MODULES HAVING (WEAK-S^{*}) PROPERTY

Sahira M.Yaseen

Department of Mathematics, College of Science, University of Baghdad. Baghdad-Iraq.

Abstract

Let R be a non zero ring with identity and let M be a non zero module over R. An R-module M is called cosingular if $Z^*(M)=M$ where $Z^*(M)=\{m \in M, mR \le E(M)\}$, in this paper we introduce the concept that an R-module M is weak-cosingular if $Z^*(M) \le_e M$. and we call that an R-module has (weak-S^{*})property if every submodule N of M contains a direct summand K of M such that $K \le N$ and N/K is weak-cosingular. And we study the properties of this kind of modules, and the relation between this modules and other kind of modules.

الخلاصة

لتكن R حلقة غير صفرية ذات عنصر محايد وليكن M مقاسا احاديا غير صفري ايمن معرف على R . وليكن $(M) = M \in M, mR < E(M)$ بانه منفر د مضاد اذا كان M = M (M) = X . في aki البحث سنقول ان المقاس M بانه منفر د مضاد ضعيف اذا كان $M_{\leq e}(M) \leq X^{*}(M) = X$. وان المقاس M بانه منفر د مضاد ضعيف اذا كان M $\leq X^{*}(M) \leq X$ مقاس M له الخاصية (S) الضعيفة اذا كان لكل مقاس جزئي N من M توجد مركبة مجموع مباشر K من M حيث ان K مقاس جزئي من N وان N/K موديول منفر د مضاد ضعيف درسنا الخواص الاساسية لهذا النوع من المقاسات

Introduction

Let R be a ring with identity and M be unital right R-module We write E(M), Rad(M) for injective envelope and radical submodule of M, respectively. We use N \leq M to signify that N is submodule of M. N is essential in M, we write N \leq_e M, if N \cap K \neq 0 \forall K non zero submodule of M.

A submodule N of M is called small submodule wherever N+L=M for some submodule L of M, we have M=L and in this case we write N<<M. In [1] Leonard defines a module M to be small if it is a small submodule of some R-module and he shows that M is small if and only if M is small in its injective hull. In [2] observed that $Z^*(M) = \{m \in M, \text{ Rm is small module}\}$ is submodule of R-module M. This type of submodules was studied by Ozcan .In [3] it is shown that $Z^*(M) = M \cap \text{Rad E}(M)$, where Rad E(M) is the Jacobson radical of injective hull of M.

A module M is called lifting module if for every submodule N of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \le N$ and $N \cap M_2 \le M$ [4]. Let A and L be submodules of a module M, L is called a supplement of A in M if it is minimal with the property A + L = Mand a submodule K is called a supplement in M if K is a supplement of some submodule of M. It is easy to check that L is supplement of A in M if and only if M = A + L and $A \cap L \le L$.

Let M be an R-module. The submodule. The following lemmas are proved in [3].

Lemma(1.1)

Let R be a ring and φ : $M \rightarrow M'$ be homomorphism of R-modules M, M', then $\varphi(Z^*(M)) \leq Z^*(M')$.

Lemma(1.2)

Let N be a submodule of R-module M, then $Z^*(N) = N \cap Z^*(M)$.

Lemma(1.3)

Let M_i (i \in I) be collection of R-modules and let $M = \bigoplus M_i$, then $Z^*(M) = \bigoplus Z^*(M_i)$.

$$i \in I$$
 $i \in I$
Let R be a ring and M be an R-module M is called cosingular if $Z^*(M) = M$ And R is

called cosingular if $Z^*(M) = M$.And R is called right cosingular if the (right) Rmodule R is cosingular. Small modules are cosingular and the converse is true if R is prefect ring [2]. Thus every Z-module is cosingular.

Weak-Cosingular Modules

In this section we introduce the concept of weak-cosingular module.

Definition(2.1)

Let R be a ring and M an R-module, M is called weak-cosingular if $Z^*(M) \leq_e M$, and R is called right weak-cosingular if the (right) R-module R is weak cosingular.

Remark(2.2)

Cosingular modules are weak-cosingulr, but the converse is not true as in the following example.

Let $R = \begin{bmatrix} F & 0 \\ F & F \end{bmatrix}$ be a lower tringular matrices

over a field F, $J(R) = \begin{bmatrix} 0 & 0 \\ F & 0 \end{bmatrix}$. Soc $(R_R) = \begin{bmatrix} F & 0 \\ F & 0 \end{bmatrix}$,

 $Z^*(R_R)$ =Soc(R_R) by (8,ex 11). Thus $Z^*(R_R) \leq_e M$, then M is weak-cosingular but not cosingular.

Lemma(2.3)

For any ring R let M be weak-cosingular R-module, then every submodule of M is weak-cosingular.

Proof

Let N be submodule of M, thus $Z^*(N)=N\cap Z^*(M)$ lemma (1.2) to show that $Z^*(N)\leq_e N$, let $K\neq\{0\}$ be submodule of N thus $K\cap Z^*(N)=K\cap N\cap Z^*(M)=K\cap Z^*(M)\neq\{0\}$, since $Z^*(M)\leq_e M$.then $Z^*(N)\leq_e N$.

Lemma(2.4)

Let M_i (i \in I) be collection of weakcosingular modules, and let $M = \bigoplus M_i$ then $i \in I$

M is weak-cosingular.

Proof

 M_i is weak-cosingular, then $Z^*(M_i) \leq_e M_i \forall i \in I, Z^*(M) = \bigoplus Z^*(M_i)$ by lemma (1.3). Then $Z^*(M) \leq_e M$ [6].

Modules with (weak- S^{*}) property

In [3] an R-module M has (S^*) property if for every submodule N of M, there exists a direct summand K of M such that K \leq N and N/K is cosingular. In this section we introduce (weak-S^{*}) property.

Definition(3.1)

Let M be an R-module, M is said to satisfy (weak- S*) property, if for every submodule N of M, there exists a direct summand K of M such that $K \le N$ and N/K is weakcosingular. A ring R satisfies (weak- S^{*}) property if the right R –module R satisfies weak- S^{*} property.

Remark(3.2)

Every modules satisfies S^{*} property satisfies (weak- S^{*}) property.

The following Lemma follows immediately from the definition.

Lemma(3.3)

Let M be an R-module satisfies (weak- S^*) property, then every submodule of M has (weak- S^*) property.

Proof

Remark (3.4)

1. Every weak cosingular module satisfies (weak- S*) property.

Proof: Clear.

2. Every lifting module satisfies (weak-S^{*}) property.

Proof: Since every lifting module has S^{*} property [7].

Lemma(3.5)

Let M be a module satisfies (weak- S^*) property. Such that $Z^*(M)$ is small in M, then M is lifting-module.

Proof

Let N be submodule of M, then there exists a direct summand K of M such that $K \leq N$ and N/K is weak cosingular i.e. $Z^*(N/K) \leq_e N/K$. Let L be a submodule of M such that $M=K\in L$, then $N=K\oplus (N\cap L)$, i.e. N/K = N\cap L. Thus $Z^*(N\cap L) \leq_e N\cap L$. Thus

Let N be a submodule of M. Forany $K \le N$, $\{0\} \le K$ and $\{0\} \oplus N = N$ and $Z^*(K/\{0\}) = Z^*(K) = K \cap Z^*(M)$, $Z^*(K) \le_e K$. Then N is (weak- S^{*}).

 $N\cap L$ is weak-cosingular, $N\cap L \ll Z^*(M)$, i.e. $N\cap L \ll M$. Hence M is lifting module.

Lemma(3.6)

Let M be a weak-cosingular such that M_1 , M_2 direct summands of M with $M_1 \le M_2$, then $Z^*(M_1) = Z^*(M_2)$ if and only if $M_1 = M_2$.

Proof

see [7.lemma 16].

Lemma(3.7)

Let M be an R-module, then the following statements are uquivalent

1.M satisfies (weak- S^{*}) property.

- 2. For every submodule N of M, N has decomposition $N=A\oplus B$ such that $A\leq N$ and $N\cap B$ is weak-cosingular.
- 3. For every submodule N of M, N has a decomposition N=A⊕B such that A is direct summand of M and B is weak-cosingular.

Proof

- (1⇒2) Let N be submodule of M, then by (1), there exists A≤⊕ M, M= A⊕B, A≤N and $Z^*(N/A)\leq_e N/A$. N=A⊕(N∩B), N∩B ≅ N/A. Thus $Z^*(N∩B) \leq {}_e N∩B$. Then N∩B is cosingular.
- (2 \Rightarrow 1) is clear. Since N \cap B \cong N/A. i.e. N/A is weak-cosingular.
- (1⇒3) Let N be submodule of M. Since M satisfies (weak- S*) property and N= A⊕B, by hypothesis, then there exists A ≤⊕M, A≤N; N/A is (weak-cosingular). Hence there exist H submodule of M such that M= A⊕H, then N=A ⊕ (N∩H), then N∩H is weak-cosingular. But N∩H≅B, thus

B is weak-cosingular.

 $(3 \Rightarrow 1)$ is clear, since N/A \cong B.

Lemma(3.7)

Let M be an R-module that satisfies (weak- S^*). Suppose that there exists a supplement of $Z^*(M)$ in M, then there is decomposition $M=A\oplus B$ such that A is lifting module and B is weak- cosingular.

Proof

By hypothesis, there exists a submodule A of M such that $M=A+Z^*(M)$, $A\cap Z^*(M) << A$. Then $Z^*(A) = Rad(A) << A$. Since M satisfies weak- S^{*}, there exists a direct summand K of M such that $K \le A$, $Z^*(A/K) \le_e K$. Let B be submodule of M such that $M=K\oplus B$. $A=K\oplus (A\cap B)$. Since M is satisfies (weak-S^{*}) by (lemma 3.6). Then $A\cap B \le_e Z^*(A\cap B)$ $\leq Z^*(A) \leq A$ but $A \cap B$ is direct summand of A, then $A \cap B=0$, hence $M=A \oplus B$, by lemma(3.3) and lemma(3.5), A is lifting module, we have $M=A+Z^*(M)=A+Z^*(A)+Z^*(B)=A+Z^*(B)$, hence $Z^*(B) \leq_e B$.

Corollary(3.8)

Let M be an R-module satisfies weak-S^{*}, then there is a decomposition $M=A\oplus B$ such that A is semisimple with $Z^*(A)=0$ and B is weak-cosingular. (see 3)

Proposition (3.9)

Let R be a ring. An injective R-module M satisfies (weak-S*) property. If and only if every submodule of M is a direct sum of an injective module and a weak-cosingular module.

Proof

Suppose that M satisfies (weak-S*) property. Let N be a submodule of M. There exist submodules K, K' of M such that $M=K\oplus K'$, $K \le N$ and N/K is weakcosingular. Then $N = K\oplus (N \cap K')$ where K is injective and $N \cap K'$ is weak-cosingular since $N \cap K' \cong N/K$. Conversely, suppose that every submodule of M is a direct sum of an injective module and a weakcosingular module. Let L be any submodule of M. Then $L = L_1 \oplus L_2$ for some injective module L_1 and weak- cosingular module L_2 . Clearly L_1 is a direct summand of M and $Z^*(L/L_1) \le_e L/L_1$ because $L/L_1 \cong L_2$.

Theorem (3.10)

The following statements are equivalent for a ring R.

- i) Every right R-module satisfies (weak-S*) property.,
- ii) Every injective right R-module satisfies (weak-S*) property.
- iii) Every right R-module is a direct sum of an injective module and a weakcosingular module.

Proof

(i) ⇔ (ii) It is clear because every submodule of a module with (weak-S*) also has (weak-S*).

(ii) \Leftrightarrow (iii) by Proposition (3.9)

Lemma (2.3.14)

Let P_i $(1 \le i \le n)$ be a finite collection of projective injective R- modules satisfying

(weak-S*) and let $P = P_1 \oplus \dots \oplus P_n$. Then P satisfies (weak-S*) property.

Proof

By induction on n it is sufficient to prove the result when n = 2. Let $P = P_1 \oplus P_2$ and let $f_i: P \rightarrow P_i$ (i = 1; 2) denote the canonical projections. Let N be a submodule of P. By hypothesis, the submodule $f_1(N)=Q_1\oplus L_1$ for some direct summand Q_1 of P_1 and weak-cosingular submodule L_1 of P_1 . Let \emptyset : $f_1(N) \rightarrow Q_1$ denote the canonical projection. Then $\emptyset f_1: N \to Q_1$ is an epimorphism with kernel H= {m \in N: f₁ (m) \in L₁}. Note that Q₁ is a projective module and hence N=N₁ \oplus H for some submodule N₁ \cong Q₁. by the same argument for $f_2(H)$ we see that $H=N_2 \oplus N'$ for some sub-module N_2 isomorphic to a direct summand of P₂ and submodule N' where N' = $\{m \in N: f_1(m)\}$ $\in L_1$; $f_2(m) \in L_2$ for some weak-cosingular submodule L_2 of P_2 . $N = N_1 \oplus N_2 \oplus N'$ where $N_1 {\oplus} N_2$ is injective and hence a direct summand of P. and N' $\leq L_1 \oplus L_2$ so that N'

is weak- cosingular by [lemma 2.4] then P satisfies (weak-S*) property.

References

- 1.Leonard, W. W. **1966**. Small Modules, Proc. *Amer. Soc.* **17**:527-531.
- 2. Harada, M. **1979**. Non small modules and Non-cosmall modules, In ring theory Proc. 1978 Antwerp conference. New York, pp.669-690.
- 3.Ozcon, A. C. **2002.** Modules with small cyclic submodules in their injective hulls, *Alg.* **30**(4), 1575-1589.
- 4. Rayar, M. **1982**. On small and cosmall modules Acta Math. *Acad. Sci. Hungar*, **39**(4), 389-392.
- 5. Mohammed, S. H. and Muller, B. J. **1990**. *Containuos and discreate modules, London,* Math. Soc. LN 147, New York.
- 6. Kasch, F. **1982**. *Modules and Rings*, Acadimic Press, London.
- 7.Ozcan, A. C **2002**. Direct sums of modules having (S^{*}), *East west J. Math.*, **4**(1):157-165.
- 8. Ozcan, A. C. **1998**. Some characterization of V-modules and rings, *Vietnam J. Math.*, **26**(3):253-258.