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Abstract

The nuclear shell model calculations were performed with effective interaction
Hsieh-Wildenthal (HW) and G-matrix PF1, (GXPF1) interactions for “°Ca and “*Ca,
respectively. The “°Ca was considered to be consisted of 32S as a core and 1d321f72
subshells as a model space. The “Ca was considered to be consisted of *°Ca as a
core and 1f7,2p3nlfspn 2pis subshells as a model space. The obtained one body-
density matrix elements (OBDME) for both interactions for the studied Coulomb
transitions: For “°Ca, the three non-normal parity transitions (C3): 0% — 37 (E, =
3.74 MeV), 0% - 35 (E, = 6.29 MeV) and 0% - 35 (E, = 6.59 MeV) and one
C5 transitions, 07 - 57 (E, = 4.49 MeV). For **Ca, the two C2 transitions: 07 —
27 (E, =3.841 MeV) and 0% - 2% (E, =9.29MeV) and one C4 transitions
0%1 - 4% (E, = 6.34 MeV) were used in parallel with the transformed harmonic-
oscillator basis to compute charge density, elastic electron scattering differential
cross-section and elastic and inelastic Coulomb form factors. Finally, the Bohr-
Mottelson (B-M), Tassie (T), and valence (V) models were included in the
theoretical calculations for the computed inelastic coulomb form factors.

Keywords: Charge density distributions, electron scattering differential cross
section, elastic and inelastic Coulomb form factors, charge rms radii, Energy levels
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1. Introduction

Studying the structure of the nucleus using the electron scattering method has been
considering very effective for two reasons. The first reason is that the electron interaction is
understood, as the electron interacts with the target's charge and current density
electromagnetically. Such interaction is relatively weak; it can be carried out without causing
a defect in the structure of the target. The second reason is that the energy lost by the target is
fixed, while the momentum transfer (g) can be varied [1, 2]. The theory of calculations for
electron scattering off nucleon intensively depend on the opted nuclear wave functions (WF)
[1,3]. Such wave functions (WF) must mainly have exponential behavior at large »; such
exponential behavior plays significant enhancement in the many calculated nuclear properties
[4]. For harmonic-oscillator (HO) wave functions, there is a lack in the suitability coming
from the Gaussian fall-off behavior at large r, although it is analytically plausible to use [5,
6]. The two-frequency shell model approach using two HO size parameters were applied to
exotic and stable nuclei with limited success [7]. The ground states in stable and unstable
nuclei have been effectively studied using the Woods-Saxon (WS) potential WFs [8,9]. The
approach to WFs is done through numerical solution for the radial Schrodinger problem.
Nikiforov—Uvarov technique is a novel and promising method for solving a radial
Schrodinger for the WS potential and other complicated forms [10,11, 12]. In addition, the
properties of stable and exotic nuclei were extensively studied using transformed harmonic-
oscillator (THO) WFs [13,14,15,16]. The theoretical outcomes utilizing THO WFs
were encouraging and in excellent accord with empirical data. Utilizing the self-consistent
mean-field WFs using Hartree-Fock with Sykrme forces is an additional approach [17,18,19].
Another useful tool for researching stable and unstable nuclei is the Cosh potent [20]. The
Ginocchio potential was infrequently employed by Ginocchio(1984)[21], Ginocchio
(1985)[22] and Coon and Jaqua (1991) [23] to investigate bulk characteristics of nuclei. The
HO plus modified Bessel functions [24] and HO plus Hulthen-Weinberg WFs [25] have been
successfully applied to both stable and exotic nuclei.
This work aims to study the ground charge densities, elastic electron scattering differential
cross sections and elastic and inelastic form factors for ***Ca isotopes. The radial WFs of
THO in the local scaling transformation (LST) were used to study the different parity
Coulomb transitions in “°Ca and the same parity Coulomb transitions in **Ca. The nuclear
shell approach with THO bases were harnessed. The HW [26] (with 1d321f7,2 subshells as a
model space) and GXPF1 [27] (with fp model space) were used for “°Ca and “**Ca,
correspondingly. The theoretical findings were compared to available empirical data.

2. Theory
In the formulation of LST, the radial WFs of THO is given by [13]

f(r:)/n 'm) df(rﬂ)/n 'm)
Rz;ggl/p (r) = r/p \] dr/p R (f (T‘, Yn/p» m)’ bn/P) (1)

where for single nucleon in Eq. (1) the quantum numbers are: n (principle quantum
number), [ (orbital quantum number), j (spin quantum number). The n/p represents the
neutron/proton. In Equation (1), the scale function is given by (Karataglidis and Amos, 2005)
[13].
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For HO potential, their wave functions exhibit a Gaussian behavior (e 2v?). This
characteristic is inconvenient to bulk properties of nuclei, because the radial WFs must
behavior exponentially(e A7) at r. To achieve such feature and diminish such deficiency, a
LST is applied to the HO WF, the so-called transformed harmonic oscillator (THO) WFs. In
the LST, the ' = f(r) (new coordinate) is put instead of the previous coordinate 7~ is . The
function f(r) or LST function or scaling function has the characteristic of being real,
increasing, and subject to the conditions f(0) = 0 and f(o0) = co. Finally, the new WF is
denoted by R1°(r, by, ) to differentiate it from REC (7, by, ).

The derivative to scale function can be written as
1

(] [ G
Yrpm) _ V%'%ﬁﬂ/ \ m /
r (@) + () )

The variables m and ynp in Egs. (1) and (3) take integers and real numbers for m and ynp,
correspondingly. Both variables govern behavior of HO wave function shape in the
asymptotic part.

For any nuclear species, the proton/neutron density distributions in pure configuration is
derived from [5]:

f(T, yn/p'm) = (2)

(3)

1 2
pn/p (T) = EZ (O)nlj,n/p |R1€Z0 (T’ bn/p)l (4)
nlj
The proton/neutron density distributions in mixing configuration is obtained from [5]:
1 1 Jr Ji ]y, . THO THO
Pcin/p (T) = Z xa,b,n/p (/a | |Y] | |]b) Rnalaja,n/p (T)Rnblbjb,n/p (T) (5)
Vam /2], +1 az]; e
Fli

In the equation above, The X, /p> Tepresents the weight of the transition [28], which is

yielded by the Nushell shell model code (Brown and Rae, 2007)[29]. The symbols a and b,
stands for the quantum numbers of the single nucleon in the initial and final states,
respectively. In Eq. (5), the J is the multipolarity of transition determined from selection rule.
The density of nuclear charge is evaluated using the folding process for the proton and
neutron densities, as follows [30,8]:

pch(r) = pch,n(r) + Pcnp (r) (6)

The size radii of the studied ***3Ca isotopes were calculated from (Elton and Swift, 1967) [8]:
4 r

R e %

0
the letters 7 in the above equation stand for protons, neutrons, and nucleons.
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In the Born approximation, the longitudinal form factor for the scattering of electrons in the
first order is provided by [28 3 l]'

F]ch(q) (2] +1) Zn/p(]f”ojc(q' n/p)”]L)fn/p(q) (8)
In Eq. (8), the longitudinal transition operator is [28]:
06, (4,1/P) = [ J(aT) Yyt () g (P 9)

The density operator py, (7)), spherical harmonic oscillator (Y;y ;(;), and spherical Bessel

function (j;(qr) are described in detail by Arfken et al.(2013) [32].
The relationship between single nucleon matrix elements and many-nucleon matrix elements
in Eq. (8) is [28]:

Jidg.J
Urllos@n/mlli = Y x5 bnspllof @ 7. lan/p) (10)
ab
The )(éfb {1‘ Ip in the above equation denotes the weight of transition, evaluated from Nushell

shell model code [28].
~ ]
Jidgd <]f| |[C;tz ® Cay, | |]i>
Xa,b,n/p - 2] 1

In isospin formalism, the y alb ’:l;p in Eq. (11) can be written as
Ty L,(J,T=0)

Jolfd — Tr 0 T\ Xap
Xa,b,p/n - (_1) d ? ﬁ<_TZ 0 TZ 2

(11)

Tyly, (J,r=1)

1 Ti\Xap

_— 12
/= \/_( -T, O TZ) 2 (12)

Fi,Ff,(],T=0)

ap

The Coulomb form factor for any multipolarity J was accounted by:

where y is the weight of transition in isospin formalism.

4
Fon(@) = % j J)(@r)pyen T 2dr (13)

0
For | = 0, the charge form factor is Fourier transform to the ground state distribution of

charge. With the Born plane wave approximation, the scattering cross-section of scattered
electrons can be expressed in terms of the square of charge form factor [8]:

(Z_g)p = (Z_Z)Mm |Fy ()| (14)

d . . . .
The (d—g) stands for the elastic relativistic scattering cross section of electrons from a
Mott

. d . . . .
point nucleus. The (—0 gives the relationship between the scattering angle and the

Cm)Mott
energy of the incident electron, and is based on the Coulombic interaction between the
electron and the nucleus:

(Z_g)Mott - 421522 SZL::C():) [1 '82 sin (9)] (15)

where f = % is Lorentz factor.
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For inelastic Coulomb transitions (J # 0) with different parities, the selection rule becomes,

m;. e = (—=1))*1. In Eq. (13), the transition density of charge py,cn(r) is separated into two

parts: one for the model space and the other by the core polarization (CP) [22], i.e.,
Peny (1) = peny () + pés; (1) (16)

The pCC,‘: ;(r) in Eq. (16) is evaluated using Tassie [33], Bohr-Mottelson [34] models and

valence model [28] as follows:

_1 d
pany () = Nprl=t =y (1) (17)
_ d
Peny " () = Nog_y—pen(r) (18)
and
peny () = Nypep(r) (19)

The above CP methods are used to include the effect pCC,’; ;(r) in Eq. (16).

The N’s constants in Eq. (17), (18) and (19) were fixed to reproduce the experimental
reduced transition probabilities. Finally, the nyh,tz (r) in Eq (16) were obtained from shell
model calculations using Nushell code for active nucleons within the assigned model spaces

[5].

3. Results and discussion

The current theoretical calculations were mainly based on using shell model approach.
Jolf,
a,b,jrrl;p
initiate the theoretical calculations. The distinctive addition to the theory of the work is the
use of the basis of THO WFs instead of HO potential. Such addition is important to improve
the behaviour of HO WFs at large 7. For *°Ca, the HW interaction was chosen with 1d3»1f72
subshells as a model space; the core is 32S. For *Ca, the GXPF1 interaction was opted with
1£722p321€52 2p1/2 subshells as a model space; The core is “’Ca. the THO basis in parallel
with the OBDMEs of HW and GXPF1 interactions, the charge densities, elastic electron
scattering differential cross sections, and elastic and inelastic Coulomb form factors were
searched.
For *°Ca, the adjusted occupancies for protons over subshells were as follows: Q o = 2,

The nuclear shell model Nushell code was run to yield the values of y necessary to

O1psop =3, Orpyppp =2, O1ag),p =6, O1a,,,p =4, Oz, ,p =1, 04, ,, =2, For

48 - : — — — —
Ca, the adjusted occupancies were (())151/2_p =1.2, ©1p3/2,p =3, (0)1191/2.19 =2, @1ds/z,p =

5 O1a5,p =34, 05, ,p =1.2,04p, ., =32, 01y, = 1.

Such occupancies were used to initiate the present calculations.

In Table 1, the parameters of total initial spin (J) quantum numbers, total initial isospin (T)
quantum numbers, parity, and b, ,m and y, of THO wave functions were displayed. The
values of b, , m and y, were fixed to recreate the empirical size radii for ****Ca isotopes.

In Table 2, the experimental [35] and calculated rms proton and charge radii were tabulated.
With the fixed parameters in Table 1, the theoretical findings were in very good match with
empirical data.

The computed excitation energies using HW and GXPF1 were shown and compared with
available empirical findings in Table 3. It is obvious that the computed energy levels for the

studied transition were in good match with corresponding empirical data [36].

The evaluated and empirical charge densities were portrayed in Figure 1 for °Ca (a) and
*Ca (b), correspondingly. The solid curves represent the theoretical results using THO WFs
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with adjusted occupancies for “°Ca (a) and **Ca (b). The filled dotted symbols represent
experimental results. From the depicted results, it is clear that the theoretical results were in
excellent match with experimental data [36,37].

Elastic charge structure factors for “°Ca (a) and *3Ca (b) were drawn. The computed results
were represented by the solid curves, while the dotted filled circles represent the experimental
data. As it is shown from the graphs that the calculations were in good agreement with
empirical findings; at small g, there was a slight difference between theoretical and empirical
results while at large q, there was slight underestimation in the calculations.

In Figure 3, the graphs (a) for “°Ca and (b) for **Ca represent the theoretical and empirical
elastic electron scattering differential cross-sections at the (E=250 MeV) represented by solid
curves for theoretical calculations and dotted filled circles for experimental data [38]. The
calculated results were very good match with experimental data at small and middle 8, while
at very large 0 values there were slight differences.

Figure 4 shows the experimental and calculated inelastic charge structure factor for *°Ca
using shell model with THO basis for the different parity transitions: (a) 0% — 37 (E, =
3.74 MeV), (b) 07 - 35 (E, = 6.29 MeV), (c) 0 - 33 (E, = 6.59 MeV), and (d) 0 -
57 (E, = 4.49 MeV). The experimental data were represented by the dotted circles [36],
while the solid, dashed, and dashed-dotted curves represent the theoretical results with the
inclusion of CP effect using the B-M, the T and the V models, respectively. it is clear from
the four graphs that the B-M model were well described that experimental data for (a) 0% —
37 (Ex = 3.74 MeV) and (d)0" — 57 (E, = 4.49 MeV), while the transition in (b) 0% —
35 (E, = 6.29 MeV) was well described by T model. Finally, all CP models for the
transition in (¢) 0% — 33 (E, = 6.59 MeV) was in poor match with empirical data.

Figure 5 shows the experimental and calculated inelastic charge structure factors using the
shell model using THO basis for 48Ca for the same parity transitions: (a) 0 - 2] (E, =
3.841 MeV), (b) 07 - 23 (E, = 9.29MeV) (¢) 0*1 - 43 (E, = 6.34 MeV). The
experimental data were represented by the filled circles [37], while the solid, dashed, and
dashed-dotted curves represent the inclusion of CP effect using the B-M, the T and the V
models, respectively. It is obvious that the results of B-M model were in very good match
with empirical data for the transitions in (a) 0%t - 2F (E, = 3.841 MeV), (b) 0t -
23 (E,y = 9.29MeV), (¢) 0*1 - 43 (E, = 6.34 MeV). all CP models had poor behaviour to
reproduce the experimental finding. It is worth mentioning that with the dominance of small
deformation, the Bohr-Mottelson elucidate the laboratory data unlike Tassie and valence
models which success in nuclei with large deformation, i.e., the Tassie model. The 4048Cq
nuclei are even-even nuclear samples, therefore, one expects small deformations due to high
stability of such nuclei. The poor results of valence and Tassie models is due to such small
deformation.

Tablel: Total spin, isospin, and the parameters of THO

ax, JT [36][37] b, m Yo
19Caz, 0+0 1.891 8 3.028
18Cay, 0+0 1.845 8 3.019

Table2: Evaluated rms neutron, proton, matter radii, and charge for 39Ca,, and3oCasg
nuclei

XN (T2 )/2 Exp. (r2,)Y/? [35] (r2)/?
9Ca0 3.450 3.482(25) 3.374
48Ca
2O 3.459 3.470 3.390
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Table 3: Empirical and Calculated energy levels for 40,48Ca isotopes,
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Empirical

A + +
7X N i T = JFT [36][37] Calculated E, (MeV) E,(MeV)
0t - 37 4,164 3.74
0+ - 3 7.633 6.29
" Z
40Cay, 0" - 33 9.683 6.59
0f - 57 4,934 4.49
0t - 2} 3.791 3.831
18Ca,g 0+ - 2% 6.397 2.29
0t - 43 6.006 6.34
0.1 T T T T T T 0,1 T T T
CDDs of 40Ca CDDs of 48Ca
0.09 - — LST (adjusted occupation numbers) 0.09 — LST (adjusted occupation numbers)
» + Exp. Data - - Exp. Data
0.08 . 0.08
0.07} (a)
'-”E 0.06
© 0.05
< 0.04
0.03
0.02
0.011
0 [ N R R e, » Wy G
0 1 2 3 4 5 6 7 8
Y(tm) I'(fm)

Figure 1: CDDs calculated by adjusted occupancies for °Ca (a), and **Ca (b) are represented
by the solid curve compared with data represented by dotted circles symbols taken from

Vries, Jager and Vries (1987 ) [35]

10° ————— " 10° : ' '
Elastic charge form factors for40Ca Elastic charge form factors for 48Ca
— LST (adjusted occupation numbers — LST (adjusted occupation number)
* +Exp. Data + + Exp. Data
-1 -1
107 | 10
(a) (b)
5 5
N -~ — -2
o 10 =107
e -, ) N
L)
-3 S
10°} 10°F .| I
8 '
# .
-4 L ) !
10 10° : : P
0 1 2 3 4 0 1 2 3 4
-1
q(fm™) q(fm-1)

Figure 2: Calculated elastic charge form factor for *°Ca (a), and **Ca(b) are represented by
the solid curves. The filled dotted circles represent the experimental data, which were taken
from Sinha et al.(1973) [39] and Wise et al.(1985) [37].
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102k : : : : : 10 . . : :
10:2; - Elatic differential cross section for 40Ca 107+ ElaﬁchSi;f(e:;T‘:::;T:::e:::;;:z:fi is) 7
10_23 — LST(adjusted occupancies numbers) 10:;: r o o EXP.E:JZSO MeV ’ 7
%8_24 [\ * - EXP.E=250 MeV 1 107°r
S 10-25 B ,: %0'27 :
210721 2 102
& 10%7F NE 10 ol
g 10221 = 10:30 i
ool S 1ot
100+ T 0]
v 107 1 i
..g 10—32 | = lo'ii L
i 1o
10_35 r 10_3; r
10_3 ol 1070 .
10-37 o 1 0-37 1 1 1 1
10 : ' : : — 0 30 60 90 120
0 30 60 90 120 150 0 (deg)

0(deg)
Figure 3: calculated elastic differential the cross section for, °Ca (a), and **Ca (b) at
E=250MeV are represented by the solid curve. The filled dotted circles represent the
experimental data, which were taken from Frosch, Hofstadter, Mccarthy et al.(1968) [38].

10° . . 10°
Oy TS T Mevy 40Ca C3:0-1— 3-21 (Ex=6.29 MeV) 40Ca
107" --T s 107 F
10_2 | e » Exp. data 10_2 |
S 10 S 107} (b)
o107} Fio
10-5 B 10'5 L
-6
107 10°F
-7
10 o 107 L
0 1 2 3 4
q(fm™)
10° - - - 10" - - .
C3: 0-1—33- 1(Ex=6.59 MeV) 40Ca C5:0-1 —51- 1 (Ex=4.49 MeV) 40Ca
10'F —B-M 10t —B-M
-- T -- T
10%F -V (c) | 10°F -V (d)
+ « Exp.data . « « Exp.data
E Eppeil
e = 10
10°}
10°}
10”7

q(fm7)

Figure 4: Calculated data for Inelastic transitions related to form factors to the C3 and C5 for
the *°Ca (a) 37, (b) 33, (c) 33, and(d) 57. The theoretical results were computed using
Bohr-Mottelson, valence, and Tassie models represented by solid, dashed-dotted, and dashed

curves. The experimental data were represented by dotted circles symbols taken Itoh,
Oyamada and Torizuka (1970) [36].
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0 (1}
10 y . . " 10
C2:0%1 — 211 (Ex=3.831 MeV) 48Ca C2: 0+1-22+1 (Ex=9.29 MeV) 48Ca
— B-M - R
107 -1 - 'y M
-V
-2 N - 2| -V
107 /{R\ v 10 + - Exp. data (b)
«~ o
—~ 30 —_
=z 10 - Z
< \ E
£ 4 / £
= 10%r ) 1 =
- !
10°F /.,
6 ;
sl
10 l. !
1074 :
0 1 4
0
10 v y
C4:0t 1411 1 (Ex=6.34 MeV) 48Ca
1 I iB-M
10 T

-V

|Finel-(q)|2

q(fm-1)
Figure S: Calculated data for Inelastic transitions related to form factors to the C2 and C4 for
the *Ca (a) 2F, (b) 23, and(c)47. The results were computed using valence, Tassie, and
Bohr-Mottelson models represented by dashed-dotted, dashed, and solid curves,
correspondingly. The experimental data were represented by dotted circles symbols from
Wise et al. (1985) [37].

3. Conclusion

The elastic and inelastic Coulomb multipoles for the different and for the same parity
transitions were searched for ***% Ca. For *°Ca, the three different parity transitions: 0% —
31 (Ex =3.74 MeV), 0" - 35 (E, = 6.29 MeV) and 0" - 33 (E, = 6.59 MeV) in parallel
with C5 transitions, 0% — 57 (E, = 4.49 MeV) were searched. For **Ca, the two same
parity C2 transitions: 0% — 27 (E, = 3.841 MeV) and 0% - 23 (E, = 9.29MeV) in parallel
with C4 transitions 0*1 — 43 (E, = 6.34 MeV) were investigated. The theory of the present
work was based on shell model approach using HW and GXPF1 interactions for *°Ca and
*8(Ca, respectively. the basis of THO in the LST were applied to evaluate the charge densities,
differential cross sections, and elastic and inelastic form factors. The model space for *°Ca in
the HW interaction is 1d3»1£7» subshells while for “®Ca in the GXPF1 interaction, the model
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space is fp-shell. With the inclusion of THO, the computed charge densities and electron
scattering differential cross sections were in very good match with empirical data. Finally, the
inclusion of the CP effects improved the outcome of the computed inelastic Coulomb form
factors were greatly enhanced. In general, the results of Bohr-Mottelson model possess
acceptability more than Tassie and valence models for ***® Ca which have small deformation
on contrary to Tassie model which is successful in nuclei with large deformation. The poor
agreement of results of valence model is attributed to its simple mathematical form. It is
recommended to enlarge the model space of nucleon in the valence in presence of more
sophisticated computers for such run.
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