

ISSN: 0067-2904

Application of the Two Rowed Weyl Module in the Case of Partitions (7,7) and $(7,7) /(1,0)$

Nubras Yasir Khudair*, Haytham Razooki Hassan
Mathematics department, College of Science, Mustansiriya University, Baghdad, Iraq

Received: 24/6/ 2019
Accepted: 22/10/2019

Abstract

The purpose of this paper is to study the application of Weyl module's resolution in the case of two rows which will be specified in the partitions $(7,7)$ and $(7,7) /(1$, 0), using the homological Weyl (i.e. the contracting homotopy and place polarization).

Keywords: Divided power algebra, resolution of Weyl module, place polarization, mapping Cone.

$$
\begin{aligned}
& \text { تطبيق مقاس وايل لصفين في حالة التجزئة (7,7) و(7, 7) / } 7 \text { (} 7 \text { (} 7 \text { (} \\
& \text { نبراس ياسرخضير "، هيثم رزوقي حسن } \\
& \text { قسم الرياضيات ، كلية العوم، جامعة بغداد،بغداد، العراق }
\end{aligned}
$$

الخلاصة
الغرض من هذا البحث هو دراسة تطبيق تحلل مقاس وايل في حالة الصغين والتي ستكون محددة
بالتجزئة (7,7) و (7, 7) / (1, 0) وذلك بإستخدام متشاكلة وايل (أي التوافق الهوموتوبي ودالة الككان).

1. Introduction

Let \mathcal{R} be a commutative ring with identity " 1 " and \mathbb{F} be a free \mathcal{R}-module by $D_{b} \mathbb{F}$ which is the divided power of degree b.

Consider the theory associated to the resolution of the two-rowed Weyl module $K_{\lambda / \mu} \mathbb{F}$, that was previously described [1], as in the following:
$\lambda / \mu=$

where $K_{\lambda / \mu} \mathbb{F}=\operatorname{Im}\left(d_{\lambda / \mu}^{\prime}\right)$ and $d_{\lambda / \mu}^{\prime}: \operatorname{DF} \rightarrow \Lambda \mathbb{F}$ is the Weyl map whose images will be called "Weyl module".

We have:

$$
\begin{equation*}
\sum \mathrm{D}_{\mathbb{P}+\mathbb{k}} \otimes \mathrm{D}_{\mathrm{q} \mid-\mathbb{k}} \xrightarrow{\square} \mathrm{D}_{\mathbb{p}} \otimes \mathrm{D}_{\mathbb{q}} \xrightarrow{d_{\lambda / \mu}^{\prime}} \mathbb{K}_{\lambda / \mu} \rightarrow 0 \tag{2}
\end{equation*}
$$

and by using letter place, the maps will be explained now as follows:

[^0]where $\quad \mathbb{w} \otimes \mathbb{w}^{\prime} \in \mathcal{D}_{\mathbb{P}+\mathbb{k}} \otimes \mathcal{D}_{\mathbb{q}-\mathbb{k}}, \quad \square=\sum_{\mathbb{k}=\mathbb{t}+1}^{\mathbb{q}} \partial_{21}^{(\mathbb{k})}$ is the box map and $\mathbb{d}^{\prime} \lambda / \mu=\partial_{q / 2}$ $\ldots \partial_{1^{\prime} 2} \partial_{(\mathbb{P}+\mathbb{t})^{\prime} 1} \ldots \partial_{(\mathbb{t}+1)^{\prime} 1}$ is the composition of place polarization, from positive places $\{1,2\}$ to negative places $\left\{1^{\prime}, 2^{\prime}, \ldots,(p+t)\right\}$.
Also, as shown in [2], \square is deliver a component $x \otimes y$ of $\mathrm{D}_{\mathbb{p}+\mathbb{k}} \otimes \mathrm{D}_{\mathbb{q} \mid-\mathbb{k}}$ to $\sum x_{p} \otimes x_{{ }_{k}} y$, where $\sum x_{\mathbb{P}} \otimes x_{\mathbb{k}}^{\prime}$ is the element of the diagonal of \mathcal{H} in $\mathcal{D}_{\mathbb{p}} \otimes \mathrm{D}_{\mathbb{k}}$.

Let Z_{21} be the free generator of divided power algebra $D\left(Z_{21}\right)$ in one generator, then the divided power component $Z_{21}^{(k)}$ of degree k of the free generator Z_{21} acts on $D_{\mathbb{P}+\mathbb{k}} \otimes D_{q-1 / k}$ by place polarization of degree k from place 1 to place 2 .

Particularly, the 'graded' algebra 'with identity' $A=\mathcal{D}\left(\mathrm{Z}_{21}\right)$ acts on the graded module $\mathcal{M}=$ $\sum D_{p+k} \otimes D_{q-k}=\sum \mathcal{M}_{q-k}$, where the degree of the $2^{\text {nd }}$ factor dictates the grading [3] .

Therefore, \mathcal{M} is a 'graded' left A;module, where for $w=\mathbb{Z}_{21}^{(k)} \in A$ and $v \in D_{\beta_{1}} \otimes D_{\beta_{2}}$, by definition, we have:

$$
\begin{equation*}
w(v)=Z_{21}^{(k)}(v)=\partial_{21}^{(k)}(v) . \tag{4}
\end{equation*}
$$

And if we have $\left(\mathrm{t}^{+}\right)$which is the graded strand of degree q

$$
\begin{equation*}
\mathcal{M}_{.}: 0 \rightarrow \mathcal{M}_{q-t} \xrightarrow{\partial_{s}} \ldots \rightarrow \mathcal{M}_{l} \xrightarrow{\partial_{s}} \ldots \mathcal{M}_{1} \xrightarrow{\partial_{s}} \mathcal{M}_{0} \tag{5}
\end{equation*}
$$

of the normalized bar complex $\operatorname{Bar}(\mathcal{M}, A ; \mathrm{S}, \cdot)$, and $\mathrm{S}=\{\mathrm{x}\}$,
By definition, we have that \dot{M}. is the complex:

$$
\begin{align*}
& \sum_{k_{i} \geq 0} \mathrm{Z}_{21}^{\left(t+k_{1}\right)} x \mathrm{Z}_{21}^{\left(k_{2}\right)} x \ldots x \mathrm{Z}_{21}^{\left(k_{l}\right)} x D_{p+t+|k|} \otimes D_{q-t-|k|} \xrightarrow{d_{l}} \\
& \quad \begin{array}{l}
\sum_{k_{i} \geq 0} \mathrm{Z}_{21}^{\left(t k_{1}\right)} x \mathrm{Z}_{21}^{\left(k_{2}\right)} x \ldots x \mathbf{Z}_{21}^{\left(k_{1}-1\right)} x D_{p+t+|k|} \otimes D_{q-t-|k|} \\
d_{l-1}
\end{array} \sum_{k_{i} \geq 0}^{(t+k)} \mathrm{Z}_{21}^{(t+k)} x D_{p+t+k} \otimes D_{q-t-k} \xrightarrow{d_{0}} D_{p} \otimes D_{q} \tag{6}
\end{align*}
$$

where $|\mathrm{K}|=\sum \mathrm{k}_{i}$ and d_{l} is the boundary operator ∂_{\varkappa}. Notice that (6) illustrates a left complex $\left(\partial_{\varkappa}^{2}=\right.$ 0) over the Weyl module in terms of bar complex and letter-place algebra. Furthermore, when it occurs in (6) that the separator $\mathcal{\varkappa}$ disappears between $\mathrm{Z}_{a b}^{(t)}$ and the components in the tensor product of the divided powers, this means that $\partial_{a b}^{(t)}$ is applied to the tensor product $[1,4]$.

2. Application of Weyl Module Resolution in the Case of Partition $(\mathbf{7}, \mathbf{7})$

In this section we define the terms of Weyl module resolution in the case of partition $(7,7)$ and give the proof of its exactness.

2.1 The Terms of Weyl Module Resolution in the Case of Partition (7, 7)

We define the terms of Weyl module resolution in the case of partition (7, 7), as follows:
$\mathrm{M}_{0}=\mathrm{D}_{7} \otimes \mathrm{D}_{7}$
$\dot{M}_{1}=\mathrm{Z}_{21} \mathcal{\varkappa} \mathrm{D}_{8} \otimes \mathrm{D}_{6} \oplus \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{9} \otimes \mathrm{D}_{5} \oplus \mathrm{Z}_{21}^{(3)} \nsim \mathrm{D}_{10} \otimes \mathrm{D}_{4} \oplus Z_{21}^{(4)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{3}$ $\oplus \mathrm{Z}_{21}^{(5)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(6)} \mathcal{*} \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(7)} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0}$
$\dot{\mathrm{M}}_{2}=\mathrm{Z}_{21} \mathcal{\mu} \mathrm{Z}_{21} \mathcal{\psi} \mathrm{D}_{9} \otimes \mathrm{D}_{5} \oplus \mathrm{Z}_{21}^{(2)} \mathcal{K} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{4} \oplus \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{4}$
$\oplus \mathrm{Z}_{21}^{(3)} 火 \mathrm{Z}_{21} \mathcal{\psi} \mathrm{D}_{11} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21} \psi \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21}^{(2)} \mathcal{\mathrm { Z } _ { 2 1 } ^ { (2) }} \nsim \mathrm{D}_{11} \otimes \mathrm{D}_{3}$

$\oplus \mathrm{Z}_{21}^{(4)} \mathcal{H} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21}^{(4)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21}^{(6)} \mathcal{Z} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21}^{(6)} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(5)} \mathcal{Z} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21}^{(5)} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(4)} \mathcal{H} \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{Z}_{21}^{(4)} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0}$

$\oplus \mathrm{Z}_{21} \nsim \mathrm{Z}_{21} \nsim \mathrm{Z}_{21}^{(3)} \nsim \mathrm{D}_{12} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(2)} \nsim \mathrm{Z}_{21}^{(2)} \nsim \mathrm{Z}_{21} \nsim \mathrm{D}_{12} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21} \psi \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(2)} 火 \mathrm{D}_{12} \otimes \mathrm{D}_{2}$
$\oplus \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{D}_{12} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(4)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(4)} x \mathrm{Z}_{21} x \mathrm{D}_{13} \otimes \mathrm{D}_{1}$

$\oplus \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(5)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(5)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{14} \otimes \mathrm{D}_{0}$

 $\oplus \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0}$

$\oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} 火 \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(2)} 火 \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{D}_{13} \otimes \mathrm{D}_{1}$

$\oplus \mathrm{Z}_{21} \mu \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21}^{(2)} 火 \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(3)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(3)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(3)} x \mathrm{Z}_{21} x \mathrm{D}_{13} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(3)} x \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(4)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{D}_{14} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} \nsim \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{14} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} 火 \mathrm{Z}_{21} 火 \mathrm{Z}_{21} 火 \mathrm{Z}_{21}^{(4)} 火 \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(3)} 火 \mathrm{Z}_{21}^{(2)} 火 \mathrm{Z}_{21} \mu \mathrm{Z}_{21} 火 \mathrm{D}_{14} \otimes \mathrm{D}_{0}$

$\oplus \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(3)} x \mathrm{Z}_{21} x \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(3)} \mathcal{\mathrm { D } _ { 1 4 }} \otimes \mathrm{D}_{0}$

$\oplus \mathrm{Z}_{21} \mathcal{x} \mathrm{Z}_{21} \mathcal{x} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21}^{(3)} \mathcal{x} \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \mathcal{Z} \mathrm{Z}_{21}^{(2)} \mathcal{K} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} \nsim \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \nsim \mathrm{Z}_{21}^{(2)} \mathcal{\mathrm { D } _ { 1 4 }} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \not \mathrm{Z}_{21} \nsim \mathrm{Z}_{21}^{(2)} \nsim \mathrm{Z}_{21}^{(2)} \mathcal{\mathrm { D } _ { 1 4 }} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21}^{(2)} x \mathrm{D}_{14} \otimes \mathrm{D}_{0}$

 $\oplus \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{D}_{13} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(3)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{D}_{14} \otimes \mathrm{D}_{0}$ $\oplus \mathrm{Z}_{21} \kappa \mathrm{Z}_{21}^{(3)} x \mathrm{Z}_{21} 火 \mathrm{Z}_{21} 火 \mathrm{Z}_{21} \mu \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} 火 \mathrm{Z}_{21} 火 \mathrm{Z}_{21}^{(3)} 火 \mathrm{Z}_{21} \mu \mathrm{Z}_{21} 火 \mathrm{D}_{14} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(3)} x \mathrm{Z}_{21} x \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(3)} x \mathrm{D}_{14} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} 火 \mathrm{Z}_{21} x \mathrm{Z}_{21} 火 \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} 火 \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} 火 \mathrm{Z}_{21} x \mathrm{Z}_{21} 火 \mathrm{D}_{14} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} 火 \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} 火 \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{14} \otimes \mathrm{D}_{0}$

$\oplus \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0}$

 $\oplus \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{D}_{14} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{D}_{14} \otimes \mathrm{D}_{0}$
 $\oplus \mathrm{Z}_{21} x \mathrm{Z}_{21} \mu \mathrm{Z}_{21} 火 \mathrm{Z}_{21} x \mathrm{Z}_{21} x \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{14} \otimes \mathrm{D}_{0}$
$\dot{M}_{7}=\mathrm{Z}_{21} \nsim \mathrm{Z}_{21} 火 \mathrm{Z}_{21} \nsim \mathrm{Z}_{21} \nsim \mathrm{Z}_{21} 火 \mathrm{Z}_{21} \nsim \mathrm{Z}_{21} \nsim \mathrm{D}_{14} \otimes \mathrm{D}_{0}$

2．2 The Exactness of Weyl Resolution in the Case of Partition $(7,7)$

Define the \mathbb{S}_{i} map as follows：
$\mathbb{S}_{0}: \dot{M}_{0} \rightarrow \dot{M}_{1}$

$$
\mathbb{S}_{0}\left(\left(\begin{array}{cl}
\mathbb{W} \\
\mathbb{W}\left|1^{\prime}\right| & 1^{(7)} 2^{(\mathrm{k})} \\
2^{(7-\mathrm{k})}
\end{array}\right)\right)=\left\{\begin{array}{cl}
\mathrm{Z}_{21}^{(\mathrm{k})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \mid \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(7-\mathrm{k})}} ^{(7+\mathrm{k})}\right. \\
0 & ; \text { if } \mathrm{k}=1,2,3,4,5,6,7 \\
\text { if } \mathrm{k}=0
\end{array}\right.
$$

And
$\mathbb{S}_{1}: \dot{M}_{1} \rightarrow \dot{M}_{2}$

And
$\mathbb{S}_{2}: \dot{M}_{2} \rightarrow \dot{M}_{3}$

And
$\mathbb{S}_{3}: \dot{M}_{3} \rightarrow \dot{M}_{4}$

$$
\begin{aligned}
& \left.\mathbb{S}_{3}\left(\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \mid \\
\mathbb{W}^{\prime}
\end{array} 1_{2^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})}}^{2^{(7-|\mathrm{k}|-\mathrm{m})}}\right)\right)\right) \\
& =\left\{\begin{array}{ll}
\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \mid \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(7+|\mathrm{k}|+\mathrm{m})}} ^{(7-|\mathrm{k}|-\mathrm{m})}\right.
\end{array}\right) \quad \text {; if } \mathrm{m}>0
\end{aligned}
$$

And
$\mathbb{S}_{4}: \dot{M}_{4} \rightarrow \dot{M}_{5}$

$$
\begin{aligned}
& \mathbb{S}_{4}\left(\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \mathcal{K} \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathcal{K} \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array} 1_{2^{(7+|\mathrm{k}|-\mathrm{k} \mid)}}^{(\mathrm{k})} 2^{(\mathrm{m})}\right)\right)
\end{aligned}
$$

And

$$
\mathbb{S}_{5}: \dot{M}_{5} \rightarrow \dot{M}_{6}
$$

$$
\begin{aligned}
& \mathbb{S}_{5}\left(\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \mid \\
w^{\prime} \mid \\
1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\right)
\end{aligned}
$$

And
$\mathbb{S}_{6}: \dot{M}_{6} \rightarrow \dot{M}_{7}$

$$
\begin{aligned}
& \mathbb{S}_{6}\left(\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{5}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(\mathrm{K}_{6}\right)} \varkappa\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathbb{w} & 2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\right) \\
& = \begin{cases}\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{6}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(7+|\mathrm{k}|+\mathrm{m} \mid-\mathrm{m})}} ^{(7)}\right. & \text {; if } \mathrm{m}>0 \\
0 & \text {;if } \mathrm{m}=0\end{cases}
\end{aligned}
$$

So we have the following diagram:

(1)

2.2.1 Proposition

In diagram (1), we can see that $\mathbb{S}_{n} \partial_{\mathcal{K}}+\partial_{\mathcal{H}} \mathbb{S}_{n+1}=i d$ where $\mathrm{n}=0,1,2,3,4,5$.

Proof:

And

$+Z_{21}^{(\mathrm{k})} \varkappa\left(\begin{array}{c|c}\mathbb{W} & 1^{(7+\mathrm{k})} 2^{(\mathrm{m})} \\ \mathbb{W}^{\prime} & 2^{(7-\mathrm{k}-\mathrm{m})}\end{array}\right)$
It is obvious that $\mathbb{S}_{0} \partial_{\mathcal{\varkappa}}+\partial_{\mathcal{H}} \mathbb{S}_{1}=i d$.

$\left.\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)}\left(\begin{array}{c|c}\mathbb{W} \\ \mathbb{W} \\ \mathbb{w}^{\prime} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\ 2^{(7-|\mathrm{k}|-\mathrm{m})}\end{array}\right)\right)$
$=-\binom{|\mathrm{k}|}{\mathrm{k}_{2}} \mathrm{Z}_{21}^{|\mathrm{k}|} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}\mathbb{W} \mid \\ \mathbb{W}^{\prime}\end{array}\right|_{2^{(7+|\mathrm{k}|+\mathrm{m})}} ^{(7-\mathrm{k} \mid-\mathrm{m})}\right) ~+\binom{\mathrm{k}_{2}+\mathrm{m}}{\mathrm{m}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}+\mathrm{m}\right)} \varkappa\left(\begin{array}{c}\mathbb{W} \\ \mathbb{W}^{\prime}\end{array} \left\lvert\, \begin{array}{c}1^{(7+|\mathrm{k}|+\mathrm{m})} \\ 2^{(7-|\mathrm{k}|-\mathrm{m})}\end{array}\right.\right)$,
And

$=$
where $|\mathrm{K}|=\mathrm{k}_{1}+\mathrm{k}_{2}$.
It is obvious that $\mathbb{S}_{1} \partial_{\mathcal{\varkappa}}+\partial_{\mathcal{\varkappa}} \mathbb{S}_{2}=i d$.

$$
\begin{aligned}
& \mathbb{S}_{2} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array} \left\lvert\, \begin{array}{c}
1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(7-|\mathrm{K}|-\mathrm{m})}
\end{array}\right.\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)}\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathfrak{w} & 2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\right)
\end{aligned}
$$

And
where $|\mathrm{k}|=\mathrm{k}_{1}+\mathrm{K}_{2}+\mathrm{k}_{3}$.
It is obvious that $\mathbb{S}_{2} \partial_{\mathcal{\varkappa}}+\partial_{\mathcal{\varkappa}} \mathbb{S}_{3}=i d$.

$$
\begin{aligned}
& \left(\begin{array}{c|c}
\mathbb{W} \\
\mathbb{W}^{\prime} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\binom{\mathrm{K}_{3}+\mathrm{K}_{4}}{\mathrm{k}_{4}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}+\mathrm{K}_{4}\right)} \varkappa\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathbb{W}^{\prime} & 2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& =-\binom{\mathrm{k}_{1}+\mathrm{K}_{2}}{\mathrm{k}_{2}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{(\mathrm{m})} \mathcal{H}\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(7+|\mathrm{k}|+\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{3}+\mathrm{k}_{4}}{\mathrm{k}_{4}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}+\mathrm{k}_{4}\right)} \mathcal{Z} \mathrm{Z}_{21}^{(\mathrm{m})} \mathcal{H}\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(7+|\mathrm{k}|+\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right)+
\end{aligned}
$$

And

$$
\begin{aligned}
& \partial_{\mathcal{H}} \mathbb{S}_{4}\left(\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathcal{\varkappa} \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} x\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathbb{W} \mid & 2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{4}+\mathrm{m}}{\mathrm{~m}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}+\mathrm{m}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{w}^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(7+|\mathrm{k}|+\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right)+ \\
& \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \partial_{21}^{(\mathrm{m})}\left(\begin{array}{c}
\mathbb{w} \\
\mathbb{w}^{\prime}
\end{array}{\left.\begin{array}{l}
1^{(7+|\mathrm{k}|+\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)}^{(\mathrm{k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W},
\end{array} 1_{\mathbf{w}^{\prime}}^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} 2^{(7-|\mathrm{k}|-\mathrm{m})}\right),
\end{aligned}
$$

where $|\mathrm{K}|=\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}$.
It is obvious that $\mathbb{S}_{3} \partial_{\mathcal{\varkappa}}+\partial_{\mathcal{H}} \mathbb{S}_{4}=i d$.

$$
\begin{aligned}
& =\mathrm{S}_{4}\left(\binom{\mathrm{k}_{1}+\mathrm{K}_{2}}{\mathrm{k}_{2}} \mathrm{Z}_{21}^{\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{5}\right)} \mathcal{H}\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W}
\end{array} \left\lvert\, \begin{array}{c}
1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right)-\right. \\
& \binom{\mathrm{K}_{2}+\mathrm{K}_{3}}{\mathrm{~K}_{3}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}+\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{5}\right)} \mathcal{H}\left(\begin{array}{c|c}
\mathbb{W} \\
\mathbb{W}^{\prime} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathrm{Z}_{21}^{\left(\mathfrak{K}_{4}\right)} \mathcal{H} \partial_{21}^{\left(\mathrm{K}_{5}\right)}\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W} \\
W^{\prime}
\end{array} 1_{2^{(7-|\mathrm{k}|-\mathrm{m})}}^{(7+|\mathrm{K}|)} 2^{(\mathrm{m})}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{k}_{2}} \mathrm{Z}_{21}^{\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \mathcal{Z} \mathrm{Z}_{21}^{(\mathrm{m})} \mathcal{H}\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(7-|\mathrm{k}|-\mathrm{m})}} ^{(7+|\mathrm{k}|+\mathrm{m})}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{\mathrm{k}_{4}+\mathrm{m}}{\mathrm{~m}} \mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{5}+\mathrm{m}\right)} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \mid \\
\mathbb{w}^{\prime}
\end{array}\right|_{2^{(7+|\mathrm{k}|-\mathrm{m})}} ^{(7+\mathrm{k})} .\right.
\end{aligned}
$$

And

$$
\begin{aligned}
& \partial_{\varkappa} \mathbb{S}_{5}\left(\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \mid \\
\mathbb{W}^{\prime}
\end{array} 1_{2^{(7-|\mathrm{k}|-\mathrm{m})}}^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})}\right)\right) \\
& =\partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{5}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(7-|\mathrm{k}|-\mathrm{m})}} ^{(7+|\mathrm{k}|+\mathrm{m})}\right)\right) \\
& =-\binom{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{k}_{2}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\begin{array}{c}
\mathbb{W} \mathrm{w}^{\prime} \mid \\
\mathbb{W}^{\prime} \mid \\
1^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{3}+\mathrm{k}_{4}}{\mathrm{k}_{4}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}+\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{w}^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(7+|\mathrm{k}|+\mathrm{m})} \\
\left.2^{(7-|\mathrm{k}|-\mathrm{m})}\right)
\end{array}\right.\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{4}+\mathrm{m}}{\mathrm{~m}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}+\mathrm{m}\right)}\left(\begin{array}{c|c}
\mathbb{W} \\
\mathbb{w}^{\prime} & 1_{2}^{(7+|\mathrm{k}|+\mathrm{m})} \\
\left.2^{(7-|\mathrm{k}|-\mathrm{m})}\right)
\end{array}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{3}+\mathrm{K}_{4}}{\mathrm{k}_{4}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}+\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{w}^{\prime}
\end{array}\right|_{2^{(7-|\mathrm{k}|-\mathrm{m})}} ^{(7+|\mathrm{k}|+\mathrm{m})}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{5}+\mathrm{m}}{\mathrm{~m}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}+\mathrm{m}\right)} \mathcal{H}\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathbb{W}^{\prime} & 2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)+ \\
& \mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{5}\right)} \varkappa\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathbb{W}^{\prime} & 2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right),
\end{aligned}
$$

where $|\mathrm{K}|=\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}$.
It is obvious that $\mathbb{S}_{4} \partial_{\mathcal{H}}+\partial_{\mathcal{H}} \mathbb{S}_{5}=i d$.

$$
\begin{aligned}
& S_{5} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{6}\right)} \varkappa\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathbb{W}^{\prime} & 2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\right) \\
& =S_{5}\left(-\binom{\mathrm{k}_{1}+\mathrm{K}_{2}}{\mathrm{k}_{2}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{6}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \mid \\
\mathbb{W}^{\prime} \\
1_{2}^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(7-\mathrm{m})}
\end{array}\right)+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{3}+\mathrm{K}_{4}}{\mathrm{k}_{4}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}+\mathrm{K}_{4}\right)} \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{6}\right)} \varkappa\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathbb{W}^{\prime} & 2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)+ \\
& \binom{\mathrm{K}_{4}+\mathrm{K}_{5}}{\mathrm{k}_{5}} \mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}+\mathrm{K}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{6}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array} \left\lvert\, \begin{array}{c}
1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right) \text {. } \\
& \binom{\mathrm{k}_{5}+\mathrm{K}_{6}}{\mathrm{k}_{6}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}+\mathrm{K}_{6}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array} \left\lvert\, \begin{array}{c}
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{5}+\mathrm{k}_{6}}{\mathrm{k}_{6}} \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\begin{array}{c|c}
\mathbb{W} \\
\mathbb{w}^{\prime} & 1^{(7+|k|+\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)+
\end{aligned}
$$

And

$$
\begin{aligned}
& \partial_{\varkappa} S_{6}\left(\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{6}\right)} \varkappa\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathfrak{w} & 2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\right) \\
& =\partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{6}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(7-|\mathrm{k}|-\mathrm{m})}} ^{(7+|\mathrm{k}|+\mathrm{m})}\right)\right) \\
& =\binom{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{k}_{2}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{6}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathfrak{w}^{\prime}
\end{array} \left\lvert\, \begin{array}{c}
1^{(7+|\mathrm{k}|+\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right)-
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{3}+\mathrm{K}_{4}}{\mathrm{k}_{4}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}+\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{6}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1_{2}^{(7+|\mathrm{k}|+\mathrm{m})} \\
2^{(7-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right)-
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{6}+\mathrm{m}}{\mathrm{~m}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{6}+\mathrm{m}\right)} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(7-|\mathrm{k}|-\mathrm{m})}} ^{1^{(7+|k|+\mathrm{m})}}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{5}+\mathrm{k}_{6}}{\mathrm{k}_{6}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}+\mathrm{k}_{6}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array} \right\rvert\, 1_{2^{(7+|k|}}^{(7-|\mathrm{k}|-\mathrm{m})} 2^{(\mathrm{m})}\right)- \\
& \binom{\mathrm{k}_{6}+\mathrm{m}}{\mathrm{~m}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{6}+\mathrm{m}\right)} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(7-|\mathrm{k}|-\mathrm{m})}} ^{1^{(7+|\mathrm{k}|+\mathrm{m})}}\right)+ \\
& \mathrm{Z}_{21}^{\left(\mathrm{K}_{1}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{5}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{6}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W} \\
W^{\prime}
\end{array} 1_{2^{(7-|\mathrm{k}|-\mathrm{m})}}^{(7+|\mathrm{k}|+\mathrm{m})}\right),
\end{aligned}
$$

where $|\mathrm{K}|=\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}+\mathrm{K}_{6}$.
It is obvious that $\mathbb{S}_{5} \partial_{\varkappa}+\partial_{\varkappa} \mathbb{S}_{6}=i d$.
From the above we conclude that $\left\{\mathbb{S}_{0}, \mathbb{S}_{1}, \mathbb{S}_{2}, \mathbb{S}_{3}, \mathbb{S}_{4}, \mathbb{S}_{5}, \mathbb{S}_{6}\right\}$ is a contracting homology [5], which implies that our complex is exact.

3. Application of Weyl Module Resolution in the Case of Partition (7, 7) / (1, 0)

In this section we define the terms of Weyl module resolution in the case of partition $(7,7) /(1,0)$ and give the proof of its exactness.

3.1 The Terms of Weyl Module Resolution in the Case of Partition (7, 7) / (1, 0)

If the Skew-shape $(7,7) /(1,0)$, then the characteristic free resolution terms will be as follows:

$\dot{M}_{0}=D_{6} \otimes D_{7}$
$\dot{M}_{1}=\mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{8} \otimes \mathrm{D}_{5} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{K} \mathrm{D}_{9} \otimes \mathrm{D}_{4} \oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{D}_{10} \otimes \mathrm{D}_{3}$
$\oplus \mathrm{Z}_{21}^{(5)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(6)} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(7)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\dot{M}_{2}=\quad \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \varkappa \mathrm{D}_{9} \otimes \mathrm{D}_{4} \oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{10} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{D}_{10} \otimes \mathrm{D}_{3}$
$\oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{11} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{2}$
$\oplus \quad \mathrm{Z}_{21}^{(5)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(4)} \mu \mathrm{D}_{12} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(6)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(5)} \mathcal{H} \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(5)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(4)} \mu \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\dot{M}_{3}=\mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{10} \otimes \mathrm{D}_{3} \oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{11} \otimes \mathrm{D}_{2}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{11} \otimes \mathrm{D}_{2} \oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(3)} \mathcal{Z} \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21}^{(2)} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \mathcal{Z} \mathrm{Z}_{21} \mathcal{H} \mathrm{Z}_{21}^{(3)} \mathcal{H} \mathrm{D}_{12} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21}^{(5)} \mu \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(4)} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(4)} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(4)} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(3)} \mu \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$

$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{12} \otimes \mathrm{D}_{1} \oplus \mathrm{Z}_{21}^{(4)} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mathcal{H} \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(3)} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(3)} \mu \mathrm{Z}_{21} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0}$

$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(3)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$

$\oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \mu \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mu \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0} \oplus \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \mu \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21}^{(2)} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
$\dot{M}_{6}=\mathrm{Z}_{21}^{(2)} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{Z}_{21} \varkappa \mathrm{D}_{13} \otimes \mathrm{D}_{0}$
3.2 The Exactness of Skew- Shape in the case of partition $(7,7) /(1,0)$

In this section we illustrate the construction of the homotopies $\left\{\mathbb{S}_{i}\right\}$ in the case of partition $(7,7) /$ $(1,0)$ where $\mathrm{i}=1,2, \ldots, 5$.

As for homologies we have:
$\mathbb{S}_{0}: \bar{M}_{0} \rightarrow \dot{M}_{1}$
$\mathbb{S}_{0}\left(\left(\begin{array}{c}\mathbb{W} \left\lvert\, \begin{array}{c}1^{(7)} 2^{(\mathrm{k})} \\ \mathbb{W}^{\prime}\end{array} 2^{(6-\mathrm{k})}\right.\end{array}\right)\right)=\left\{\begin{array}{cl}\mathrm{Z}_{21}^{(\mathrm{k})} \mathcal{H}\left(\begin{array}{c}\left.\mathbb{W}^{\mathbb{W}} \left\lvert\, \begin{array}{l}\mathbb{W}^{\prime} \\ 1^{(7+\mathrm{k})} \\ 2^{(6-\mathrm{k})}\end{array}\right.\right)\end{array}\right. & ; \text { if } \mathrm{k}=1,2,3,4,5,6,7 \\ 0 & ; \text { if } \mathrm{k}=0\end{array}\right.$
And
$\mathbb{S}_{1}: \dot{M}_{1} \rightarrow \dot{M}_{2}$

And
$\mathbb{S}_{2}: \dot{M}_{2} \rightarrow \dot{M}_{3}$

And
$\mathbb{S}_{3}: \dot{M}_{3} \rightarrow \dot{M}_{4}$

And
$\mathbb{S}_{4}: \dot{M}_{4} \longrightarrow \dot{M}_{5}$

$$
\begin{aligned}
& \mathbb{S}_{4}\left(\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \mathbf{W} \\
\mathbb{W}^{\prime} \mid \\
1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\right) \\
& = \begin{cases}\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(6-|\mathrm{k}|-\mathrm{m})}} ^{1^{(7+|\mathrm{k}|+\mathrm{m})}}\right) & \text {; if } \mathrm{m}>0 \\
0 & \text {; if } \mathrm{m}=0\end{cases}
\end{aligned}
$$

And

$$
\begin{aligned}
& \mathbb{S}_{5}: \dot{M}_{5} \rightarrow \dot{M}_{6} \\
& \mathbb{S}_{5}\left(\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}+1\right)} x \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} x \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} x \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} x \mathrm{Z}_{21}^{\left(\mathrm{K}_{5}\right)} x\left(\begin{array}{c}
\mathbb{W} \mid \\
w^{\prime} \mid \\
1^{(7+|k|)} 2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\right)
\end{aligned}
$$

So we have the following diagram:

(2)

3.2.1 Proposition

In diagram (2), we can see that $\mathbb{S}_{n} \partial_{\mathcal{K}}+\partial_{\mathcal{K}} \mathbb{S}_{n+1}=i d$ where $\mathrm{n}=0,1,2,3,4$.

Proof:

$\mathbb{S}_{0} \partial_{\varkappa}\binom{\left.Z_{21}^{(k+1)} \varkappa\left(\begin{array}{c}\mathbb{w} \\ w^{\prime}\end{array} \left\lvert\, \begin{array}{c}1^{(7+k)} 2^{(m)} \\ 2^{(6-k-m)}\end{array}\right.\right)\right)=\mathbb{S}_{0} \partial_{21}^{(k+1)}\left(\left.\begin{array}{c}\mathbb{w} \\ w^{\prime} \mid\end{array}\right|^{(7)} 2^{(k-k-m)}\right.}{2^{(6-k-m)}}=$
$=\binom{k+1+m}{m} Z_{21}^{(k+1+m)} \mathcal{\varkappa}\left(\begin{array}{c}\mathbb{W} \\ w^{\prime}\end{array} \left\lvert\, \begin{array}{l}1^{(7+k+m)} \\ \left.2^{(6-k-m)}\right)\end{array}\right.\right)$,
And

$$
\begin{aligned}
& \partial_{\varkappa} \mathbb{S}_{1}\left(Z_{21}^{(k+1)} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(7+k)} 2^{(m)} \\
2^{(6-k-m)}
\end{array}\right.\right)\right)=\partial_{\varkappa}\left(Z_{21}^{(k+1)} \varkappa Z_{21}^{(m)} \varkappa\left(\left.\begin{array}{l}
\mathbb{W} \mid \\
w^{\prime}
\end{array}\right|_{2^{(6-k-m)}} ^{1^{(7+k+m)}}\right)\right)
\end{aligned}
$$

It is obvious that $\mathbb{S}_{0} \partial_{\varkappa}+\partial_{\varkappa} \mathbb{S}_{1}=i d$.

And

$$
\begin{aligned}
& Z_{21}^{\left(\mathrm{K}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)}\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{w}^{\prime}
\end{array} \left\lvert\, \begin{array}{c}
1^{(7+|k|} \mid \\
2^{(6-|k|-m)}
\end{array}\right.\right),
\end{aligned}
$$

where $|\mathfrak{k}|=\mathrm{k}_{1}+\mathrm{K}_{2}$.
It is obvious that $\mathbb{S}_{1} \partial_{\mathcal{K}}+\partial_{\mathcal{\varkappa}} \mathbb{S}_{2}=i d$.

And
where $|\mathfrak{K}|=\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}$.
It is obvious that $\mathbb{S}_{2} \partial_{\varkappa}+\partial_{\varkappa} \mathbb{S}_{3}=i d$.

$$
\begin{aligned}
& \binom{\mathrm{k}_{3}+\mathrm{K}_{4}}{\mathrm{~K}_{4}} \mathrm{Z}_{21}^{\left(\mathrm{K}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}+\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\begin{array}{c}
\mathbb{w}^{\prime} \\
w^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(7+|k|+\mathrm{m})} \\
2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right)+
\end{aligned}
$$

$$
\binom{\mathrm{k}_{4}+\mathrm{m}}{\mathrm{~m}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}+\mathrm{m}\right)} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(6+|\mathrm{k}|-\mathrm{m})}} ^{(7+|\mathrm{k}|+\mathrm{m})}\right)
$$

And

$$
\begin{aligned}
& \partial_{\mathcal{H}} \mathbb{S}_{4}\left(\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \mathcal{Z} \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \mathcal{\varkappa}\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathbb{W ^ { \prime }} & 2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\right) \\
& =\partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(\mathrm{K}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(6-|\mathrm{k}|-\mathrm{m})}} ^{1^{(7+|\mathrm{k}|+\mathrm{m})}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{K}_{3}+\mathrm{K}_{4}}{\mathrm{~K}_{4}} \mathrm{Z}_{21}^{\left(\mathrm{K}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}+\mathrm{K}_{4}\right)} \mathcal{Z} \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(6+|\mathrm{k}|-\mathrm{m})}} ^{(7+|\mathrm{K}|+\mathrm{m})} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \partial_{21}^{(\mathrm{m})}\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W} \mathfrak{w}^{\prime}
\end{array} 1_{2^{(6-|\mathrm{k}|-\mathrm{m})}}^{(7+|\mathrm{k}|+\mathrm{m})}\right) \\
& =\binom{\mathrm{k}_{1}+1+\mathrm{k}_{2}}{\mathrm{k}_{2}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1+\mathrm{K}_{2}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{(\mathrm{m})} \mathcal{K}\left(\begin{array}{c}
\mathbb{W} \\
W^{\prime}
\end{array} \left\lvert\, \begin{array}{l}
1^{(7+|\mathrm{k}|+\mathrm{m})} \\
2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right)-
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \partial_{21}^{(\mathrm{m})}\left(\begin{array}{c|c}
\mathbb{W} \\
\mathbb{W}^{\prime} \mid & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{2}+\mathrm{K}_{3}}{\mathrm{k}_{3}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}+\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}
\mathbb{W} \\
\mathbb{W}^{\prime}
\end{array}\right|_{2^{(6-|k|-\mathrm{m})}} ^{1^{(7+|\mathrm{k}|+\mathrm{m})}}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \mid \\
W^{\prime} \\
\mathbf{w}^{\prime} \\
2^{(6-|\mathrm{k}|-\mathrm{k})}
\end{array}\right) \text {, }
\end{aligned}
$$

where $|\mathrm{K}|=\mathrm{k}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}$.
It is obvious that $\mathbb{S}_{3} \partial_{x}+\partial_{x} \mathbb{S}_{4}=i d$.

$$
\begin{aligned}
& \mathbb{S}_{4} \partial_{\varkappa}\left(\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa\left(\begin{array}{c}
\mathbb{W} \\
\mathbb{W} \\
\mathfrak{w}
\end{array} \left\lvert\, \begin{array}{c}
1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right.\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\mathrm{k}_{2}+\mathrm{K}_{3}}{\mathrm{k}_{3}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}+\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa\left(\begin{array}{c|c}
\mathbb{w} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathbb{w}^{\prime} & 2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)+ \\
& \binom{\mathrm{k}_{3}+\mathrm{K}_{4}}{\mathrm{k}_{4}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \mathcal{H} \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \mathcal{X} \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}+\mathrm{K}_{4}\right)} \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \mathcal{H}\left(\begin{array}{c|c}
\mathbb{W} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
\mathbb{W}^{\prime} & 2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)- \\
& \binom{\mathrm{K}_{4}+\mathrm{k}_{5}}{\mathrm{k}_{5}} \mathrm{Z}_{21}^{\left(\mathrm{K}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}+\mathrm{K}_{5}\right)} \varkappa\left(\begin{array}{c|c}
\mathbb{W} \\
\mathbb{W} & \mathbb{W}^{\prime} \\
2^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)+ \\
& \left.\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \partial_{21}^{\left(\mathrm{k}_{5}\right)}\left(\begin{array}{c|c}
\mathbb{W} \mathcal{W} \\
\mathbb{W}^{\prime} & 1^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})} \\
2^{(6-|\mathrm{k}|-\mathrm{m})}
\end{array}\right)\right)
\end{aligned}
$$

$-\binom{\mathrm{k}_{4}+\mathrm{k}_{5}}{\mathrm{k}_{5}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}+\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\begin{array}{c}\mathbb{W} \\ \mathbb{W}^{\prime}\end{array} \left\lvert\, \begin{array}{c}1_{2}^{(7+|\mathrm{k}|+\mathrm{m})} \\ 2^{(6-|\mathrm{k}|-\mathrm{m})}\end{array}\right.\right)+\binom{\mathrm{k}_{4}+\mathrm{m}}{\mathrm{m}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa$

And

$=-\binom{\mathrm{k}_{1}+1+\mathrm{k}_{2}}{k_{2}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1+\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\begin{array}{c}\mathbb{W} \\ \mathbb{W} \mathfrak{w}^{\prime} \\ 1_{2^{(6-|\mathrm{k}|-\mathrm{m})}}^{(7+|\mathrm{k}|+\mathrm{m})}\end{array}\right)+$
$\binom{\mathrm{k}_{2}+\mathrm{k}_{3}}{\mathrm{k}_{3}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}+\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\begin{array}{c}\mathbb{W} \\ \mathbb{w}^{\prime} \\ 1_{2}^{(6-|\mathrm{k}|-\mathrm{m})}\end{array}\right)-$

$=-\binom{\mathrm{k}_{1}+1+\mathrm{k}_{2}}{\mathrm{k}_{2}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1+\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\begin{array}{c}\mathbb{W} \\ \mathbb{W}^{\prime} \\ 2^{(6-|\mathrm{k}|-\mathrm{m})}\end{array}\right)+\binom{\mathrm{k}_{2}+\mathrm{K}_{3}}{\mathrm{k}_{3}} \mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa$
$\mathrm{Z}_{21}^{\left(\mathrm{k}_{2}+\mathrm{K}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{5}\right)} \varkappa \mathrm{Z}_{21}^{(\mathrm{m})} \varkappa\left(\left.\begin{array}{c}\mathbb{W} \\ \mathbb{W}^{\prime}\end{array}\right|_{2^{(6-|\mathrm{k}|-\mathrm{m})}} ^{(7+|\mathrm{k}|+\mathrm{m})}\right)-$

$\mathrm{Z}_{21}^{\left(\mathrm{K}_{5}+\mathrm{m}\right)} \varkappa\left(\begin{array}{c}\mathbb{W} \\ \mathbb{W} \\ \mathbb{W}^{\prime}\end{array} 1_{2^{(6-|\mathrm{k}|-\mathrm{m})}}^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})}\right)+\mathrm{Z}_{21}^{\left(\mathrm{k}_{1}+1\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{2}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{k}_{3}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{4}\right)} \varkappa \mathrm{Z}_{21}^{\left(\mathrm{K}_{5}\right)} \varkappa\left(\left.\begin{array}{c}\mathbb{W} \\ \mathbb{W} \\ \mathbb{W}^{\prime}\end{array}\right|_{2^{(7+|\mathrm{k}|)} 2^{(\mathrm{m})}} ^{2^{(6-|\mathrm{k}|-\mathrm{m})}}\right)$,
where $|\mathrm{K}|=\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}+\mathrm{K}_{4}+\mathrm{K}_{5}$.
It is obvious that $\mathbb{S}_{4} \partial_{\mathcal{\varkappa}}+\partial_{\varkappa} \mathbb{S}_{5}=i d$.
From the above we conclude that $\left\{\mathbb{S}_{0}, \mathbb{S}_{1}, \mathbb{S}_{2}, \mathbb{S}_{3}, \mathbb{S}_{4}, \mathbb{S}_{5}\right\}$ is a contracting homology [5], which means that our complex is exact.

References

1. David, A.B and Gian, C.R 1993. Projective Resolution of Weyl Modules, Natl. Acad. Sci. USA, 90: 2448-2450.
2. David A.B and Brian D.T 2003. Homotopies for Resolution of Skew-Hook Shapes. Adv.In Applied Math. 30: 26-43.
3. David, A.B 2004. A Characteristic Free Example of Lascoux Resolution, and Letter Place Methods for Intertwining Numbers, European Journal of Gombinatorics, 25: 1169-1179
4. David, A.B 2001. Resolution of Weyl Module: The Rota Touch. Algebraic Combinatorics and Computer Science, 97-109.
5. Vermani, L.R. 2003. An Elementary Approach to Homotopical algebra, Chapman and Hall /CRC. Monpgraphs and Surveys in pure and Applied Mathematics.

[^0]: *Email: nubras_yasir@yahoo.com

