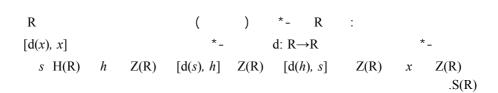
CENTRALIZING MAPPINGS OF PRIME AND SEMIPRIME *-RINGS

A. H. Majeed, A. A. Altay

Department of mathematics, college of science, University of Baghdad. Baghdad-Iraq.

Abstract

In this paper we prove the following result. Let R be a non-commutative prime*ring of characteristic different from 2, then R is normal *-ring if and only if there exists a nonzero Jordan*-derivation d: $R \rightarrow R$ be which satisfies $[d(x), x] \in Z(R)$ for all $x \in R$, and $[d(h),s] \in Z(R)$ or $[d(s), h] \in Z(R)$ for all $h \in H(R)$, $s \in S(R)$.



1. Introduction

This note is motivated by the work of M. Breŝar and J. Vukman [1]. Throughout, R will represent an associative ring with center Z(R). A ring R is *n*-torsion free, if $nx = 0, x \in R$ implies x = 0, where *n* is a positive integer. Recall that R is prime if aRb = (0) implies a = 0or b = 0, and semiprime if aRa = (0) implies a = 0. An additive mapping $x \rightarrow x^*$ on a ring R is called an involution if $(xy)^* = y^* x^*$ and $(x)^{**} = x$ for all $x, y \in R$. A ring equipped with an involution is called *-ring. An element x in a *-ring R is said to be hermitian if $x^* = x$ and skew-hermitian if $x^* = -x$. The sets of all hermitian and skew-hermitian elements of R will be denoted by H(R) and S(R), respectively. If R is 2-torsion free then every $x \in R$ can be uniquely represented in the form 2x = h + kwhere $h \in H(R)$ and $k \in S(R)$. An element $x \in \mathbb{R}$ is called normal element if $xx^* = x^*x$, and if all

the elements of R are normal then R is called a normal ring. As usual the commutator xy-yx will be denoted by [x, y]. We shall use basic commutator identities [xy, z] = [x, z] y + x[y, z]and [x, yz] = [x, y]z + y[x, z] for all $x, y, z \in R$. An additive mapping d: $R \rightarrow R$ is called a derivation if d(xv) = d(x)v + xd(v) holds for all pairs $x, v \in R$, and is called a Jordan derivation in case $d(x^2) = d(x)x + xd(x)$ is fulfilled for all $x \in R$. An additive mapping *d*: $R \rightarrow R$ is called a *-derivation if $d(xy) = d(x)y^* + xd(y)$ holds for all pairs x, $y \in R$, and is called a Jordan *-derivation in case $d(x^2) = d(x)x^* + xd(x)$ is fulfilled for all $x \in R$, the concepts of *-derivation and Jordan*-derivation were first mentioned in [1]. It is clear that Every *-derivation is a Jordan *-derivation but the converse in general not true, for example let R be a 2-torsion free semiprime *-ring and let $a \in \mathbb{R}$ such that $[a,x] \neq 0$, for some $x \in \mathbb{R}$,

define a map d: $R \rightarrow R$ as follows, $d(x) = ax^* - xa$ for all $x \in \mathbb{R}$, then d is a Jordan *-derivation but not a *-derivation. Let S be a nonempty subset of R, a function f: $R \rightarrow R$ is said to be a centralizing function on S (resp. commuting on S) if $[f(x), x] \in Z(R)$, for all $x \in S$ (resp. [f(x), x]=0, for all $x \in S$). The fundamental result on commuting and related mappings is due to E. Posner [2]. He proved that, if a derivation D of a prime ring satisfies $[D(x), x] \in Z(R)$ for all $x \in \mathbb{R}$, then R is commutative. Recently, many authors studied Posner's theorem in more generalized versions. J. Mayne [3] obtained the analogous result for automorphisms. J. Vukman [4] proved if R be a 2-torsion free semiprime ring and d: $R \rightarrow R$ be a derivation. Suppose that [[d(x),x],x]=0 holds for all $x \in \mathbb{R}$. In this case [d(x),x]=0 holds for all $x \in \mathbb{R}$. M.Brešar[5] show that R is commutative if there exist derivation d and g, not both zero, such that $(xd(x)-g(x)x) \in Z(R)$ for all $x \in R$. The purpose of this paper is to prove a result concerning a Jordan *-derivations. More precisely, we study a centralizing of this map on non-commutative prime ring.

2. Main Result

In the following theorem a centralizing Jordan *-derivation d on 2-torsion free semiprime *-ring, such that $[d(h),s] \in Z(R)$ or $[d(s), h] \in Z(R)$ for all $h \in H(R)$, $s \in S(R)$, force d is commuting.

Theorem 2.1.

Let R be a 2-torsion free semiprime *-ring, and d: $\mathbb{R} \rightarrow \mathbb{R}$ be a Jordan *-derivation which satisfies $[d(x), x] \in Z(\mathbb{R})$ for all $x \in \mathbb{R}$, and $[d(h),s] \in Z(\mathbb{R})$ or $[d(s), h] \in Z(\mathbb{R})$ for all $h \in H(\mathbb{R}), s \in S(\mathbb{R})$, then [d(x), x]=0 for all $x \in \mathbb{R}$.

To prove the above theorem we need following lemmas.

Lemma 2.2.

Let R be a 2-torsion free *-semiprime ring, and d: $R \rightarrow R$ be a Jordan *-derivation witch satisfies $[d(x), x] \in Z(R)$ for all $x \in R$, then [d(h), h]=0 for all $h \in H(R)$.

Proof

We have

$$[d(x), x] \in Z(\mathbb{R})$$
 for all $x \in \mathbb{R}$. (1)

Putting x^2 for x in (1) we get

$$[d(x^2), x^2] \in Z(\mathbb{R})$$
 for all $x \in \mathbb{R}$. (2)

Therefore,

$$[d(x)x^*+xd(x),x^2] \in Z(R) \text{ for all } x \in R.$$

Setting $x=h \in H(\mathbb{R})$ in the above relation, we get

$$[d(h) h + h d(h), h^{2}] \in Z(R)$$

for all $h \in H(R)$. (3)

Because of,

$$d(h) h+h d(h)=2 h d(h)-[h, d(h)]$$

for all $h \in H(R)$, (4)

According to (3) and (4) we get

$$[2h d(h)-[h, d(h)], h^{2}] \in Z(R)$$

for all $h \in H(R)$. (5)

From relation (5) we obtain

$$h^{2} [h, d(h)] \in Z(\mathbb{R})$$

for all $h \in H(\mathbb{R}).$ (6)

Therefore,

4

$$h^{2} [h, d(h)], d(h)]=0$$

for all $h \in H(\mathbb{R}).$ (7)

Then from (7) one obtain

$$8 h [h,d(h)]^{2} = 0$$

for all $h \in H(\mathbb{R}).$ (8)

Therefore,

8[
$$h$$
 [h ,d(h)]², d(h)]=0
for all $h \in H(\mathbb{R})$. (9)

Since $[x, d(x)]^2 \in Z(\mathbb{R})$, then we get

$$\begin{aligned} & 8[h,d(h)]^2 [h,d(h)] = 0 \\ & \text{for all } h \in H(\mathbb{R}). \end{aligned}$$
(10)

R is a 2-torsion free we get

$$[h,d(h)]^{2} [h,d(h)]=0$$
for all $h \in H(\mathbb{R}).$
(11)

Right multiplication by z[h,d(h)], we get

$$[h, d(h)]^2 z [h, d(h)]^2 = 0 \quad \text{for all } z \in \mathbb{R},$$

and for all $h \in \mathcal{H}(\mathbb{R}).$ (12)

By the semiprimness of R, we have

$$[h, d(h)]^2 = 0$$
 for all $h \in H(\mathbb{R})$. (13)

Left multiplication by *z*, we get

$$[h,d(h)] z [h,d(h)] = 0$$

for all $h \in H(R)$. (14)

Since R is a semiprime *-ring we get

[d(h), h] = 0 for all $h \in H(R)$.

Lemma 2.3.

Let R be a 2-torsion free semiprime *-ring, and let d: $R \rightarrow R$ be a Jordan *-derivation which satisfies $[d(x), x] \in Z(R)$ for all $x \in R$, then [d(s), s] = 0 for all $s \in S(R)$.

Proof

Putting x+y in (1) we get

$$([d(x), y] + [d(y), x]) \in Z(\mathbb{R})$$

for all $x, y \in \mathbb{R}$. (15)

Replace x by x^2 and y by x^* we obtain

$$([d(x^{2}), x^{*}] + [d(x^{*}), x^{2}]) \in Z(\mathbb{R})$$

for all $x \in \mathbb{R}$. (16)

Setting $x=s \in S(R)$, we get

$$([d(s^{2}), s^{*}] + [d(s^{*}), s^{2}]) \in Z(R)$$

for all $s \in S(R)$. (17)

But,

$$d(s^{2})=sd(s)-d(s)s=[s,d(s)] \in Z(\mathbb{R})$$

for all $s \in S(\mathbb{R})$. (18)

Then from (17), (18) we get

$$[s^2, \mathbf{d}(s)] \in \mathbf{Z}(\mathbf{R}) \text{ for all } s \in \mathbf{S}(\mathbf{R}).$$
 (19)

Therefore,

$$2s[s,d(s)] \in Z(\mathbb{R})$$
 for all $s \in S(\mathbb{R})$. (20)

Since $[s,d(s)] \in Z(\mathbb{R})$, we obtain

$$0=2[s[s,d(s)],d(s)]=2[s,d(s)]^{2}$$

for all $s \in S(R)$. (21)

R is a 2-torsion free we get

$$[d(s), s]^{2}=0$$
 for all $s \in S(R)$. (22)

Right multiplication by z, we get

$$[s,\mathbf{d}(s)] \ z \ [s,\mathbf{d}(s)] = 0$$

for all
$$s \in S(R)$$
. (23)

By the semiprimness of R, [d(s),s]=0 for all $s \in S(R)$.

Proof of Theorem 2.1

Assume that $[d(h),s] \in Z(R)$ for all $h \in H(R), s \in S(R)$, By using Lemma2.2, we have

$$[\mathbf{d}(h),h]=0 \text{ for all } h \in \mathbf{H}(\mathbf{R}).$$
(24)

For $h_1, h_2 \in H(\mathbb{R})$, putting h_1+h_2 for h, we get

$$[d(h_1), h_2]+[d(h_2), h_1]=0$$

for all $h_1, h_2 \in \mathcal{H}(\mathcal{R})$. (25)

Since $s^2 \in H(R)$ for all $s \in S(R)$, then replace h_2 by s^2 in (25) we get

$$[d(h_1), s^2]+[d(s^2), h_1]=0$$
 for all $s \in S(R)$,
and $h_1 \in H(R)$. (26)

By using Lemma 2.3, we have

$$d(s^{2})=sd(s)-d(s)s=[s,d(s)]=0$$

for all $s \in S(R)$. (27)

According to the relation (26), (27) we get

$$[\mathbf{d}(h_1), s^2] = 0 \text{ for all } s \in \mathbf{S}(\mathbf{R}),$$

and $h_1 \in \mathbf{H}(\mathbf{R}).$ (28)

Therefore since $[d(h_1), s] \in Z(\mathbb{R})$, we obtain

$$2s[d(h_1),s]=0 \text{ for all } s \in S(\mathbb{R}),$$

and $h_1 \in H(\mathbb{R}).$ (29)

Hence,

$$2[d(h_1), s[d(h_1), s]] = 0 \text{ for all } s \in S(\mathbb{R}),$$

and $h_1 \in H(\mathbb{R}).$ (30)

Therefore,

$$2[d(h_1),s]^2=0$$
 for all $s \in S(R)$,
and $h_1 \in H(R)$. (31)

Since R 2-torsion free we get

$$[d(h_1),s]^2 = 0 \text{ for all } s \in S(\mathbb{R}),$$

and $h_1 \in H(\mathbb{R}).$ (32)

Right multiplication by *z*, we get

$$[d(h_1),s] z [d(h_1),s] = 0$$
 for all $s \in S(R)$,
and $h_1 \in H(R)$. (33)

By the semiprimness of R, we have

$$[\mathbf{d}(h_1), s] = 0 \text{ for all } s \in \mathbf{S}(\mathbf{R}),$$

and $h_1 \in \mathbf{H}(\mathbf{R}).$ (34)

Putting *s* for *x*, and *h* for *y* in the relation (15) we get

$$[d(s), h] + [d(h), s] \in Z(\mathbb{R}), \text{ for all } s \in S(\mathbb{R}),$$

and $h \in H(\mathbb{R}).$ (35)

Comparing the relation (34) and (35) we get

$$[\mathbf{d}(s),h] \in \mathbf{Z}(\mathbf{R}), \text{ for all } s \in \mathbf{S}(\mathbf{R}),$$

and $h \in \mathbf{H}(\mathbf{R}).$ (36)

Since $h^2 \in H(\mathbb{R})$, for all $h \in H(\mathbb{R})$, then from (36) we obtain

$$[\mathbf{d}(s), h^{2}] \in \mathbf{Z}(\mathbf{R}), \text{ for all } s \in \mathbf{S}(\mathbf{R}),$$

and $h \in \mathbf{H}(\mathbf{R}).$ (37)

By assumption $[d(h),s] \in Z(R)$ for all $h \in H(R)$, $s \in S(R)$, Then from relation (37) one obtains ((see how (34) was obtained from (28))

$$[d(s),h] = 0 \text{ for all } s \in S(R),$$

and $h \in H(R).$ (38)

To prove [d(x),x]=0, Since R be a 2-torsion free we only show

$$4[d(x),x]=0 \text{ for all } x \in \mathbb{R}.$$
 (39)

We have for all $x \in \mathbb{R}$ then $(2x=s+h \text{ for } s \in S(\mathbb{R}), \text{ and } h \in H(\mathbb{R}))$. Therefore,

$$4[d(x),x] = [d(2x),2x] = [d(s+h), s+h]$$

for $s \in S(R)$, and $h \in H(R)$.

Hence,

$$4[d(x),x] = [d(s),s] + [d(s),h] + [d(h), h] + [d(h), s]$$

for $s \in S(R)$, and $h \in H(R)$.

By using Lemma2.2, and Lemma2.3, and relation (34), (38) we get

[d(x), x]=0 for all $x \in \mathbb{R}$.

Now assume

 $[d(s),h] \in Z(\mathbb{R})$ for all $h \in H(\mathbb{R})$, $s \in S(\mathbb{R})$.

Then from relation (36) we get

[d(s),h] = 0 for all $s \in S(R)$, and $h \in H(R)$.

Then from (35) we get

 $[d(h),s] \in Z(\mathbb{R})$ for all $h \in H(\mathbb{R}), s \in S(\mathbb{R})$,

Then we get, similar as a first assumption

[d(x),x]=0 for all $x \in \mathbb{R}$,

Then the proof of Theorem2.1 is complete. Now, we'll mention the third result in [1].

Theorem 2.4. [1].

Let R be a non-commutative prime *-ring of characteristic different from 2, then R is

normal ring if and only if there exists a nonzero commuting Jordan *-derivation.

The main goal of this paper is to prove the following corollary. This corollary says that the existence of a non-zero centralizing Jordan *-derivation d on non-commutative prime *-ring R, such that $[d(h),s] \in Z(R)$ or $[d(s), h] \in Z(R)$ for all $h \in H(R)$, $s \in S(R)$, implies that R is a normal *-ring.

Corollary 2.5.

Let R be a non-commutative prime *-ring of characteristic different from 2, then R is normal *-ring if and only if there exists a nonzero Jordan *-derivation d: $R \rightarrow R$ be which satisfies $[d(x), x] \in Z(R)$ for all $x \in R$, and $[d(h),s] \in Z(R)$ or $[d(s), h] \in Z(R)$ for all $h \in H(R), s \in S(R)$.

Proof:

If R is a normal *-ring then by using Theorem2.4, then prove is a clear, to prove the converse, we have by using Theorem2.1, that d is a nonzero commuting Jordan *-derivation, hence by Theorem2.5, we get R is a normal *-ring.

Reference

- 1. Breśar, M. and Vukman, J. **1989**. On some additive mappings in rings with involution, *A equations Math.*, **38**:178-185.
- 2. Posner, E.C. **1957**. Derivations in prime rings, *Proc. Amer. Math*, **8**:1093-1100.
- 3. Mayne, J. **1976**. Centralizing automorp-hisms of prime rings. *Canad. Math. Bull*, **19:**113-115.
- 4. Vukmam, J. **1995**. Derivations on semiprime rings, *Bull. Austral. Math*, **53**:353-359.
- 5. Brešar, M. **1993**. Centralizing mapping and derivation in prime ring, *J. Algebra*, **156**:385-394.