greater than 0 if 
eαt-2e0.5αt+1≥0 which is always true since eαt-
2e0.5αt+1 = (e0.5αt-1)2 ≥ 0 always.    
When the original system is 1-out-of-n:F system 
with unit lifetimes are iid exponentially 
distributed with parameter α and the spare unit 
lifetimes are iid exponent-tially distributed with 
parameter 0.5 α, then the previous result is still 
true under certain condition as shown below. 

Result -8- (Use assumptions 1-3) 



Mohsin, et. al.                                               Iraqi Journal of Science, Vol.51, No.٣, 2010, PP.493-503 
 

 500

Consider 1-out-of-2: F system. Let T1, T2,…, 
Tn be iid lifetimes of the original units. Ti is an 
exponential random variable with parameter α. 
Let U1, U2,…, Un be iid lifetimes of the spare 
units. Ui is an exponential random variable 
with parameter 0.5 α. Then 

 
Figure 9 below represents cold-standby 
redundancy on system and component levels. 
 

 
 
                 (a)                                                (b) 

Fig. 9: a) System redundancy, b) component 
redundancy 

 
Proof:   
Define the distribution function of τ1-n:F(T) by 
(1-e-nαt) and that of τ1-n:F(U) by(1-e-0.5nαt) we 
have, 

 

 

 

 
and 

      

                  
The distribution function of Ti+ Ui is defined by: 
 

 

                          
Thus, 

 

           

            
and 

    

 
Let, 

       

 
 

   
)1(
)1(.)2( 5.0

5.0
15.0

tn

t
nt

e
ee α

α
α

−

−
−−

−
−

−=  

To prove the required result, we need to show 
that g (t) is an increasing function of t. 
Letting, 

       
and 

       

        
It is obvious that )(1 tL is an increasing function 
of t. 
Now, by proving that )(2 tL is an increasing 
function of t we get the required result. 

The numerator of )(2 tL
dt
d

is 0.5αe-0.5αt - 

0.5αe-0.5α(n+1)t - 0.5nαe-0.5nαt + 0.5nαe-0.5α(n+1)t 

We can notice that 

(0.5nαe-0.5α(n+1)t - 0.5αe-0.5α(n+1)t) 
                      = 0.5αe-0.5α(n+1)t(n-1)>0 
and that 
     (0.5αe-0.5αt - 0.5nαe-0.5nαt) > 0 if  
                    (1- ne-0.5 (n-1) α t) > 0  
 

i.e., if  
)1(

)ln(2
−

>
n

nt
α

  

Thus, 0)(2 >tL
dt
d under the condition that 

)1(
)ln(2

−
>

n
nt

α
 and L1(t) is increasing for all t. 

Hence, g(t) is an increasing function of t under 

the condition 
)1(

)ln(2
−

>
n

nt
α

 and this completes 

the proof. 
For 1-out-of-n:F system, suppose that the 
lifetimes of all the units in the redundant group 
(the original units and the spare units) are iid 
random variables with common distribution 
function F(t)=1-e-rt, then cold-standby 
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redundancy on component level is better in the 
sense of likelihood ratio ordering.                                                                            

Result -9- (Use assumptions 1-3) 
Let T1, T2,…, Tn be the lifetimes of the original 
units and U1, U2,…, Un be the lifetimes of the 
spare units. And suppose that all the lifetimes 
are iid exponentially distributed with parameter 
r. Then 

 
Proof:   
Define the distribution function of τ1-n:F(T) by 
(1-e-nrt). The distribution function of τ1-n:F(U) is 
defined similarly. 
We have, 

 

          

          

         
and, 

        

                   
 
The distribution function of Ti+ Ui is defined to 
be 

 

                      
Thus, 

 

           

          
and, 

 
Let, 

 
Which is an increasing function of t and hence 
the result.                        
In the second step, we consider the case in 
which the reliability of the switching device is 
less than one. In this case the switching is 
described as imperfect. 

To calculate the reliability of the resultant 
system, consider the case of two units in standby 
system the unit lifetimes are iid exponentially 
distributed random variables with parameter r, 
let T be the lifetime of the resultant system. Let 
A1 denotes the event that the switching device 
fails and A2 denotes the event that the switching 
device operates successfully and let Ps be the 
probability of successful operation of the 
switching device. Denote by Q1 the unreliability 
of the original unit with successfully operating 
switching and by Q2 the unreliability of the two 
units standby system with successfully operating 
switching. Then from the formula for total 
probabilities, and since Q2 is a statement about 
the convolution of the distributions of the two 
units we have, 

 
 

 
Thus, 

 
Result -10- (Use assumptions 1-3) 
Let the spare and the original unit lifetimes be 
iid exponentially distributed random variables 
with parameter r. Then 

 

Where T=(T1, T2, …,Tn) be the vector of the 
original unit lifetimes and U=(U1, U2, …,Un) be 
the vector of the spare unit lifetimes. 

Proof:   
Clearly, the distribution function of τ1-n:F(T) and 
τ1-n:F(U) is (1-e-nrt), then the reliability function 
of τ1-n:F(T) + τ1-n:F(U) is defined as: 

 
 

 
The reliability function of Ti+ Ui is defined as: 

 
Thus, 

 

                    
Let, 
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The numerator of ( ))(tgdt
d

is given by: 

nPsr(1+Psrt)n-1.(Psrt-Psrt), this function is 
positive. 
Obviously, g(t) is an increasing function of t and 
this completes the proof.  

In the next result we prove that, if 
srP

t 1
>  then 

the previous result is still true when the 
comparison is carried out according to the 
likelihood ratio ordering. 

Result -11- (Use assumptions 1-3) 
Let the spare and the original unit lifetimes be 
iid exponentially distributed random variables 
with parameter r. Then 

 
Proof:   
    We have, 

 

              
and, 

  

           
To prove that, τ1-n:F(T) + τ1-n:F(U) ≤lr τ1-n:F(T+U)    
it is enough to show that  

( )[ ]
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Simplifying g(t) we get, 

 

After simplification, the numerator of ( ))(tgdt
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will be 

 
Therefore, g(t) will be increasing if the 
numerator is positive which is reduced to 

 

Now, assuming that
srP

t 1
>  we have, 

 
Which is positive always. 

Partially Energized Standby redundancy 
     In the case of partially energized standby 
redundancy, the spare units are in a partially 
energized state up to the instant they replace the 
primary units and then begin to operate in 
normal operating conditions. During period they 
are in standby state, they can fail but their 
probability of failure is less than that while in an 
operating state. 
Here, we discuss partially energized standby 
redundancy on component and system levels 
using an automatic switching device, which 
instantaneously inserts the next unit when the 
original unit has failed. 
In the first step, we consider the case of two 
exponentially distributed units in standby system 
for which r1 is the failure rate of the normal 
operating unit, r2 is the failure rate of the 
standby unit when operating and r3 is its failure 
rate when in a standby situation. Also, we 
consider that the switching device is absolutely 
reliable (has reliability one) this switching is 
described as perfect switching. 
The standby system operates successfully during 
(0, t] if the first unit does not fail during the 
interval (0, t) or the first unit fails by time t1, t1<t 
and the standby unit does not fail during  
(0, t1] and does not fail while operating during 
(t1, t]. 
Thus, the reliability function of this system is 
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Result -12- (Use assumptions 1-3) 
Consider 1-out-of-2:F system. Let T1 ,T2 be the 
lifetimes of the original units and U1 ,U2 be the 
lifetimes of the spare units. If Ti~NE(r), 
Ui~NE(r), r =α r3, α > 1. Then partially 
energized standby redundancy on component 
level is better than that on system level under the 
usual stochastic ordering. 
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Proof:   

 

 
 

After simplification we conclude that 

Rc(t) ≥ Rs(t) iff ( ) ( ) 011
222 33 ≥−+− −− trtr ee αα  

and the result. 
In the second step, we consider the case in 
which the reliability of the switching device is 
less than one. In this case the switching is 
described as imperfect. 
To calculate the reliability of the resultant 
system, consider the case of two exponentially 
distributed units in standby system for which r1 
is the failure rate of the normal operating unit, r2 
is the failure rate of the standby unit when 
operating and r3 is its failure rate when in a 
standby situation. We also consider that the 
switching device is imperfect, has reliability less 
than one, and the probability of successful 
operation of the switching device is denoted by 
Ps.  
The standby system may survive (0, t] if the first 
unit does not fail in (0, t] or the first unit fails by 
time t1, t1<t, the switching device is able to 
activate the standby unit and the standby unit 
does not fail during (0, t1], is activated at time t1, 
and does not fail while operating during (t1, t]. 
Let T be the lifetime of the resultant system.  
Thus, the reliability function of this system is 
P(T>t). 

 

 

Result -13- (Use assumptions 1-3) 
Consider 1-out-of-2: F system. Let T1, T2 be the 
lifetimes of the original units and U1 ,U2 be the 
lifetimes of the spare units. If Ti~NE(r), 
Ui~NE(r), r =α r3, α > 1. Then partially 
energized standby redundancy on component 
level is better than that on system level under the 
usual stochastic ordering. 

Proof:   

 

 

 
After simplification we conclude that 
Rc(t)≥Rs(t) iff ( ) ( ) 011

2222 33 ≥−+− −− tr
s

tr
s ePeP αα  

iff  and the result. 

Conclusions 
     In this research, we put some conditions 
under which we conclude that providing cold-
standby redundancy on component level may be 
more effective, according to some types of 
stochastic orderings, than that on system level. 
The reverse may be true under some other 
suggested conditions. If we consider the case of 
active redundancy, we conclude that, under 
some conditions, active redundancy on 
component level is the best according to some 
types of stochastic orderings.  With respect to 
partially energized standby redundancy, we have 
the result that, under some conditions, partially 
energized standby redundancy on component 
level is the best according to the usual stochastic 
ordering.   
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