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Abstract 

      Smart materials or shape memory alloys have a wide range of important 
applications in our time, They are used in the medical field, the main parts 
that are used in surgical operations by computers  made of  these materials, 
because of unique properties of this kind of alloys where it can  
automatically retrieve forms and accurately with the change of ambient 
temperature or with the change of pressure imposed on it or a magnetic field 
(or electric) Surrounding. Thus, it becomes possible for a specialist to give 
the desired shape during the development of the alloy in the vicinity of a 
temperature equal to the temperature of the human body and then pull this 
alloy from the oven then in room temperature it will have the  ingot form 
would facilitate the introduction into the patient's body through the events of 
wound smaller than if the process was conducted through regular, As in 
modern operations to widen the arteries and directed by gravel from the 
kidneys eliminate malignant tumors and other surgical procedures other. As 
also used in manufacturing aircraft wings where the wing changes shape 
with changing temperatures of the upper atmosphere. Also used in the very 
small motor industry because of the ability of  its molecules to interact with 
the surrounding magnetic field or by changing the pressure imposed on it. 
A  new way  for  the  evaluation  of  the  Gibbs  free  energy for the shape 
memory alloys at  any  point  within  the  specimen  at  the  end  of  the  
transformation  is  developed. 
In  contrast  with  our  previous  model , which  is  limited  in  practice  to  
the  whole  specimen ,  this  model  is  valid  for  length  scales  specified  by  
the  a, b, c  for  the  parent  and  the  emberio  lattice  and  controlled  by  the  
transformation  matrices.  
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  الخلاصة

فهي تستخدم في ، ة على مجال واسع من التطبيقات المهمة في عصرنا هذاتستحوذ المواد الصلبة الذكي     

المجال الطبي حيث تصنع من هذه المواد الأجزاء الرئيسية التي تستخدم في مجـال العمليـات الجراحيـة    
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بالكمبيوتر وذلك بسبب خواصها الفريدة من نوعها حيث تقوم تلقائيا باسترجاع إشكالها وبدقه متناهية مـع  

المحيط ) الكهربائي أو(درجة حرارة المحيط أو مع تغير الضغط المسلط عليها أو المجال المغناطيسي تغير 

وبهذا يصبح بإمكان الأخصائي إعطاء الشكل المطلوب أثناء وضع السبيكة في محيط درجة حرارتـه   ،بها

رارة الغرفة تعطى مساوية لدرجة حرارة جسم الإنسان ومن ثم إخراج هذه السبيكة من الفرن وفي درجة ح

السبيكة شكل يسهل معه إدخالها إلى جسم المريض من خلال إحداث جرح اصغر مما لو أجريت العمليـة  

كما في العمليات الحديثة لتوسيع الشرايين وإخراج الحصى من الكلى استئصال الأورام ، بالطرق الاعتيادية

م أيضا في مجال صناعة أجنحـة الطـائرات   كما وتستخد. الخبيثة وغيرها من العمليات الجراحية الأخرى

وأيضا تستخدم فـي مجـال صـناعة    . حيث يغير الجناح شكله مع تغير درجات حرارة طبقات الجو العليا

المحركات الصغيرة جدا بسبب قدرة جزيئاتها على التفاعل مع المجال المغناطيسي المحيط أو مـن خـلال   

  .تغيير الضغط المسلط عليها

استخدام طريقة رياضيه جديدة لحساب الطاقة اللازمة أو المتولدة ضمن أي نقطـة علـى    تم في هذا البحث 

الشبيكة في نهاية التحول لهذه المواد من طور إلى آخر و بالمقارنة مع النموذج السابق الذي يحسب الطاقة 

في أي نقطة على  اللازمة لتحول العينة بشكل كامل هذا النموذج يصح لحساب الطاقة المتولدة أثناء التحول

بالنسبة لشبيكة  الطـور   a, b, cسبيكة تلك البلورة باستخدام  أطوال الأضلاع المكونة لشبيكة تلك البلورة 

  .الأول والطور المتحول إليه من خلال حساب مصفوفات التحول

  
1- Introduction 
             Shape memory alloys  (SMA) (also 
referred to as smart materials ,intelligent 
materials ,adaptive materials or structronic 
materials)[1] are materials which have 
increasing range of engineering , aerospace, and 
biomedical applications. Smart materials can 
act as transducers and  physical parameters 
converters. Some of them can convert energy 
from one form into another such as mechanical 
energy (stress) into a change in length (strain) or 
electrical energy (supplied electric field) to 
electric displacement. Others convert the 
thermal energy (change in temperature) into a 
change in entropy and the magnetic energy 
(supplied magnetic field ) to a magnetic flux. 
The chemical energy (change in concentration) 
may also be converted into a volumetric flux by 
SMA’s. 
Smart materials undergo solid to solid phase 
transformations from Austenite to Martensite 
.Mostly Austenite has cubic lattice structure 
while Martensite phases have lower 
symmetries which may be (trigonal, tetragonal, 
orthorhombic, or monoclinic) lattice structure. A 
number of theoretical and experimental studies 
has been concerned with this kind of 
transformation [2-19]. 
A continuum theory which explains the 
transformation strain in the microscopic scale, 
was described by  Bhattacharya[3]. The change 
in symmetry (described by the changes in lattice 
vectors) are its only input. Also his theory 
discusses the energy of a specimen subjected to 

a deformation gradient y at a temperature θ , 
according to the following equation:) 

∫ −−−−−−−−∇Φ= )1(),( dVy θψ  

where Φ  is called free energy density, and it 
means the stored energy density which depends 
on the lattice local distortion  and measured by 
the deformation gradient and the temperature. 
Liang et. al. [8] constructed the transformation 
strain matrices for the NiTi SMA with 
ao=0.3015 nm for the Cubic (Austenite) lattice 
while for Martensite monoclinic unit cell 
a=0.289 nm, b=0.412 nm, c=0.4622nm, and 
e=96.8o, where a, b, and c are the lattice 
parameters and e is the angle between (b) and 
(c) vectors of Martensite. Hane and Shield [9] 
also studied the microstructure of the 
transformation from Cubic to Monoclinic (in 
NiTi) describing the transition by a uniform 
expansion, shuffling of atoms and shear. In this 
sense, they expressed the gradient of 
deformation for the Cubic to Monoclinic 
transformation in NiTi as:  
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where  χτ ,, w  are the transformation stretches 
given by  

)3(2/,2/,/ −−−=== oo acabwaa o χτ
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Lue et.al. [6] suggested a micromechanical 
model based on minimization of Gibbs free 
energy for single crystal TiNiCu. They 
calculated the free energy difference between 
Austenite and Martensite phase and minimized 
it with respect to spherical orientation angles 
(e,φ ). They also put the strain matrices for all 
the possible variants for the Ti 4at % Ni -10 at 
% Cu ,SMA’s. Reynolds [15] and Kloucek and 
Reynolds 2003[16] provided a mathematical 
model to describe the thermodynamic behavior  
Of SMA using the principles of mass 
conservation which is : 

0=•
oρ  

And the conservation of linear momentum 
)4()()( −−−−−−−+=∂ • BDivu oot ρσρ  

where u is the deformation, B represent external 
body force ,σ is the stress tensor.  They solved 
the following partial differential equations: 

)5()( −−++∂= • BADiv ooo ργψρσρ γ  
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Where A is the symmetric viscous anisotropy 
matrix. 
After solving these two equations they reached 
to the elastic strain energy formula: 
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Where ),( θγψ  is Helemoholtze free energy, 
WM is the energy of Martensite, WA is the 
energy of Austenite.  
The prediction of the thermomechanical  
behavior  of (SMA)[ 2,3,4,5,6,20], and 
magnetically actuated (SMA’s) [18,,21,22,23] 
have attracted special attention ,in this respect 
modeling of interatomic scale is of interest to 
understand the behaviour of these alloys and its 
phase stability . 
The mathematical framework for modeling  
phase  transformations in the SMA’s is based on 
Gibbs free energy  ∆G  absorbed by or emitted 
from  a spacemen subjected to a deformation 
gradient  ∆γ at a temperature θ. According to 
equation (1) we can say that 

∫ −−−−−−−−∇Φ=∇ )9(),( dVyG θ  

As it is cleared from equation (1) we have: 
),( θγΦ=Φ  

A new model for the evaluation of the Gibbs 
free energy at any  point at the specimen  at the 
end of  the transformation  is developed, the new 
model based on  our previous model  in which 
we calculated the rate of change of the free 
energy  per unit time G∆  during transformation  
between  Austenite  and  Martensite. Where 
[24]: 

  )1(ln)( +⋅∆−∆=∆ θθ
ρ
σγ P

o

CG --(10) 

Where  γ   is the deformation gradient 
 ),( θγσσ =  the stress tensor /area (Pa/m 2 ) 
 oρ  the mass density (Kg/m 3 ) 

θ∆  the temperature difference  (K o ) 
PC  the heat capacity 

 θ    the temperature (K o ) 
In contrast with our previous model ,in  which 
we calculate Gibbs free energy  for the whole 
transformation from the beginning to the end 
,this  new model is valid in calculating Φ  the 
stored energy density for a length  scales 
specified by the a, b, c for the lattice and 
controlled by the transformation matrices. By 
minimizing G∆ from equation (9), we minimize 
the bulk energy of the considered structure, as a 
function of the deformation tensor, and 
temperature ),( θγG∆ , also one can apply this 
procedure at the measoscale specially when we 
know that equation (10), applied on both the 
macroscale and the measoscale. 
Precise definition of the free energy is highly 
important task to account for the movement of 
the atoms rows with respect to the other without 
breaking any chemical bonds (dislocation 
movement). 
In this paper we construct a mathematical model 
for the free energy of the phase transformation 
in SMA materials ,the free energy that depends 
on the local distortion in the lattice measured by 
the deformation gradient (γ) and the temperature  
(θ).  

2- Mathematical Problem 
     Transitions between solid phases involve 
relatively large amounts of energy specially in 
the case of SMAs. These  materials produce 
thermal energy when they are bent or subjected 
to a suitable stress. They also change their 
crystal shape under certain applied conditions. 
Through  evaluating this shape change, one can 
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calculate the free energy density ,because the 
mathematical framework of modeling phase 
combination in shape memory materials is based 
on the solution of the variational  problem with 
respect to a frame indifferential nonconvex free 
energy function θγ ,(∇Φ ), see equation (1). 
By differentiating equation (9), an expression 
for the stored energy function can be obtained,. 

3-Mathematical Tools 
     The elastic energy required to deform a 
lattice from its reference type identified by a 
bounded domain )( 3RΩ  by 3: RU →Ω  is 
given as :        
      ∫Φ=∆ dXDUG )( -------------(11) 

where U represents the deformation gradients:            

      )( j

i

x
uDU
∂
∂

= --------------------(12) 

The energy change in an isothermal  quasistatic 
deformation is characterized  as follows: 
Firstly, we suppose that min→∆E [2]  
where                 
       ∆Φ+∆=∆ WE -----------------(13) 

W∆  is the total work increament supplied to 
the deformed body ,and ∆Φ is the increament 
in potential energy of the loading device 
(assumed conserved). 
The Cauchy-Born  rule implies that the stored 
energy density is the energy per unit reference 
volume required to perform an affine 
deformation xFx → [21, 24]. 
Also, suppose that this stored energy is invariant 
under rigid transformation (frame indifference) 
,and under changes that correspond lattice 
invariant rotations [3]. 
        )()( FQF Φ=Φ     ∀    )3(SOQ∈  
     )()( FFR Φ=Φ ∀ )3(SOPR ∈∈  
where P is the point group for the lattice which 
reflects the symmetry properties, So: It is 
convenient to normalize Φ  such that 
( 0min =Φ ), then the set 
                       }0)(:{ =Φ= FFK  
contains exactly the zero –energy affine 
deformation of the lattice. 
Physically, it is essential to know the reason 
behind having 0=Φ . 
This kind of transformation is diffusionless the 
lattice-distortive phase transformation, i.e, 
during the transformation the atoms of highly 
ordered crystal are rearranged in a coordinated 
manner leading to the formation of a new 

crystalline phase [24]. This might be attributed 
to the expectation that this kind of 
transformation is totally an energy-related 
process  where the potential energy is treated  as 
a negative quantity. An analogy is put forward 
when a mechanical system with gravitational 
potential energy  and kinetic energy might be 
adequate for understanding the implications of 
the negative energy concept. 
It seems logical to choose the zero potential 
energy such that the free particles at rest have 
zero energy and a bounded particle at rest  has 
negative potential energy. 
 

 
Then if Φ min =0, Then the set k consists of one 
or several disjoint copies of )3(SO  
    UmUSOK −−−−−−−= 1)3( ----(14) 
 
Using equation 3          
For cubic to monoclinic transformation ,the 
strain matrices [2] 
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  )15(4 dU −−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∈−∈
∈−−
∈−

=
β

αδ
δα

 

)15(5 eU −−−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∈
∈∈

∈
=

αδ
β

δα
,   

)15(6 fU −−−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∈−
∈−∈−

∈−
=

αδ
β

δα
 

)15(7 gU −−−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∈−
∈∈−
−∈−

=
αδ

β
δα

, 

 )15(8 hU −−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∈−−
∈−∈

−∈
=

αδ
β

δα
 

)15(9 iU −−−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∈
∈

∈∈
=

αδ
δα

β
, 

)15(10 jU −−−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∈−
∈−

∈−∈−
=

αδ
δα

β
 

     )15(11 kU −−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−∈
−∈−
∈∈−

=
αδ
δα

β
, 

     )15(12 lU −−−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−∈−
−∈
∈−∈

=
αδ
δα

β
 

Where α, β, ε, and δ can be written as follows 
[9]: 
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By substituting equation(14) in (16), (17), (18), 
and (19) we get: 
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If we take one row from any transformation 
matrix, for example, the first row which 
represents the forces  acting along the x-axis  
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the first term represents the strain along the x-
direction for compression or stretching ( oa ) and 
to be transformed  to ( a ), while the second and 
the third terms from the above equation are the 
strain forces applied to change the angle 
between a  and b, and the angle between a  and 
c respectively.  
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And to find the energy required to transform 
oa to a  we substitute xσ  in equation 8, and 

differentiate it with respect to x  , to get xφ .and 
differentiate it with respect to y to get yφ and 

zφ . 

Results 
1- We can estimate the contributions of the 

energy  by understanding the length variation 
and the fine geometry of the microstructure. 
If we have the a, b, c for any lattice crystal 
undergoing martensitic transformation, and 
the kind of this transformation, we can get Φ. 
Where anglezyx φφφφ +++=Φ ----(25)  
For example, in cubic to monoclinic 
transformation  ( for example NiTi alloy): 

                                                                                                                                         
Figure a: cubic NiTi lattice (Austenite phase) 

 
Figure b: monoclinic NiTi lattice 

(Martensite phase). 
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Where A is a constant  and equal  to : 
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Now, assume that  the effective force in 
compressing or stretching the parameter a 
along the x-axis is the force resulting from 
the x-direction.(we ignore  the other) 
And after simplifying the above equation for 
φx,and made the same calculation in the case 
of φy and φz we find that  

     Joulex )213141.0( −=φ  

2- in addition to that there is φangle which is the 
energy required to change the angle of the 
lattice. 

3- by calculating the energy of the 
transformation from the simple consepts in 
physics (throw calculating the number of 
lattices in one gram . estimating  that the total 
energy for NiTi transformation is 6 Joul/gram 
(experimentally) [24]. we find that  
 

φ = 4.24e - 21Joul 

Conclusions 
1- The stored energy density function  can  be 

described as follows: 
             anglezyx φφφφ +++=Φ            
2- φx is the energy required to compress a0 to be 

a along the x-axis andφy is the energy 
required stretches a0 to reach b along the y-
axis. φz is the energy required also stretches  
a0  to reach c along the z-axis. 

Here, if we apply the values of a, b, and c at any 
time during transformation of x, y, and z 
positions, the total energy required for or 
emitted from NiTi lattice at the end of the 
transformation may be deduced. 
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