Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx
DOI: 10.24996/ij5.2026.67.1.38

/-\—/
Iraqi
Journal of

Science

ISSN: 0067-2904

Enhanced Fractal Image Compression using Quadtree Partitioning and
Double Moment Descriptors

Israa S. Rasheed*, Bushra A. Sultan
Department of Computer Science, College of Science, University of Baghdad, Baghdad, Iraq

Received: 11/9/2024 Accepted: 15/1/2025 Published: xx

Abstract

Fractal Image Compression (FIC) is a robust method for reducing multimedia
applications' data storage requirements and communication costs. This research
introduces a partitioning strategy based on quadtree as variable length block
partitioning with Prewitt Operator as a criterion for guiding the partitioning decision.
The proposed system achieves significant time savings while increasing the
Compression Ratio and identifies a near-optimal PSNR compared with the previous
studies. The increase in PSNR reached 25% at its highest value while maintaining the
compression ratio, which increased to 30% without a significant change in the time
required for implementation. Additionally, a novel set of moment descriptors is
introduced that developed in integration with the last set to highlight specific block
regions, enhancing overall computational efficiency. The system operates on color
images with different image sizes 512 x 512 pixels and 256 x 256 pixels, and color
depth is 24 bits. This was also compared to verify the superiority of the results by the
image size in pixels. Experimental findings validate the efficacy of the enhanced FIC
algorithm, demonstrating enhanced encoding speeds and improved image quality in
the reconstructed output.

Keywords: Fractal image Compression, Quadtree, Prewitt, Block Indexing, Moment
Descriptor.

il (a7 ga3al) Cluagll g Prewitt Jidia Ao ail8 Quadtree Ao adina (Sl ads
:\:Uyaﬂ\ ssal) s

Ol 2 Syl ,* 1l all el

Lél)’d\ ¢Alars calar daals ‘fajﬁﬂ\ < ‘ujmla.n (5‘53: fa.ué

dLadal)
& etV CallSsy illall (385 clllie Qi dugh Ayl 8 (FIC) duusll gl Jaia)
ndia Johay A€ aui€ Quadtree e adiad asdi Zoadiliud Lahall 03a 238 . 23e%al) Jailessl) ciliulas
dria Lo asag gl 1S 1y i - ikl AUl (Basn ol D8 dsagil HLaaS Prewitt Jade as
() A el wie 725) sliagea) L) st (3 5l by Bl Al A5lae Aullia 4ud
Alayl .l Gl gl (8 € s 090 430 @l Ally caral) dus e Bliad) ae
Bl deganal) pa JalSll layssha o5 () alladl] Cilaasl (o 5uaa desana al o cdlly)

“Email: esraa.salem2101m@sc.uobaghdad.edu.iq

mailto:esraa.salem2101m@sc.uobaghdad.edu.iq

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Jundn 41 Ajlae L coai L Alelall Aulaall el 3 Las (A A5 hle o sgcall Ll
512 X 512 a5 dilida Hsum plaali digle joum o alaill Jans Cum dilide gem alaal o plil
Cafi . JuSlls sysaall anal iy il Boin e Ganall . 24 G5l 3acy Ju 256 X 256 5 JuSs
& A Bypem Bagag Allne Jrafi Sloje mans Lase cAiuaall FIC Zasj s Aullad dppatll il
<05l alaal) il
L.Introduction
The daily interest in multimedia usage, such as digital images and video, has led to vast
development in research into compression techniques. The growth of better-quality and lower-
priced picture acquisition technologies has caused tremendous attention to both the size and
resolution of the image and, as a result, the construction of optimal compression methods.
Although the capacity for storage and bandwidth of transferring has accordingly increased in
recent years, many applications still need compression [1].
Image compression reduces the required bits to represent an image by efficiently exploiting
redundancy in the image itself. Redundancy utilization can be purely statistical or combined
with psycho-visual effects [2].
Image compression schemes are generally categorized as lossless and lossy compression
schemes. A lossless compression scheme is a compression with no error where the original
data can be retrieved after decompression. A low compression ratio is provided by this scheme,
but it has several applications, like image compression systems used in the compression of
medical images, in which it is unacceptable to lose any information. In lossy compression,
during the compression process, some parts of the original data are wasted; hence, after the
decompression process, an approximate amount of the original data is retrieved [3]. The goal
of an image compression algorithm is to employ redundancy in an image so that the smallest
number of bits still represents the image, nevertheless maintaining the acceptable visual quality
of the decompressed image [4] [5]. Storing images pixel by pixel is the simplest way, but it is
complicated. A larger image requires more storage space. Instead of storing pixel values
directly, different encoding schemes are acquired. These encoding systems include Huffman
encoding and GIF. Both are lossless schemes. Other algorithms cause the image to lose data,
but they reduce storage space. These algorithms include Fourier transform, cosine transform,
JPEG, and fractal image compression [6].
This work proposes an improved image compression strategy that employs Fractal Image
Compression (FIC), utilizing symmetry prediction and block indexing with a new set of
moment descriptors. The designed FIC employs a quadtree as a variable range block portioning
mechanism, and the partitioning decision is based on the Prewitt Operator. The precise
algorithm used is fractal with block indexing. This is applied on the well known color images
with different image sizes in which size 512 x 512 pixels and size 256 x 256 pixels, and a color
depth of 24 bit. The metrics used to evaluate performance are mean square error (MSE) and
peak signal-to-noise ratio (PSNR) measured in dB. Compression Ratio (CR) and bit rate (BR)
parameters were also used.
The following subsequent sections include: Fractal Image Compression, Related Work, Fractal
image compression using block indexing technique, Test Results, Conclusion and Future work.

II.Fractal image compression
The partition iterated function system (PIFS), on which fractal image coding is based,
divides an original input image into a collection of non-overlapping sub-blocks, known as
range blocks (R), that collectively cover the entire image. Every range block has a size of N X
N. In addition, the original picture is divided into a collection of additional overlapping sub-
blocks known as domain blocks (D), each of which has a size double that of a range block. It
is not required for the domain blocks to fill the entire image; they are free to overlap [7].

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Second, to make each domain block the same size as the range block, they are all shrunk using
pixel averaging or down sampling. An extended domain pool is created by applying eight
symmetrical transformations (rotations and flips) to each contracted domain block. This is
represented as follows: for every range block, we search the domain pool to find the best-
matched domain block D with a contractive affine transformation. The extremely
computationally complex encoding process is the issue with fractal coding [8]. The optimal
fitting discovery of range blocks and multiple domain blocks takes up most of the encoding
time, making fractal encoding a costly procedure that severely restricts the algorithm's practical
applications.

Although it has many advantages, Fractal image encryption implementation has several
common problems. These problems have been treated as challenges in the appropriateness of
FC and today's popular compression technology. For further research, these challenges are the
motivation in both areas and can be listed as follows [9] [10]:

a) Create range and domain blocks by employing various partitioning methods.

b) The process of matching range-domain field blocks to find the best likeness between them;
then,, measurements are used to determine the minimum distortion.

¢) Reduce encoding time by adopting acceleration techniques to reduce the time required.

d) Reduce the domain pool to reduce calculations in the matching process.

III. Related Work

Geroge [11] proposed a method that uses a moment indexing block and halting condition to
speed up the matching process for FIC. The author suggests using an extra filtering and
partitioning scheme to speed up and boost the compression ratio. This method doubles the
encoding speed by ten times without sacrificing image quality.

Al-Hilo and George propose expediting the compression of fractal-colored images [12]. To
boost the compression rate and utilize moment characteristics as a descriptor for range and
domain blocks, they substitute the (Y, U, V) component for the (R, G, B) component with a
24-bit/pixel resolution. This expedites the fractal encoding process. The speed that is being
offered is around 96% faster than regular FIC.

Kovacs [13] created another classification using the following two parameters: Normalized
Root Mean Square Error (NRMS) and Approximate First Derivative (AFD). The similarity
between picture blocks is measured using these metrics.

A technique that was previously proposed in [14] was improved by George and Al-Hilo [15].
Using DPCM and shift coding to encode the range mean and scale parameters results in a 3%
increase in compression ratio. Furthermore, this technique improves the PSNR by around 5.3%
and reduces encoding time by 66%.

Additionally, George and Al-Hilo [14] suggested a speed-up strategy that used first-order
centralized moments with the predictor to minimize the number of symmetry transformations
of the domain block from 8 to 1. This predictor provides the necessary block transform to
achieve optimal range-domain matching and minimize the encoding time. Compared to the
usual approach, this method speeds up the encoding process by almost seven times while
maintaining the compression ratio and PSNR.

By using the correlation information feature to create range-domain block matching near
neighbors in the space, Wang et al. [7] established a fast FC technique. With the preservation
of the encoding time and compression ratio, this characteristic produces a superior
reconstruction of picture quality compared to previous fast fractal coding research.

Hasan and Wu [16] introduced the Adaptive Fractal Image Compression method (AFIC) based
on multiple strategies to reduce the complexity of the matching process. The strategies are
Adaptive Quadtree Partitioning Technique (AQPT), Zero Mean Intensity Level (ZMIL),
Reducing Domain Image Size (RDIS), Range Exclusion (RE), and Variance Domain Selection

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

(VDS). These strategies work together to improve the compression ratio while also reducing
encoding time. Compared to previous comparable research, this approach reduced time while
decreasing reconstructed image quality.

Wang and Zheng [17] presented a novel FIC schema in which the Absolute Pearson's
Correlation Coefficient (APCC) is utilized to categorize the range and domain blocks. Further,
they grouped the domain blocks into groups using the APCC to accelerate the matching process
between range and domain blocks.

Wang et al. suggested a rapid fractal encryption technique using Standard Deviation (STD) and
Discrete Cosine Transform (DCT) [18] To restrict searches in the domain pool. They also
employed the Auxiliary Encoding Algorithm (AEA) to increase the reconstructed image
resolution if the range block size was large. They compared the suggested algorithm's
performance to the entire FIC search.

Valarmathi et al. [19] introduced a technique to categorize domain blocks within three groups
and approved the Pearson correlation coefficient with fic in 2015. Furthermore, this method by
[8] employs an iteration-free approach. This approach has been used for grayscale pictures.
Jafarzadeh et al. had previously offered a strategy that used local binary features, clever STD
thresholding, and Humming distance approaches [20]. Compared to the complete search
approach, this method minimizes FIC encoding time and decomposes the rebuilt image's PSNR
value.

Scientific researchers have examined quadtree coding, one of the most prominent hierarchical
segmentation-based coding schemes [21]. It iteratively separates the picture into basic
geometric areas. In general, coding systems based on hierarchical segmentation (e.g., quadtree,
HYV) yield superior compression performance than fixed-block partitioning-based systems
(e.g., JPEG, subband coding, classical vector quantization) [22].

The grayscale image was divided by Veenadevi and Ananth [23] into non-overlapping blocks,
according to the threshold value and Quadtree decomposition, to obtain fractal image
compression. These methods are applied to compress satellite images using threshold values
and Huffman coding to encode and decode the image. Pandey and Seth [24] proposed a
compression method for the fractal images using quad-tree decomposition. Rationally, in the
Quadtree method, the block size changed due to the image features and partitioning into blocks
with different lengths [25]. Quadtree (QT) is used to enhance IFS performance. It is used as a
variable range block partitioning scheme instead of a fixed one. The criteria guiding the
decomposition process is the information richness of the region; it was used to decide the initial
partitioning of the range blocks [26].

IV. Fractal image compression using block indexing technique

An improved fractal image compression (FIC) scheme was presented by Sultan et al. [26].
This scheme suggests using zero-mean terms for range blocks by applying moment descriptors,
which speed up the block-matching process through symmetry prediction and block indexing.
The system uses the quadtree method to partition range blocks as variable partitioning, with
the decision based on Sobel-based edge magnitude and contrast of the block. The system also
introduces a new series of moment descriptors to emphasize the weights of different parts of
each block. Additionally, it investigates the performance of different combinations of double
moment descriptors and presents a fast computational technique to calculate the attended
moments to enhance the overall computation cost [25]. The following subsections will
summarize the basic steps outlined by Sultan et al. and utilized in this research, coupled with
modified steps presented in this paper.
1. Zero-mean constructed blocks by IFS coding
IFS coding using zero-mean block matching replaces block offsets with average brightness
values. Therefore, that adjustment informed the creation of equations for particular IFS

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

mapping steps. According to Sultan et al. (2018), the contractive affine approximation for a
range block with pixel values (r0,.....,rn-1) and a domain block with pixels (d0,.....,dn-1) is
[26]:

n-—1
@ = Z rldl - nf(i (1)
=
- 2
S noz (2)
X2 = no? + s?no? — 2s¢ (3)

Where 1; is the most appropriate approximated value of the /™ byte value of the range block,
while in the matched best domain block, d; is the identical byte value. s represents the degree
of scaling. The averages of domain and range blocks are d and 7 respectively.

In the calculation of 2 (see equation 3), the degree of scaling (s) had to be within the range [-
smax, smax| for each range-domain matching case. The degree of scaling (s) and r must then
be processed by quantization via computing the next equations [27].

§ = Q,l; “4)
s
I, = round (Q—) (%)
= T‘_IT‘ 6
=0 . (0)
L. = round (E> (7)
Where '
Smax
Qs = S5 ®)
255 9
Qf - 2br _ 1 ()

Smax 18 the highest permissible value of the scale coefficients.
Q. and Q7 are the quantization steps of the scale and 7 coefficients respectively.
bs is the number of scale bits, and br is the number of range mean bits.

2
The quantized value of scale (s) and 7 are used to calculate the j sum of square error using
(equations 4 and 6) [28].

2. Isometric Process Predictor

Table (1) explains the eight isometric mappings [14]. A complete search over a set of 8
isometric instances per block is illicit due to the large number of computations involved. The
aim for the blocks that were not chosen as the best solution and had no possibility of being
chosen should be to chop off their isometric states [28]. Block indexing and transform
prediction computations ought to be less complicated than the whole computation. This would
lessen the search load by narrowing the pool of viable candidates to a minimum error. As a
result, in this procedure, the FIC is expedited by a first-order moments descriptor [14]. The
following sections describe the theoretical basis for the predictor of isometric processes.

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Table 1: Isometric Transformation [14]

ID Operation Equation Results
Zero Iden.)) vy
R e
Four Ref. - X-axis ;(,' : :;: :1?18(%(;) J; }}: 22(((()))) X}',.: :;X
Five Ref. - X-axis+Rot. (+90) ;:;’: ;?15((990(;) N ;y 2:)2((99%)) ? 2
Six Ref. - X-axis+Rot.(+180) ;:;’: ;ZS((IIS%O)) +;’2$((1188%)) y’.":fy
Seven Ref. - X-axis+Rot.(+270) ;‘,':__j: :1?15((22770(;) N 522((2277%)) ? -

The Abbreviations Iden., Rot., Ref. denote to Identity, Rotation, and Reflection operations
respectively.

The image block I(x,y) such that {x,y| 0,1,...., K-1}, define its first-order centralized moments
as [34]:

K-1K-1

Mo, = 1(x,y)(x —) (10)
x=0 y=0
K-1K-1

Mo, = ICx, y)(y =) (11)
y=0 x=0

K-1
Where ¢ = 5

Merging equations in Table (1) with equations (10) and (11), the relationship between the
values of the new moments (Mo'x, Mo'y) of the transformed block with the values of its old
moments (Mox, Moy) appears before the transformation can be determined; that relationships
is shown in Table (2)[14]

Table 2: Moments Relationship Prior and Posterior to Applying the Isometric Transformation

[14]
ID Operation Relationship
Zero Iden. Mo'x=Moy, Mo'y=Mox
One Rot. (+90) Mo'x=Moy,Mo'y= —Mox
Two Rot. (+180) Mo'x=—Mox,Mo'y= —Moy
Three Rot. (+270) Mo'x=—Moy,Mo'y= Mox
Four Ref. - X-axis Mo'x=—Mox,Mo'y= Moy
Five Ref. - X-axist+Rot. (+90°) Mo'x=—Moy,Mo'y=— Mox
Six Ref. - X-axis+Rot.(+180°) Mo'x=Mox,Mo'y=—Moy
Seven Ref. - X-axist+Rot.(+270°) Mo'x=Moy,Mo'y= Mox

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

2.1 Blocks classification

The classifying blocks method is proposed and established based on moment criteria. The
classification is based on the state of the first-order moment values (represented by Mox and
Moy). The following three status criteria have been used where:

e (Case-1: Is [Mox[>|Moy| or not?

e C(Case-2: IsMox >0 or not?

e (Case-3: Is Moy >0 or not?

The three Boolean criteria usage produces eight block classes, as illustrated in Table (3) [27].
For all cases of range-domain matching that are in Table (4) [28], the predictor determines both
the domain and the range blocks situation. Next, the isometric transformation index was
extracted by the predictor which is necessary to ensure that the domain and range blocks match
as closely as possible [28].

Table 3:The Truth Table for Eight Block Classes [27]

e (s T Boolean Criteria
|Mox|>|Moy| Mox >0 Moy >0

Zero True True True
One True True False
Two True False True
Three True False False
Four False True True
Five False True False

Six False False True
Seven False False False

Table 4:The Required Isometric Operation to Convert the Block State [28]

Domain Blocks ID
0 1 2 3 4 5 6 7
0 0 6 4 2 7 3 1 5
1 6 0 2 4 1 5 7 3
% 2 4 2 0 6 3 7 5 1
g‘ 3 2 4 6 0 5 1 3 7
- 4 7 3 | 5 0 6 4 2
§ 5 1 5 7 3 6 0 2 4
6 3 7 5 1 4 2 0 6
7 5 1 3 7 2 4 6 0
3. Moment’s Ratio and Moment Ratio Index
Compute Moment’s ratio by applying the following equation [27]:
| x Nm if |Mo, = Moy|
Ratioy = (12)
Moy

oy X N if|Mo, = Mo,|

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Moy is the moment around x-axis coordinates, while Moy is the moment around y-axis
coordinates, Nm denotes the maximum moment ratio number. Al-Hilo and George (2008)
arrived at the following conclusion: It is not necessary for any two blocks to have similar
(Ratiowm) factors to satisfy the affine transform necessarily; rather, this only applies if almost
all of the two blocks (domain and range) satisfy the conductive affine transform [12]. The
following equation determines the cumulative moment ratio index value, which is a linear
combination of two descriptors (RatioM1 and RatioM2). [27]

Iy = [Ratioy; X (Nm + 1) +Ratioy;| (13)

The index (Im) is a way to categorize domain and range blocks (each category contains blocks
with identical indexes). This factor optimizes the range-domain block search process by
focusing on domain blocks with equivalent Im values to those examined with IFS.

4. The Proposed Fractal Image Compression (FIC) System
The aims of the proposed FIC are:
» Using a set of moment descriptors presented by Sultan et. al. previous study [26] and
combining them with a recent set of moment descriptors. The former ones are (W1,W2 and
W3) [26] while the current ones are (W4, W5 and W6) as presented minutely in section(4.1).
The latter moment descriptors are characterized by their excelling performance and the
moments’ new weight of a particular section from the block. The inspection of feasible pairings
of double moment descriptors was successfully and accurately done.
* As not fixed (i.e., variable) range blocks partitioning technique, Quadtree was used to promote
IFS performance according to what was treated in Sultan et. al. previous study [26]. This
research also relies on the Quadtree instead of fixed partitioning, with a difference in the criteria
used to calculate each region's information richness. The Prewitt operator is used to determine
the partitioning strategy of the range blocks.
* To reduce duplication in calculation, the FIC method is rebuilt to include the moment
equations.

More information on the planned upgraded FIC will be discovered in the next paragraph.
4.1 The Moments and The Speeding-up Mechanism
The previously tested set of weights is adopted to develop sets of moments. These weights are
the following:

wi(D)

—Wi(K—=1-10) forl= [%— 1,1()
wint () = [Wy (1) x 100] forl=[0,K) (14.b)

[w3 s 3) w5

—Wo,(K—=1-1) forl= [g— 1,1()
WD) = [W,(1) x 100] for | = [0,K) (15.b)

£10]

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Wl mi K

sin forl=|0,—=
o@D =)

—Wi(K—1-1) forl=[5—1,l()

wint() = [W3(l) x 100] forl=[0,K) (16.b)
AQ,
_ - g (17.a)
WD) = [W,(1) x 100] for 1 =[0,K) (17.b)

The following set of weights is introduced newly to produce the new sets of moments, they are
as follows:

Ws(l) =
sin (g) forl= [0, g) (18.0)
“Wy(K—-1-1) forl= [g— 1,K)
Wit (1) = [Ws(D) x 100] for 1 =[0,K) (18.b)
Well il K
tan forl=10,=
() i)
—We(K—-1-1) forl=[5—1,K)
WD) = [W (D) x 100] for I = [0,K) (19.b)

Figure. 1 and Fig.2 present the previously suggested [26] and recently suggested weight
functions allocated to each row or column throughout the block when its size equals 16.

/ e W 1

——W?2

PN -
y—"

_—
>/
[

Figure 1: The Previous Weights (W1, W2, W3) [26]

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

A\ /X e
06 | f \\

i AL\ / N\
ozjl \ /\ \/
N W S W
SR TR ERE TR A
\ / \
\/ \/"/
\ / ./

Figure 2 :. The Proposed Weights (W5, W6)

The moment sets around the x-axis and around the y-axis applying the weights functions

supplied in the equation stated as:
r+K—-1c+K-1

Mox,(x,y) = Z Z £, W (r — 2) (20)

Moy, (x,y) = LeLy— X2k~ 1f (T, C)Wzmt(c —) (21)

Where i represent moments with the corresponding weight, /={1,2,3,4,5,6}. The block’s
length is denoted by K; its axis coordinates (X,y) relative to the left-top corner of it; the two-
dimensional image array is represented by f(); the pre-calculated index of weights is referred
to as W™¢; and the low-order moments adjacent to the x and y axis are denoted by Mox and
Moy, respectively.
Therefore, the moments were calculated for each single block from the overlapping blocks
included in the domain pool. To prevent redundant summing within each moment descriptor
equation, the following scenario is used for quick calculations: two 2-Dimentional arrays,
named Sx and Sy are created so that:

Sx(,0) =) f(x,) (22)
Sx(x, y)y—Sx(x y-D—fl,y—-D+flx,y+K-1) (23)
5¥(0,y) = Z £ el
Sy(x, y)—Sy(x—ly)—YB(x—ly)+YB(x+K—1y) (25)

A simple example of Sx (0,0) and Sx (0,1) and how the value of them had been computed
for a row sample shown in Fig.3 [26], when block size (K) equal to 8.

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

YB

Column No.

0/1/2/3/4 5678|910
“ ol@l21314]516]7]8)|®@| 10|11

SumX(0,0=) (1,2,3,4,5,6,7,8) «— =36 SumX(0,1)= 31‘6- 149 = 44
l

Figure 3: Simple Example About Computing the Value of Sx(0,0) & Sx (0,1) [26].

The constructed arrays Sx and Sy may now be utilized as follows:

r+K-1
Mox;(x,y) = Z Sx(r,y) X W™ (r —x) (26)
r=Xx
y+K-1
Moy, (x,y) = Z SumY (x,c) x W™ (c—y) (27)
c=y

As previously stated, the efficacy of utilizing the potential pairings of moment
combinations extracted by computing W1 to W6 weights to calculate the descriptors that are
utilized for indexing the blocks to speed up the range-domain search task, {that is, (Mol ,Mo02
), (Mol ,Mo03), (Mo2 ,Mo03), (Mol ,Mo5), (Mol ,Mo05), (Mo2 ,Mo5), (Mo2 ,Mo6), (
Mo3 ,Mo5)} have been inspected.

4.2 The proposed range pool partitioning scheme

The suggested partitioning scheme for range pool blocks is a quad-tree, which divides the range
array into blocks of non-overlapping variable length. The criteria for instructing the
decomposition process depend on edge identification by applying a Prewitt filter (see Equation
28a and b). The permissible block length (PBL) is 16, §, and 4.

The well-known Baboon image is shown in Fig. 4a after executing the presented partitioning
scheme, which used Prewitt as the partitioning decision. As well as the well-known Lenna
image shown in Fig. 4b after executing the presented partitioning scheme, which used Prewitt
as a partitioning decision.

(@) (b)
Figure 4: (a and b) The proposed variable partitioning scheme applied on the
Baboon and Lenna test image, Threshold values are val[8]= 36 and val[16]=
48

Rasheed and Sultan

4.3 Enhanced FIC encoding process

Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

The improved encoding algorithm presented for range blocks is summarized by the steps in the
following two figures; the first one (Fig. 5) is about the preprocessing and main processing
steps for range and domain preparation, as shown below:

Load BMP Image

Convert image to (R.G.B) arrays

v

Convert (R.G.B) to (Y.U.\V) arrays

4

Downsample The Components U and V

\ 4

Determine The Moment Combinations

\ 4

Construct Domain and Range Pools

\ 4

Encode According to PBL value

Figure 5: Preprocessing and Preparation Steps of Range and Domain Pools

The second figure (Fig. 6) deals with encoding process details according to PBL value, as

shown below:

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Encode according to PBIL

I Set PBL value ::

Partition The Range array
for each component (¥.Ugown-Ydown)

Fixed].ZI.OCIT' Size Quadtree Partitioning
Partitioning

L + 1

for each domain block:

1. Determine {m‘eragg,n{a—; o » MOmeRnts, momenit ratio,

mromens index value, and block isomerric index)
2. Store position coordinates and moment index in
Temporary array

¥

for each Range Block Determine (a‘t.'erage,nagf » MUOMIERTS,
mrament ratio, moment index value, and block isometric
irnndex)

| Match Domain Blocks using Pointers |

I Pass Paramerters through isometric predicror I

¥

I Apply assigned transform on the tested range block I

I Apply enhanced steps for fast computation of S and Xz I

¥

Calculate scale coefficient and X2 of first class of domain
blocks with range bloclk

v

. -2
Compare result with X" p,§n

Stop search

I Continue I

¥

Repeat loop with adjusted PBL until criteria
met

Figure 6: Encoding Process Steps According to PBL Value
V. Test Results

The presented study system was implemented by using Delphi 2010 Programming
Language. The experiments were done under the environmental conditions: (Windows-11 pro)
operating system, laptop computer — Lenovo (processor 11th Gen Intel(R) Core(TM) i5-
1135G7, CPU 2.42 GHz, and 4GB RAM). The experiments were performed on the widely
recognized Lena and Baboon image files (in which characteristics: Size =512 x 512 pixels and
Size = 256 x 256 pixels, color depth = 24 bit).
The difference between the reconstructed resulting image and the original one has been
determined, and the used error metrics were (mean square error (MSE) and peak signal-to-
noise ratio (PSNR)) measured in dB. Besides these fidelity metrics, some complementary
metrics were used to describe the system's performance. Both CR and bit rate (BR) parameters
have been used to describe the compression gain.
Table 5 lists the examined control parameters (the parameters names and their default values).
Choosing these values after extensive testing.

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Table 5: The Values of The Control Parameters

Parameter Range or Value
Smax 3
bs 6
br 8
Minimum Block Error 1.5
Val prewin 30 + Inc Val
Inc Val {3,6,9...27}
Nm {35,40,45 ... 60}

Table 6 shows the symbols with their descriptions used in the presented tables and presented
figures in this section.
Table 6:The Symbols Used in The Test Results

Notation Description
TO0 By using a mixture of Mol and Mo2, TO Represents a moment index ratio derived from it.
T1 By using a mixture of Mol and Mo3, T1 Represents a moment index ratio derived from it.
T2 By using a mixture of Mo2 and Mo3, T2 Represents a moment index ratio derived from it.
T3 By using a mixture of Mol and Mo5, T3 Represents a moment index ratio derived from it.
T4 By using a mixture of Mol and Mo6, T4 Represents a moment index ratio derived from it.
T5 By using a mixture of Mo2 and Mo5, T5 Represents a moment index ratio derived from it.
T6 By using a mixture of Mo2 and Mo6, T6 Represents a moment index ratio derived from it.
T7 By using a mixture of Mo3 and Mo5, T7 Represents a moment index ratio derived from it.

F14 FIC presented for blocks as fixed partitioning with a block length of 4 with image size 256 x 256
F18 FIC presented for blocks as fixed partitioning with a block length of 8 with image size 256 x 256
F24 FIC presented for blocks as fixed partitioning with a block length of 4 with image size 512 x 512
F28 FIC presented for blocks as fixed partitioning with a block length of 8 with image size 512 x 512
FIC presented for blocks as quadtree partitioning scheme utilizing Prewitt as partitioning

Qip decision with block length 4 and 8 with image size 256 x 256

Q2P1 FIC presented for‘ blocks‘ as quadtree partitioning sgheme utili;ing Prewitt as partitioning
decision with block length 4 and 8 with image size 512 x 512

Q2p2 FIC presented for blocks as quadtree partitioning scheme utilizing Prewitt as partitioning

decision with block length 4, 8 and 16 with image size 512 x 512
A. Moment Combination Test

In this set of tests, the presented moments effects by using the different combinations of them
are clarified for the following images:

a. Image size 256 x 256 pixels, compute:

1. Block length (4x4). (That is, F14) as listed in Table 3.

ii. Block length (8%8). (That is, F18) as listed in Table 4.

b. Image size 512 x 512 pixels, compute:

1. Block length (4x4). (That 1s, F24) as listed in Table 5.

ii. Block length (8x8). (That is, F28) as listed in Table 6.

2. Fixed Partitioning: When the blocks have been partitioned fixedly to:

3. Quadtree Partitioning Using Prewitt Filter

This section involves the presented applied FIC, having examined the quadtree partitioning
scheme using the Prewitt filter as a partitioning decision.

The value of block length, according to image size, is set equal to:

i. For image 256 x 256, the variable block length is set to (4 and 8). That is Q1P for using
the Prewitt filter, as listed in Tables 7 and 8.

ii. For image 512 x 512, the variable block length is set once to (4 and 8) and another to (4,8
and 16). That is:

1. For block length equal to (4 and 8), Q2P1 for using Prewitt filter, as listed in Tables 7 and
8.

2. For block length equal to (4, 8, and 16), Q2P2 for using the Prewitt filter, as listed in
Tables 7 and 8.

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

B. Fixed Partitioning Versus Quadtree Partitioning

The performed tests determine the effect of the pre-proposed quadtree partitioning scheme with
moment combination versus fixed block partitioning. The moments' combination that was used
in calculating the results of this test, which achieved satisfactory results in Fixed Partitioning,
in agreement with the best NM value in this research, which is equal to 50, as indicated by the
yellow color in Tables 7 to 10.

Table 7: Test Results of Lenna and Baboon images of size (256x256) and block size4 (i.e. F14)

Lenna Baboon
Nm CR MSE PSNR BR ET(Sec.) CR MSE PSNR BR ET(Sec.)
35 8.240 59.737 30.368 | 2.913 0.155 8.211 496.297 21.173 2.923 0.105
40 8.238 64.173 30.057 | 2.913 0.130 8.209 508.188 21.071 2.924 0.087
To 45 8.234 65.688 29.956 | 2.915 0.113 8.213 520.676 20.965 2.922 0.073
50 8.236 70.505 29.649 | 2.914 0.102 8.212 538.535 20.819 2.922 0.066
55 8.234 72.011 29.557 | 2.915 0.094 8.210 547.965 20.743 2.923 0.061
60 8.234 76.746 29.280 | 2.915 0.085 8.213 559.998 20.649 2.922 0.055
35 8.253 65.230 29.986 | 2.908 0.112 8.204 503.109 21.114 2.925 0.103
40 8.248 68.763 29.757 | 2.910 0.097 8.209 518.185 20.986 2.924 0.082
T1 45 8.247 72.711 29.515 | 2.910 0.085 8.208 532.819 20.865 2.924 0.069
50 8.247 76.497 29.294 | 2.910 0.077 8.209 545311 20.764 2.923 0.062
55 8.241 79.343 29.136 | 2.912 0.070 8.209 558.583 20.660 2.923 0.056
60 8.242 84.561 28.859 | 2.912 0.066 8.208 569.208 20.578 2.924 0.053
35 8.258 64.939 30.006 | 2.906 0.145 8.213 495.330 21.182 2.922 0.118
40 8.252 67.041 29.867 | 2.908 0.126 8.214 507.888 21.073 2.922 0.098
T2 45 8.245 71.396 29.594 | 2.911 0.107 8.214 520.128 20.970 2.922 0.084
50 8.244 75.146 29372 | 2.911 0.100 8.214 534.851 20.849 2.922 0.073
55 8.241 78.838 29.164 | 2.912 0.088 8.215 545.977 20.759 2.922 0.065
60 8.241 81.560 29.016 | 2.912 0.081 8.215 557.478 20.669 2.922 0.061
35 8.223 142.473 | 26.594 | 2.919 0.106 8.207 520.293 20.968 2.924 0.084
40 8.258 123.554 | 27.212 | 2.906 0.096 8.203 567.835 20.589 2.926 0.059
T3 45 8.217 138.234 | 26.725 | 2.921 0.075 8.209 589.872 20.423 2.924 0.051
50 8.207 144.087 | 26.545 | 2.924 0.065 8.209 602.197 20.333 2.924 0.048
55 8.209 166.875 | 25.907 | 2.924 0.057 8.212 610.802 20.272 2.922 0.042
60 8.214 173.286 | 25.743 | 2.922 0.052 8.223 621.057 20.200 2.919 0.040
35 8.327 44.669 31.631 | 2.882 0.597 8.207 392.798 22.189 2.924 0.753
40 8.430 45417 31.559 | 2.847 0.432 8.208 399.155 22.119 2.924 0.674
T4 45 8.429 45.796 31.523 | 2.847 0.393 8.212 378.881 22.346 2.923 1.147
50 8.414 47.234 31.388 | 2.852 0.361 8.204 409.789 22.005 2.925 0.554
55 8.411 48.882 31.239 | 2.854 0.333 8.209 384.181 22.285 2.924 0.937
60 8.401 49.822 31.157 | 2.857 0.307 8.203 413.669 21.964 2.926 0.467
35 8.238 211.235 | 24.883 | 2.913 0.082 8.212 551.547 20.715 2.923 0.081
40 8.225 124.707 | 27.172 | 2.918 0.114 8.217 597.226 20.369 2.921 0.060
TS 45 8.257 121.463 | 27.286 | 2.907 0.103 8.198 632.858 20.118 2.927 0.049
50 8.243 149.336 | 26.389 | 2.911 0.081 8.207 645.178 20.034 2.924 0.045
55 8.209 163.148 | 26.005 | 2.924 0.065 8.203 660.615 19.931 2.926 0.041
60 8.208 196.298 | 25.202 | 2.924 0.058 8.206 677.170 19.824 2.925 0.039
35 8.330 45.715 31.530 | 2.881 0.606 8.212 402.849 22.079 2.922 0.756
40 8.466 47.861 31.331 | 2.835 0.448 8.212 405.470 22.051 2.923 1.003
Té 45 8.449 48.414 31.281 | 2.841 0.402 8.214 383.612 22.292 2.922 1.142
50 8.441 46.737 31.434 | 2.843 0.368 8.213 414.864 21.952 2.922 0.544
55 8.413 48.836 31.243 | 2.853 0.338 8.217 392.863 22.188 2.921 0.932
60 8.423 48.740 31.252 | 2.849 0.312 8.215 422.630 21.871 2.921 0.459
35 8.498 48.055 31.313 | 2.824 0.479 8.212 406.172 22.044 2.922 0.918
40 8.497 49.099 31.220 | 2.825 0.427 8.210 415.387 21.946 2.923 0.662
7 45 8.536 50.231 31.121 | 2.812 0.422 8.224 424.373 21.853 2918 0.568
50 8.587 50.396 31.107 | 2.795 0.407 8.217 427.864 21.818 2.921 0.516
55 8.569 50.520 31.096 | 2.801 0.344 8.220 433.457 21.761 2.920 0.473
60 8.494 52.135 30.960 | 2.825 0.307 8.218 433.923 21.757 2.921 0.433

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Table 8: Test Results of Lenna and Baboon images of size (256x256) ang block size 8 (i.e.

F18)
Lenna Baboon

Nm | CR MSE PSNR | BR ET CR MSE PSNR | BR ET
(Sec.) (Sec.)

35 32.955 | 234.049 | 24.438 | 0.728 | 0.137 | 32.856 | 786.088 | 19.176 | 0.730 | 0.081

40 32911 | 241.230 | 24.307 | 0.729 | 0.115 | 32.839 | 793.239 | 19.137 | 0.731 | 0.069
To 45 32.894 | 243.923 | 24.258 | 0.730 | 0.098 | 32.856 | 808.137 | 19.056 | 0.730 | 0.059
50 32.850 | 251.467 | 24.126 | 0.731 | 0.086 | 32.856 | 815.591 | 19.016 | 0.730 | 0.053

55 32.850 | 282.919 | 23.614 | 0.731 | 0.078 | 32.856 | 830.825 | 18.936 | 0.730 | 0.049

60 32.867 | 271.553 | 23.792 | 0.730 | 0.071 | 32.856 | 832.990 | 18.924 | 0.730 | 0.046

35 32916 | 260.181 | 23.978 | 0.729 | 0.143 | 32.861 | 787.018 | 19.171 | 0.730 | 0.083

40 32.933 | 247.333 | 24.198 | 0.729 | 0.119 | 32.845 | 795.543 | 19.124 | 0.731 | 0.070

T1 45 32.867 | 256.047 | 24.048 | 0.730 | 0.103 | 32.856 | 800.119 | 19.099 | 0.730 | 0.061
50 32.856 | 257.542 | 24.022 | 0.730 | 0.088 | 32.856 | 810.691 | 19.042 | 0.730 | 0.055

55 32.861 | 328.915 | 22.960 | 0.730 | 0.080 | 32.867 | 823.860 | 18.972 | 0.730 | 0.050

60 32.834 | 273.772 | 23.757 | 0.731 | 0.073 | 32.845 | 829.317 | 18.944 | 0.731 | 0.046

35 32.883 | 216.335 | 24.780 | 0.730 | 0.237 | 32.850 | 780.453 | 19.207 | 0.731 | 0.113

40 32.927 | 230.168 | 24.510 | 0.729 | 0.194 | 32.795 | 789.448 | 19.158 | 0.732 | 0.094
T2 45 32.922 | 253.037 | 24.099 | 0.729 | 0.170 | 32.850 | 796.914 | 19.117 | 0.731 | 0.078
50 32.856 | 250.132 | 24.149 | 0.730 | 0.147 | 32.795 | 806.467 | 19.065 | 0.732 | 0.069

55 32.889 | 246.541 | 24.212 | 0.730 | 0.131 | 32.812 | 811.710 | 19.037 | 0.731 | 0.062

60 32.883 | 269.957 | 23.818 | 0.730 | 0.117 | 32.839 | 812.755 | 19.031 | 0.731 | 0.057

35 32.861 | 266.430 | 23.875 | 0.730 | 0.064 | 32.867 | 815.395 | 19.017 | 0.730 | 0.066

40 32.955 | 326.004 | 22.999 | 0.728 | 0.076 | 32.839 | 843.229 | 18.871 | 0.731 | 0.053
T3 45 32.861 | 297.929 | 23.390 | 0.730 | 0.077 | 32.916 | 864.702 | 18.762 | 0.729 | 0.042
50 32.966 | 276.656 | 23.711 | 0.728 | 0.086 | 32.867 | 884.583 | 18.663 | 0.730 | 0.038

55 32.960 | 309.039 | 23.231 | 0.728 | 0.073 | 32.872 | 894.960 | 18.613 | 0.730 | 0.036

60 32.894 | 305.778 | 23.277 | 0.730 | 0.064 | 32.872 | 910.607 | 18.538 | 0.730 | 0.034

35 32.889 | 259.774 | 23.985 | 0.730 | 0.098 | 32.823 | 807.113 | 19.062 | 0.731 | 0.068

40 32.938 | 262.542 | 23.939 | 0.729 | 0.062 | 32.872 | 819.051 | 18.998 | 0.730 | 0.059
T4 45 32.905 | 278.747 | 23.679 | 0.729 | 0.054 | 32.834 | 830.471 | 18.938 | 0.731 | 0.051
50 32.894 | 295.268 | 23.429 | 0.730 | 0.047 | 32.812 | 844.090 | 18.867 | 0.731 | 0.049

55 32.845 | 292.717 | 23.466 | 0.731 | 0.044 | 32.834 | 849.455 | 18.839 | 0.731 | 0.044

60 32.867 | 303.615 | 23.308 | 0.730 | 0.041 | 32.817 | 866.103 | 18.755 | 0.731 | 0.039

35 32.872 | 287.519 | 23.544 | 0.730 | 0.088 | 32.878 | 858.344 | 18.794 | 0.730 | 0.062

40 32.949 | 289.496 | 23.514 | 0.728 | 0.098 | 32.806 | 876.161 | 18.705 | 0.732 | 0.045
TS 45 32.817 | 318.549 | 23.099 | 0.731 | 0.093 | 32.839 | 893.735 | 18.619 | 0.731 | 0.040
50 32.839 | 352.078 | 22.664 | 0.731 | 0.079 | 32.889 | 902.876 | 18.575 | 0.730 | 0.037

55 32.828 | 342.142 | 22.789 | 0.731 | 0.062 | 32.856 | 909.690 | 18.542 | 0.730 | 0.035

60 32.845 | 358.064 | 22.591 | 0.731 | 0.059 | 32.916 | 926.250 | 18.464 | 0.729 | 0.034

35 32.867 | 256.301 | 24.043 | 0.730 | 0.081 | 32.834 | 815.457 | 19.017 | 0.731 | 0.071

40 32.872 | 274.507 | 23.745 | 0.730 | 0.061 | 32.861 | 827.660 | 18.952 | 0.730 | 0.059
Té6 45 32.922 1 299.965 | 23.360 | 0.729 | 0.054 | 32.828 | 843.677 | 18.869 | 0.731 | 0.051
50 32.872 | 313.213 | 23.172 | 0.730 | 0.048 | 32.817 | 855.880 | 18.807 | 0.731 | 0.046

55 32.845 | 331.019 | 22.932 | 0.731 | 0.044 | 32.856 | 861.263 | 18.779 | 0.730 | 0.043

60 32.834 | 344.712 | 22.756 | 0.731 | 0.042 | 32.812 || 874.808 | 18.712 | 0.731 | 0.040

35 35.643 | 353.590 | 22.646 | 0.673 | 0.059 | 35.630 | 887.001 | 18.652 | 0.674 | 0.044

40 34.541 | 326.902 | 22.987 | 0.695 | 0.119 | 35.502 | 911.054 | 18.535 | 0.676 | 0.048
T 45 34372 | 336.137 | 22.866 | 0.698 | 0.041 | 35.298 | 931.147 | 18.441 | 0.680 | 0.053
50 34.342 | 361.015 | 22.556 | 0.699 | 0.038 | 35.457 | 942.712 | 18.387 | 0.677 | 0.042

55 34.336 | 415.849 | 21.941 | 0.699 | 0.036 | 35.604 | 948.676 | 18.360 | 0.674 | 0.037

60 34312 | 431.773 | 21.778 | 0.699 | 0.035 | 35.553 | 949.087 | 18.358 | 0.675 | 0.042

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Table 9: Test Results of Lenna and Baboon images of size (512x512) ang block size 4 (i.e.
F24)

Lenna Baboon

Nm CR MSE PSNR BR ET CR MSE PSNR BR ET
(Sec.) (Sec.)

35 8.092 | 24.003 | 34.328 | 2.966 | 1.129 | 7.730 | 154.197 | 26.250 | 3.105 1.369

40 8.086 | 25.181 | 34.120 | 2.968 | 0.905 | 7.728 | 160.906 | 26.065 | 3.106 1.068
To 45 8.080 | 26.397 | 33915 | 2.970 | 0.753 | 7.727 | 169.271 | 25.845 | 3.106 0.874
50 8.076 | 27.227 | 33.781 | 2.972 | 0.653 | 7.727 | 175.620 | 25.685 | 3.106 0.730

55 8.072 | 28.062 | 33.650 | 2.973 | 0.579 | 7.727 | 182.670 | 25.514 | 3.106 0.627

60 8.076 | 28.889 | 33.524 | 2.972 | 0.500 | 7.724 | 187.649 | 25.397 | 3.107 0.545

35 8.125 | 25.119 | 34.131 | 2.954 | 0.968 | 7.733 | 158.478 | 26.131 | 3.104 1.209

40 8.121 | 26.218 | 33.945 | 2.955 | 0.781 | 7.733 | 165.924 | 25.932 | 3.104 0.963

T1 45 8.120 | 27.679 | 33.709 | 2.956 | 0.660 | 7.732 | 174.025 | 25.725 | 3.104 0.775
50 8.110 | 28.512 | 33.581 | 2.959 | 0.571 | 7.731 | 182.239 | 25.524 | 3.104 0.657

55 8.104 | 29.507 | 33.432 | 2.961 | 0.562 | 7.729 | 188.867 | 25.369 | 3.105 0.576

60 8.106 | 30.699 | 33.260 | 2.961 | 0.466 | 7.729 | 194.946 | 25.232 | 3.105 0.495

35 8.133 | 24.251 | 34.284 | 2.951 1.363 | 7.741 151.289 | 26.333 | 3.101 1.888

40 8.131 | 25.108 | 34.133 | 2.952 | 1.033 | 7.736 | 159.918 | 26.092 | 3.102 1.322

T2 45 8.126 | 26.296 | 33.932 | 2.954 | 0.873 | 7.738 | 167.829 | 25.882 | 3.101 1.077
50 8.118 | 27.227 | 33.781 | 2.956 | 0.735 | 7.736 | 173.402 | 25.740 | 3.103 0.897

55 8.113 | 28.175 | 33.632 | 2958 | 0.717 | 7.736 | 180.740 | 25.560 | 3.103 0.779

60 8.112 | 29.202 | 33.477 | 2.959 | 0.579 | 7.734 | 186.979 | 25.413 | 3.103 0.665

35 7.994 | 32941 | 32.954 | 3.002 | 0.747 | 7.728 | 170.584 | 25.811 | 3.105 1.232

40 8.073 | 32.643 | 32.993 | 2.973 | 0.541 | 7.722 | 204.644 | 25.021 | 3.108 0.627

T3 45 7.989 | 33.472 | 32.884 | 3.004 | 0.439 | 7.719 | 224.828 | 24.612 | 3.109 0.420
50 7.993 | 34215 | 32.789 | 3.003 | 0.410 | 7.733 | 238.701 | 24.352 | 3.104 0.353

55 7.994 | 36.301 | 32.532 | 3.002 | 0.405 | 7.728 | 241.113 | 24.309 | 3.106 0.342

60 7.994 | 37.555 | 32.384 | 3.002 | 0.306 | 7.739 | 257.905 | 24.016 | 3.101 0.264

35 8.343 | 18318 | 35.502 | 2.877 | 8.518 | 7.828 | 108.704 | 27.768 | 3.066 | 11.097

40 8.535 | 19.526 | 35.225 | 2.812 | 5900 | 7.940 | 115.061 | 27.522 | 3.023 9.108
T4 45 8.494 | 19.988 | 35.123 | 2.826 | 5.307 | 7.936 | 117.430 | 27.433 | 3.024 8.086
50 8.475 | 20.120 | 35.094 | 2.832 | 4.837 | 7.926 | 118.647 | 27.388 | 3.028 7.532

55 8.460 | 20.319 | 35.052 | 2.837 | 4.464 | 7915 | 120.780 | 27.311 | 3.032 6.776

60 8.449 | 20.388 | 35.037 | 2.841 | 4.150 | 7.909 | 121.746 | 27.276 | 3.034 6.174

35 7.994 | 40.779 | 32.026 | 3.002 | 0.699 | 7.722 | 205.808 | 24.996 | 3.108 1.067

40 7.986 | 45.057 | 31.593 | 3.005 | 0.484 | 7.726 | 217.325 | 24.760 | 3.106 0.878
TS5 45 7.990 | 43.262 | 31.770 | 3.004 | 0.430 | 7.723 | 260.638 | 23.970 | 3.108 0.444
50 7.981 | 43.541 | 31.742 | 3.007 | 0.384 | 7.722 | 278.896 | 23.676 | 3.108 0.352

55 7.984 | 45.397 | 31.561 | 3.006 | 0.367 | 7.714 | 298.800 | 23.377 | 3.111 0.278

60 7.987 | 48.034 | 31.315 | 3.005 | 0.283 | 7.721 | 310.803 | 23.206 | 3.108 0.227

35 8.337 | 18.866 | 35.374 | 2.879 | 8.626 | 7.831 110.268 | 27.706 | 3.065 | 11.306

40 8.524 | 20.094 | 35.100 | 2.815 | 6.074 | 7.953 | 118.718 | 27.386 | 3.018 9.329
Té 45 8.483 | 20.380 | 35.039 | 2.829 | 5.359 | 7.946 | 120.833 | 27.309 | 3.020 8.243
50 8.474 | 20.624 | 34.987 | 2.832 | 4.898 | 7.939 | 121.713 | 27.278 | 3.023 7.533

55 8.469 | 20.850 | 34.940 | 2.834 | 4.525 | 7.926 | 122.885 | 27.236 | 3.028 6.891

60 8.453 | 21.134 | 34.881 | 2.839 | 4.181 | 7.920 | 124.623 | 27.175 | 3.030 6.370

35 8.525 | 20.374 | 35.040 | 2.815 | 7.165 | 7.929 | 116.183 | 27.479 | 3.027 | 11.056

40 8.461 | 21.228 | 34.862 | 2.837 | 5.385 | 7.922 | 117.605 | 27.427 | 3.030 9.580
T 45 8.326 | 21.473 | 34.812 | 2.882 | 4.776 | 7.921 | 120.644 | 27.316 | 3.030 9.439
50 8.329 | 21.582 | 34.790 | 2.881 | 4.272 | 7.892 | 125.987 | 27.128 | 3.041 7.471

55 8.256 | 21917 | 34.723 | 2.907 | 3.849 | 7.903 | 128.075 | 27.056 | 3.037 6.783

60 8.230 | 22.061 | 34.695 | 2.916 | 3.597 | 7.850 | 130.108 | 26.988 | 3.057 6.187

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Table 10: Test Results of Lenna and Baboon images of size (512x512) ang block size 8 (i.e.

F28)
Lenna Baboon

Nm CR MSE PSNR BR ET CR MSE PSNR BR ET
(Sec.) (Sec.)

35 | 30.988 72.530 | 29.526 | 0.775 | 1.170 | 30.799 | 444.122 | 21.656 | 0.779 | 0.954

40 | 30.952 75.299 | 29.363 | 0.775 | 0.937 | 30.795 | 451.290 | 21.586 | 0.779 | 0.769
To 45 | 31.044 | 78.239 | 29.197 | 0.773 | 0.773 | 30.793 | 458.049 | 21.522 | 0.779 | 0.621
50 | 32.321 80.567 | 29.069 | 0.743 | 0.655 | 30.799 | 467.918 | 21.429 | 0.779 | 0.520

55 | 31.051 81.986 | 28.993 | 0.773 | 0.568 | 30.797 | 473.871 | 21.374 | 0.779 | 0.452

60 | 31.036 84.731 28.850 | 0.773 | 0.507 | 30.808 | 480.709 | 21.312 | 0.779 | 0.398

35 | 31.032 71.469 | 29.590 | 0.773 | 1.192 | 30.797 | 443.097 | 21.666 | 0.779 | 0.998

40 | 31.116 | 74.280 | 29.422 | 0.771 | 0.955 | 30.792 | 454.098 | 21.559 | 0.779 | 0.784

T1 45 | 31.093 77.019 | 29.265 | 0.772 | 0.801 | 30.797 | 463.822 | 21.467 | 0.779 | 0.648
50 | 31.017 78.899 | 29.160 | 0.774 | 0.689 | 30.790 | 470.649 | 21.404 | 0.779 | 0.547

55 | 31.024 81.086 | 29.041 | 0.774 | 0.584 | 30.798 | 476.209 | 21.353 | 0.779 | 0.467

60 | 31.029 83.296 | 28.925 | 0.773 | 0.511 | 30.801 | 485.698 | 21.267 | 0.779 | 0.411

35 | 31.323 70.243 29.665 | 0.766 | 2.233 | 30.807 | 443.024 | 21.667 | 0.779 | 1.626

40 | 31.105 72.428 29.532 | 0.772 | 1.834 | 30.799 | 450.972 | 21.589 | 0.779 | 1.282

T2 45 | 31.090 | 74.434 | 29413 | 0.772 | 1.501 | 30.797 | 460.618 | 21.497 | 0.779 | 1.039
50 | 31.071 76.115 29.316 | 0.772 | 1.270 | 30.801 | 467.840 | 21.430 | 0.779 | 0.884

55 | 31.058 78.397 | 29.188 | 0.773 | 1.111 | 30.793 | 476.012 | 21.355 | 0.779 | 0.758

60 | 31.036 80.648 29.065 | 0.773 | 0.964 | 30.797 | 480.972 | 21.310 | 0.779 | 0.643

35 | 30.951 93.605 28.418 | 0.775 | 0.498 | 30.803 | 456.429 | 21.537 | 0.779 | 0.869

40 | 31.002 96.077 | 28.305 | 0.774 | 0.382 | 30.789 | 478.334 | 21.334 | 0.780 | 0.562

T3 45 | 31.089 99.589 | 28.149 | 0.772 | 0.345 | 30.805 | 498.004 | 21.159 | 0.779 | 0.370
50 | 31.054 | 99.142 | 28.168 | 0.773 | 0.308 | 30.792 | 514.770 | 21.015 | 0.779 | 0.290

55 | 31.109 | 101.358 | 28.072 | 0.771 | 0.274 | 30.778 | 525.652 | 20.924 | 0.780 | 0.241

60 | 31.100 | 103.073 | 27.999 | 0.772 | 0.246 | 30.796 | 540.839 | 20.800 | 0.779 | 0.213

35 | 31.021 79.442 | 29.130 | 0.774 | 0.673 | 30.795 | 451.597 | 21.583 | 0.779 | 0.889

40 | 32.227 79.401 29.133 | 0.745 | 0.546 | 30.799 | 478.105 | 21.336 | 0.779 | 0.451
T4 45 | 30.977 83.084 | 28.936 | 0.775 | 0.450 | 30.795 | 487.902 | 21.248 | 0.779 | 0.368
50 | 30.933 85.798 28.796 | 0.776 | 0.383 | 30.792 | 496.280 | 21.174 | 0.779 | 0.319

55 | 30.964 88.431 28.665 | 0.775 | 0.334 | 30.797 | 506.391 | 21.086 | 0.779 | 0.286

60 | 30.958 90.780 | 28.551 | 0.775 | 0.297 | 30.793 | 518.459 | 20.984 | 0.779 | 0.248

35 | 31.027 | 103.660 | 27.975 | 0.774 | 0.429 | 30.803 | 485.674 | 21.267 | 0.779 | 0.640

40 | 30.980 | 102.090 | 28.041 | 0.775 | 0.414 | 30.783 | 511.051 | 21.046 | 0.780 | 0.403
TS5 45 | 30.991 | 102.361 | 28.029 | 0.774 | 0.595 | 30.797 | 525.758 | 20.923 | 0.779 | 0.314
50 | 30.978 | 105.577 | 27.895 | 0.775 | 0.313 | 30.795 | 530.614 | 20.883 | 0.779 | 0.268

55 | 30.959 | 107.265 | 27.826 | 0.775 | 0.281 | 30.809 | 551.324 | 20.717 | 0.779 | 0.231

60 | 30.957 | 112.079 | 27.636 | 0.775 | 0.248 | 30.803 | 556.234 | 20.678 | 0.779 | 0.212

35 | 31.028 77.780 | 29.222 | 0.773 | 0.722 | 30.783 | 471.872 | 21.393 | 0.780 | 0.618

40 | 30.962 81.428 29.023 | 0.775 | 0.556 | 30.786 | 484.965 | 21.274 | 0.780 | 0.441
Té 45 | 30.941 85.075 28.833 | 0.776 | 0.464 | 30.796 | 496.409 | 21.172 | 0.779 | 0.367
50 | 30.922 87.387 | 28.716 | 0.776 | 0.390 | 30.796 | 504.331 | 21.104 | 0.779 | 0.320

55 | 30.928 89.690 | 28.603 | 0.776 | 0.338 | 30.786 | 512.392 | 21.035 | 0.780 | 0.279

60 | 30.939 92.237 | 28.482 | 0.776 | 0.301 | 30.790 | 521.722 | 20.956 | 0.779 | 0.244

35 | 32.377 | 117.410 | 27.434 | 0.741 | 0.235 | 33.420 | 520.366 | 20.968 | 0.718 | 0.307

40 | 32.351 | 122.135 | 27.262 | 0.742 | 0.202 | 33.328 | 530.916 | 20.881 | 0.720 | 0.318
T 45 | 32.347 | 125.120 | 27.158 | 0.742 | 0.180 | 33.418 | 551.162 | 20.718 | 0.718 | 0.208
50 | 32.305 | 129.864 | 26.996 | 0.743 | 0.167 | 33.352 | 559.353 | 20.654 | 0.720 | 0.249

55 | 32.336 | 132.716 | 26.902 | 0.742 | 0.152 | 33.153 | 565.593 | 20.606 | 0.724 | 0.327

60 | 32.320 | 137.887 | 26.736 | 0.743 | 0.141 | 33.420 | 581.750 | 20.483 | 0.718 | 0.169

Rasheed and Sultan Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx

It is worth noting that the three descriptors TO, T1, and T2 were calculated in a previous

study by Sultan, George and Hassan [26]. By using these descriptors in the current study, the
comparison with the study above, which employed the Sobel operator, becomes clear.
A comparison was made between these descriptors to choose from the charts shown in Fig. 7 (
a to f'), in which it is clear that the four ones (T2, T4, T6, and T7) are the highest in Cr and
PSNR. The examination is done based on Inc_Val and the extent of its effect with different
partitioning schemes.

Fixed Partitioning PBL= 4*4 Fixed Partitioning PBL= 8*8
8.8 36
86 E
8.4 34
«=@==Baboon 256-4 ==@=Baboon 256-8
G 82 533 o T
—8—Baboon 512-4 =@=DBaboon 512-8
8 Lenna 256-4 32 Lenna 256-8
7.8 =8 Lenna 512-4 31 e=@==|cnna 512-8
7.6 30
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
Type Type
(a) (b)
Fixed Partitioning PBL= 4*4 Fixed Partitioning PBL= 8*8
37 31
E 20
33 — T ~—"
27
31
nZ: 29 ==@=Baboon 256-4 = 25 ==@==Baboon 256-8
& 27 =@=DBaboon 512-4 4 23 ==@==Baboon 512-8
25 Lenna 256-4 21 Lenna 256-8
23 —e—Lenna 512-4 —e—Lenna512-8
2n 19
19 17
o 1 2 3 4 5 6 7 0 12 3 4 5 & 7
Type Type
(c) (d)
Fixed Partitioning PBL= 4*4 Fixed Partitioning PBL= 8*8

~

o

3
5
7
5
6
2 09
o 45 \’ ==@=Baboon 256-4 E 0.8 ==@==Pahoon 256-8
£ 1 E 07 —
F 35 —e—Baboon 512-4 Fos % —e—Baboon 5128
3 05
25 Lenna 256-4 04 Lenna 256-8
3)
15 —o—lonna 512.4 932 — I % T\ —e—Lenna 512-8
7 .
01
3 & 0 S - -
0 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
Type Type
(e) (f)

Figure 7: (a-f) The effect of proposed fixed partitioning scheme with all descriptor types

The moments combinations T2, T4, T6, and T7 were selected to implement the
performance tests of quadtree partitioning.
The effect of Valyrewi on CR, PSNR, and ET was determined when Q1P, Q2P1, and Q2P2 had
been applied to Lenna and Baboon images, as shown in Tables 7 and 8. The tables have been
shortened by removing the columns MSE and BR because the PSNR is indicated for MSE, and
BR can be easily calculated by knowing Cr.
Fig. 8 to Fig. 13 show the performance of the four types, along with the effect of changing the
Inc_Val on the compression ratio, the PSNR, and the time spent executing the system.

Rasheed and Sultan Iraqgi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Table 11:Test Results of Quadtree Partitioning Scheme When Applied on Lenna Image with
Image size (256x256) and (512x512), Nm=50 and Different PBL as Determined

Image size(256x256) Image size(512x512)
Q1P Q2P1 Q2P2
=~
-t 3 x 3 ~ 3
S
2l g | £ ||| 2| & | |2
E = E = - =
= = =
3 9.961 29.199 | 0.143 11.794 | 33.245 1.137 | 14420 | 32.249 | 1.109
6 10.173 | 29.165 | 0.130 | 12.413 33.163 1.227 | 15.441 32.015 1.102
9 10.424 | 29.109 | 0.156 | 13.056 | 33.079 | 1.209 | 16.315 31.831 1.130

12 10.657 | 29.055 | 0.139 13.651 32.983 1.235 17.360 | 31.665 1.152
T2 15 10.853 29.034 | 0.143 14.221 32.897 1.273 18.220 | 31.483 1.152
18 11.023 28.988 | 0.144 14.648 32.822 1.260 18.968 31.348 1.171
21 11.186 | 28.934 | 0.139 15.124 | 32.757 1.324 19.849 | 31.238 1.180
24 11.506 | 28.835 | 0.146 15.587 32.668 1.291 | 20.956 | 31.083 1.178
27 11.708 | 28.768 | 0.143 15.995 32.605 1.290 | 21.854 | 30.958 1.211

3 10.075 | 30.901 | 0.396 | 11.917 | 34.226 | 4.928 | 14.550 | 32.877 | 4.464
6 10.272 | 30.837 | 0.429 | 12512 | 34.198 | 4.825 | 15.560 | 32.557 | 4.339
9 10.519 | 30.742 | 0.406 | 13.148 | 34.045 | 4.613 16.415 | 32.352 | 4.217

12 10.758 | 30.644 | 0.427 | 13.716 | 33.876 | 4.476 | 17.451 32.067 | 4.042
T4 15 10.954 | 30.568 | 0.416 | 14.292 | 33.737 | 4.290 | 18.295 | 31.831 | 3.909
18 11.125 | 30.477 | 0.411 14.695 | 33.622 | 4.099 | 19.032 | 31.620 | 3.814
21 11.288 | 30.446 | 0.381 15.149 | 33.569 | 3.914 | 19.909 | 31.493 | 3.701
24 11.603 | 30.198 | 0.393 15.621 33.470 | 3.750 | 21.011 31.254 | 3.595
27 11.805 | 29.917 | 0.360 | 16.004 | 33.339 | 3.582 | 21.901 30.892 | 3.492

3 10.078 | 31.068 | 0.448 | 11.897 | 34.260 | 4910 | 14.546 | 32.793 | 4.636
6 10.287 | 31.005 | 0.432 | 12.509 | 34.105 | 4.706 | 15.554 | 32.469 | 4.493
9 10.532 | 30.896 | 0.422 | 13.132 | 33.975 | 4.512 | 16.410 | 32.216 | 4.385

12 10.767 | 30.797 | 0.413 13.711 33.832 | 4.281 17.444 | 32.008 | 4.185
T6 15 10.965 | 30.728 | 0.411 14.271 33.682 | 4.169 | 18.294 | 31.799 | 4.038
18 11.137 | 30.595 | 0.416 | 14.691 33.587 | 4.042 | 19.030 | 31.647 | 3.953
21 11.299 | 30.539 | 0.404 | 15.145 | 33.457 | 3.899 | 19.906 | 31.463 | 3.764
24 11.618 | 30.349 | 0.416 | 15.603 | 33.324 | 3.781 | 21.006 | 31.187 | 3.632
27 11.817 | 30.095 | 0.393 15.995 | 33.227 | 3.621 | 21.890 | 31.008 | 3.601

3 10.116 | 30.923 | 0.490 | 12.069 | 34.152 | 5.931 14.614 | 33.391 | 6.710
6 10.325 | 30.879 | 0.453 12.703 | 34.076 | 5.953 15.621 33.151 | 6.719
9 10.574 | 30.812 | 0.481 13.353 | 33.983 | 6.042 | 16.477 | 32.966 | 6.733

12 10.807 | 30.737 | 0.483 13.959 | 33.880 | 6.027 | 17.511 32.812 | 6.695
T7 15 11.005 | 30.695 | 0.439 | 14.539 | 33.790 | 6.080 | 18.358 | 32.630 | 6.759
18 11.176 | 30.661 | 0.462 | 14.975 | 33.717 | 6.083 19.091 32.500 | 6.735
21 11.339 | 30.600 | 0.458 | 15.463 | 33.648 | 6.081 19.971 32.389 | 6.603
24 11.657 | 30.491 0.451 15.936 | 33.577 | 6.114 | 21.072 | 32.207 | 6.608
27 11.861 30.410 | 0.471 16.352 | 33.513 | 6.154 | 21.963 | 32.053 | 6.610

Rasheed and Sultan Iraqgi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Table 12: Test Results of Quadtree Partitioning Scheme When Applied on Baboon Image with
Image size (256x256) and (512x512), Nm=50 and Different PBL as Determined

Image size(256x256) Image size(512x512)
Q1P Q2P1 Q2P2
=~
>3 v | 3 o 3 x | 3
o
D m 5% m D m 5%
=E- | © 7 < ® 7 < ® 7 <
- = A = A =
= = =

3 8.381 20.823 | 0.095 8.834 25.645 1.177 9.348 25.421 1.250
6 8512 | 20.813 | 0.100 9.035 25.621 1.212 9.583 25.361 1.220
9 8.693 | 20.801 0.100 9.214 25.591 1.216 9.823 25.283 1.198
12 8.873 | 20.786 | 0.096 9.421 25.552 1.209 10.080 | 25.208 1.262
T2 15 9.052 | 20.774 | 0.102 9.610 25.516 1.193 10.316 | 25.138 1.241
18 9.224 | 20.757 | 0.091 9.786 25.484 1.211 10.542 | 25.070 1.215
21 9.383 | 20.744 | 0.092 9.943 25.456 1.207 10.753 24.978 1.232
24 9.524 | 20.729 | 0.089 10.081 25.432 1.218 10.944 | 24.927 1.300
27 9.613 | 20.719 | 0.094 10.245 25.396 1.206 11.335 24.842 1.241
3 8393 | 21.902 | 0.570 8.850 27.309 8.637 9.370 26.949 | 8.857
6 8.522 | 21.884 | 0.646 9.051 27.259 8.604 9.614 26.739 | 8.020
9 8.706 | 21.870 | 0.643 9.227 27.220 8.542 9.851 26.608 | 7.992
12 8.887 | 21.839 | 0.632 9.434 27.159 8.431 10.107 | 26.492 | 7.794
T4 15 9.063 | 21.810 | 0.605 9.621 27.104 8.374 10342 | 26.357 | 7.723
18 9.236 | 21.783 | 0.611 9.796 27.056 8.247 10.567 | 26.244 | 7.584
21 9.394 | 21.758 | 0.588 9.951 27.001 8.088 10.777 | 26.167 | 7.513
24 9.535 | 21.744 | 0.595 10.090 | 26.952 8.001 10.968 | 26.055 | 7.383
27 9.626 | 21.724 | 0.773 10.253 26.883 7.961 11.196 | 25.998 | 7.365
3 8.380 | 21.799 | 0.652 8.851 27.216 8.845 9.382 26.737 | 8.281
6 8.511 21.788 | 0.825 9.049 27.170 8.759 9.614 26.642 | 8.156
9 8.694 | 21.764 | 0.597 9.224 27.125 8.654 9.851 26.531 8.122
12 8.875 | 21.743 | 0.619 9.430 27.066 8.476 10.107 | 26.409 | 7.961
T6 15 9.052 | 21.715 | 0.582 9.618 27.000 8.454 10342 | 26.295 | 7.918
18 9.226 | 21.688 | 0.614 9.792 26.944 8.235 10.566 | 26.193 | 7.802
21 9.383 | 21.661 0.609 9.947 26.894 8.283 10.777 | 26.061 7.586
24 9.522 | 21.638 | 0.566 10.085 26.847 8.093 10.966 | 25.995 | 7.517
27 9.612 | 21.620 | 0.573 10.249 | 26.781 7.762 11.194 | 25.902 | 7.405
3 8376 | 21.849 | 0.657 8.896 27.029 8.369 9.398 26.795 | 8.625
6 8.508 | 21.842 | 0.685 9.095 27.001 8.297 9.631 26.734 | 8.651
9 8.690 | 21.828 | 0.655 9.271 26.974 8.362 9.868 26.661 8.595
12 8.870 | 21.810 | 0.701 9.476 26.938 8.319 10.123 26.581 8.599
T7 15 9.047 | 21.790 | 0.661 9.664 26.902 8.419 10.357 | 26.508 | 8.963
18 9.220 | 21.771 0.645 9.838 26.863 11.678 10.582 | 26.442 | 8.821
21 9.380 | 21.752 | 0.635 9.993 26.830 12.174 10.791 26.340 | 8.916
24 9.519 | 21.735 | 0.663 10.131 26.798 12.247 10.980 | 26.279 | 8.764
27 9.609 | 21.727 | 0.669 10.295 26.757 12.211 11.211 26.208 | 8.775

Rasheed and Sultan Iraqgi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Baboon 256 Baboon 256 Baboon 256
09
08

98

96
04
92
. 9 -1
T -1
86 =g T6
B4 =17

82

06 ~—
-T2 805 1 -T2

——T1 Foa 1 -1
6 03 1 s ol]

- 02 | ——T7
01

Inc_Val Inc Val Inc_Val

(a) (b) (¢c)
Figure 8:(a-c) The effect of quadtree partitioning scheme Q1P applied on Baboon image

Lenna 256 Lenna 256 Lenna 256
12.25 s 06
1175 = s
w05 0.4 —
1.25
—-—T2 = -1 " —-—12
= Z 2 £ 03
10.75 *=T4 - ——T4 F Ta
——T6 29.5 ——T6 02 —8—T6
10.25 —-—i x —-—T7 01 . -
9.75 25]
y 6 9 m 15 18 n M 2 2 5 om 3 6 8 1 15 18 N 2w 2
Inc_Val Inc ¥ Inc_val

(a) (b) (c)
Figure 9: (a-c) The effect of quadtree partitioning scheme Q1P applied on Lenna image

Baboon 512 Baboon 512 Baboon 512
10.5 105 1
103 103
12
101 101
29 a9 10
e ——T2 e ——1 y 8 —T2
5 s 2 o5 |5
6 ——4 £ ——T4 F g ——T
91 ——T6 91 ——T6 P ——T6
89 ——17 a9 ——T7 2 ——17
87 87
85 a5 o
3 1 1! 18 2 4 2 3] 12 15 18 bal 24 2 3 12 1 1 1 4 27
Inc_Vi Inc_Val Inc_Val

(a) (b) (¢)
Figure 10: (a-c) The effect of quadtree partitioning scheme Q2P1 applied on Baboon image

Lenna 512 Lenna 512 Lenna 512
1 s 7
6
® 1
5
15
—-—2 P -T2 g4 -0
S z £
———Ts 2 5 ——T4 F3 ——T1
3 -6 ——T) ——T6
2 7 35 7 J - — e ”
n 2 0
36 O L THNE TR 1] 306 s o1 15 18 om 2 3 6 8 1 15 18 o w7
val inc_Val val

(a) (b) (c)
Figure 11: (a-c) The effect of quadtree partitioning scheme Q2P1 applied on Lenna image

Baboon 512 Baboon 512 Baboon 512

115 s 10
9
1 £y .
%5 ’

105 —_-—2 « —-—12 e 0 ——T2
5 g % E 5

. ——T4 g —-—Ts E ——T4

*—Th 55 —.=TE 3 —

05 —-—T7 x —-—T7 2 -7
1
9 2 0

3 06 8 12 15 1B a2 2w EN 2 15 18 a4 2w 3 LR LS T |
Ine_Val Inc val ine_val

(a) (b) (c)
Figure 12: (a-c) The effect of quadtree partitioning scheme Q2P2 applied on Baboon image

Rasheed and Sultan Iraqgi Journal of Science, 2026, Vol. xx, No. x, pp: xx

Lenna 512 Lenna 512 Lenna 512

it

—T17 17

35 —-—T1 o ': I | -7
£ 5 ..‘.‘. -0 e T —t -
e 6
305 a
i 6 9 115 B N oW n Pooee ’

Ine_va

(a) (b) (c)
Figure 13: (a-c) The effect of quadtree partitioning scheme Q2P2 applied on Lenna image

C. Quadtree Partitioning with Different Image Size

Implementing the proposing system within the quadtree partitioning mechanism on an
image sample with a size of 512 x 512 pixel has many features, including the greater facility
due to the wider capacity it has in distributing pixels, and thus the algorithm performance
appears more accurately.
In order to further verify the effectiveness of the quadtree partitioning mechanism in this
system, a comparison was made as to whether the image was divided into blocks of variable
lengths (the smallest being 4 and the largest being 8) or (the smallest being 4 and the largest
being 16). Here the measurement becomes clear about how effective are types that are more
stable in accordance with the change in Inc_Val
According to what was listed in Tables (11 and 12), the comparison in the compression
process standards between the various partitioning of the same image appears clearly in the
figures Fig.14 and Fig.15.

Baboon 512 Baboon 512 Baboon 512

—e—T248 2 f—t————

H

f
b

b
t

(a) (b) (c)
Figure 14: (a-c) The effect of different PBL in quadtree partitioning scheme applied on
Baboon image with size 512 x 512 pixel

Lenna 512 Lenna 512 Lenna 512

Phidd
18I0
I
t1itd

1l
I
I
f
J|
|
bt

r+d-JJQI_
tt
f

(a) (b) (c)
Figure 15: (a-c) The effect of different PBL in quadtree partitioning scheme applied on
Lenna image with size 512 % 512 pixel

VI.Conclusions and Future Work
As a result of the practical tests carried out in the above submitted procedure, the subsequent
observations emerged:

Rasheed and Sultan Iraqgi Journal of Science, 2026, Vol. xx, No. x, pp: xx

1. Prewitt operator, which guides quadtree partitioning, can be considered as a beneficial
partitioning mechanism. This is evident in the fact that the compression ratio has improved by
15% to 20% over the fixed partitioning scheme. Also, the improvement in PSNR reaches
almost 4 dB.

2. The quadtree partitioning applied on images with size 512 x 512 pixels, when dividing the
blocks starting from the largest length of 16 PBL, then 8, down to the smallest length of 4 PBL,
achieved better results than partitioning starting with a length of 8, then 4 PBL. This resulted
from taking advantage of the high compression ratio available when compressing 16 PBL
blocks length, as well as taking advantage of the high PSNR in preserving image data when
compressing 4 PBL blocks length.

3. The double moment strategy used in the proposed FIC variable partitioning schemes led to
better results than fixed partitioning results by measuring the values of CR and PSNR. When
using Double moment, the study reached a compression ratio of (21.963) for the Lenna image
and (11.335) for the Baboon image, and the highest PSNR is (34.260) for the Lenna image
and (27.216) for the Baboon.

4. The introduced moments are appropriate for performing dual descriptions of the blocks that
functionally have the potential to accelerate significantly certain IFS encoding process’s steps.
This is because when searching for a block, two of its attributes are known, which makes the
process of finding that specific block faster. Also, the block of 16 PBL has two blocks of 8
PBL and four blocks of 4 PBL. Therefore, the processing time will be reduced by half in some
areas and by a quarter in other areas of the image.

5. Ideas about upcoming projects:

a. Another new criterion of quadtree partitioning could be developed and presented. Some
suggestions include second order derivatives filters such as Robert Operator, Robinson
compass mask, and Frei-Chen edge detector.

b. Examining a combination of different moment configurations such as triple moment sets.
Where a triad consisting of M2, M3, and M5 can be chosen, given that these three are the
common elements among the four descriptor types chosen in this research, which increases the
likelihood of better results appearing when they are combined together.

References

[1] V. Y. Varma, T. N. Prasad, and N. V. P. S. Kumar, "Image compression methods based on
transform coding and fractal coding," International Journal of Engineering Sciences & Research
Technology, vol. 6, no. 10, pp. 481-487, 2017.

[2] G. K. AL-Khafaji, M. H. Rasheed, M. Siddeq, and M. Rodrigues, "Adaptive polynomial coding of
multi-base hybrid compression," International Journal of Engineering, Transactions B :
Applications, vol. 36, no. 2, pp. 236-252, 2023.

[3] V.J. Rehna, "Hybrid approaches to image coding: A review," International Journal of Advanced
Computer Science and Applications, vol. 2, no. 7, 2011.

[4] M. Santhi and R. S. D. Wahida Banu, "Modified SPIHT algorithm for coding color image using
inter-color correlation," International Journal of Computer Science and Network Security
(IJCSNS), vol. 10, no. 3, pp. 256, Mar. 2010.

[5] L. E. George and B. Sultan, "Image compression based on wavelet, polynomial and quadtree,"
Journal of Applied Computer Science & Mathematics, vol. 11, no. 5, pp. 15-20, 2011.

[6] A. Purushothaman and K. Sheeba, "A survey on fractal image compression techniques,"”
International Journal of Innovative Research in Electrical, Electronics, Instrumentation and
Control Engineering, vol. 3, no. 1, 2016.

[71 Q. Wang, D. Liang, and S. Bi, "Fast fractal image encoding based on correlation information
feature," 2010 3rd International Congress on Image and Signal Processing (CISP), pp. 540-543,
2010.

[8] H. T. Chang and C. J. Kuo, "Iteration-free fractal image coding based on efficient domain pool
design," IEEE Transactions on Image Processing, vol. 9, pp. 329-339, 2000.

https://www.proquest.com/openview/d9a35e22159b15417f2f78d14f614fd4/1?pq-origsite=gscholar&cbl=5444811
https://www.proquest.com/openview/d9a35e22159b15417f2f78d14f614fd4/1?pq-origsite=gscholar&cbl=5444811

Rasheed and Sultan Iraqgi Journal of Science, 2026, Vol. xx, No. x, pp: xx

[9] S. D. Kamble, N. V. Thakur, L. G. Malik, and P. R. Bajaj, "Color video compression based on
fractal coding using quadtree weighted finite automata," Information Systems Design and
Intelligent Applications: Proceedings of Second International Conference INDIA 2015, pp. 649-
658, Springer, 2015.

[10] A. H. Ali, A. N. Abbas, L. E. George, and M. R. Mokhtar, "Image and audio fractal compression:
Comprehensive review, enhancements and research directions, " Indonesian Journal of Electrical
Engineering and Computer Science, vol. 15, no. 3, pp. 1564-1570, 2019.

[11] L. E. George, "IFS coding for zero-mean image blocks," Iraqi Journal of Science, vol. 47, pp. 190-
194, 2005.

[12] E. Al-Hilo and L. E. George, "Speeding-up fractal colored image compression using moments
features," 2008 Digital Image Computing: Techniques and Applications (DICTA 2008), pp. 486-
490, 2008.

[13] T. Kovacs, "A fast classification-based method for fractal image encoding," Image and Vision
Computing, vol. 26, pp. 1129-1136, 2008.

[14] L. E. George and E. Al-Hilo, "Speeding-up color FIC using isometric process based on moment
predictor," International Conference on Future Computer and Communication, ICFCC 2009, pp.
607-611, 2009.

[15] L. E. George and E. Al-Hilo, "Fractal color image compression by adaptive zero-mean method,"
2009 International Conference on Computer Technology and Development, pp. 525-529, 2009.

[16] T. M. Hasan and X. Wu, "An adaptive fractal image compression," IJCSI International Journal of
Computer Science Issues, vol. 10, no. 2, pp. 98-110, 2013.

[17] J. Wang and N. Zheng, "A novel fractal image compression scheme with block classification and
sorting based on Pearson's correlation coefficient," IEEE Transactions on Image Processing, vol.
22, pp. 3690-3702, 2013.

[18] X. Wang, D. Zhang, and X. Guo, "Novel hybrid fractal image encoding algorithm using standard
deviation and DCT coefficients," Nonlinear Dynamics, vol. 73, pp. 347-355, 2013.

[19] M. Valarmathi, M. Sobia, and R. B. Devi, "lteration-free fractal image compression using
Pearson’s correlation coefficient-based classification," Informatics and Communication
Technologies for Societal Development: Proceedings of ICICTS 2014, pp. 157-166, Springer,
2015.

[20] K. Jaferzadeh, I. Moon, and S. Gholami, "Enhancing fractal image compression speed using local
features for reducing search space," Pattern Analysis and Applications, pp. 1-10, 2016.

[21] Y. Chen and P. Hao, "Integer reversible transformation to make JPEG lossless," Proceedings 7th
International Conference on Signal Processing (ICSP'04), vol. 1, pp. 835-838, 2004.

[22] G.J. Sullivan and R. L. Baker, "Efficient quadtree coding of images and video," I[EEE Transactions
on Image Processing, vol. 3, no. 3, pp. 327-331, May 1994,

[23] S. V. Veenadevi and A. G. Ananth, "Fractal image compression using quadtree decomposition and
Huffman coding," Signal Image Processing (SIPLJ), vol. 3, no. 2, pp. 207-212, 2012.

[24] S. Pandey and M. Seth, "Hybrid fractal image compression using quadtree decomposition with
Huffman coding," International Journal of Science and Research (IJSR), vol. 3, no. 6, pp. 943-
948, 2014.

[25] Z. J. Ahmed, L. E. George, and Z. S. Abduljabbar, "Fractal image compression using block
indexing technique: A review," Iraqi Journal of Science, vol. 61, no. 11, pp. 1798-1810, 2020.

[26] B. A. Sultan, L. E. George, and N. F. Hassan, "The use of quadtree range domain partitioning with
fast double moment descriptors to enhance FIC of colored image," ARO-The Scientific Journal of
Koya University, vol. 6, no. 1, pp. 13-22, 2018.

[27] S. L. Mahmoud, "The use of double moment-based descriptors to speed up FIC," Al-Nahrain
Journal of Science, vol. 15, pp. 200-202, 2012.

[28] L. E. George and S. L. Mahmoud, "Image steganography using an accelerated affine block
matching scheme," International Journal of Computer Information Systems, vol. 2, pp. 1-7, 2011.

