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Abstract  

     The nuclear shell model calculations were performed with effective interaction 

Hsieh-Wildenthal (HW) and G-matrix PF1, (GXPF1) interactions for 40Ca and 48Ca, 

respectively. The 40Ca was considered to be consisted of 32S as a core and 1d3/21f7/2 

subshells as a model space. The 48Ca was considered to be consisted of 40Ca as a 

core and 1f7/22p3/21f5/2 2p1/2 subshells as a model space. The obtained one body-

density matrix elements (OBDME) for both interactions for the studied Coulomb 

transitions:  For 40Ca, the three non-normal parity transitions (C3): 0+ → 31
− (𝐸𝑥 =

3.74 𝑀𝑒𝑉), 0+ → 32
− (𝐸𝑥 = 6.29 𝑀𝑒𝑉) and 0+ → 33

− (𝐸𝑥 =  6.59 𝑀𝑒𝑉) and one 

C5 transitions,  0+ → 51
− (𝐸𝑥 = 4.49 𝑀𝑒𝑉).  For 48Ca, the two C2 transitions: 0+ →

21
+ (𝐸𝑥 = 3.841 𝑀𝑒𝑉) and 0+ → 22

+ (𝐸𝑥 = 9.29𝑀𝑒𝑉) and one C4 transitions 

0+1 → 42
+ (𝐸𝑥 = 6.34 𝑀𝑒𝑉) were used in parallel with the transformed harmonic-

oscillator basis to compute charge density, elastic electron scattering differential 

cross-section and elastic and inelastic Coulomb form factors. Finally, the Bohr-

Mottelson  (B-M), Tassie (T), and valence (V) models were included in the 

theoretical calculations for the computed inelastic coulomb form factors.  

 

Keywords: Charge density distributions, electron scattering differential cross 

section, elastic and inelastic Coulomb form factors, charge rms radii, Energy levels 

 

 Ca40,48دراسة نظرية للانتقالات الكولومية ذات التناظر الموجب والسالب في 
 

 محمد محمود ضحيوي *, اركان رفعه رضا 

العراق -بغداد ،جامعة بغداد ،كلية العلوم  ، قسم الفيزياء   
 

  الخلاصة 
 40-. الكالسيومCa40,48على    GXPF1وتفاعل    HWحسابات انموذج القشرة اجريت باستخدام تفاعل       

اعتبر بانه مكون    48-كانموذج فضاء. الكالسيوم  7/21f3/21dكقلب والقشر الثانوية    S32اعتبر بانه مكون من  
كانموذج فضاء. قيم عناصر مصفوفة الجسيم الواحد    1/22p5/2 1f3/22p7/21fكقلب والقشر الثانوية    Ca40من  

المستحصلة لكلا التفاعلين استخدمت بالتوازي مع الدوال الموجية للمتذبذب التوافقي المعدل لحساب توزيعات  
و  الشحنية  غير  الكثافة  المرنة  الكولومية  التشكل  وعوامل  الالكترونية  للاستطارة  التفاضلي  العرضي  المقطع 

الكولومية  ،  40-للكالسيومالمرنة.   للانتقالات:    C3الانتقالات  دراستها  تمت  الاعتيادية،  𝐸𝑥)غير  =

3.74 𝑀𝑒𝑉) 31
− ← 0+ ،32

−  ← 0+ (𝐸𝑥 = 6.29 𝑀𝑒𝑉) ،  33
− ← 0+   (𝐸𝑥 =  6.59 𝑀𝑒𝑉)  

C5،51بالإضافة الى الانتقال  
− ← 0+   (𝐸𝑥 = 4.49 𝑀𝑒𝑉)  للانتقالين  48-. للكالسيوم ،C2 :  21

+ ←

 0+   (𝐸𝑥 = 9.29𝑀𝑒𝑉)   ،   (𝐸𝑥 = 3.841 𝑀𝑒𝑉)   22
+ ←   ، C4بالإضافة الى الانتقال     +0
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 42
+  ← 0+   (𝐸𝑥 = 6.34 𝑀𝑒𝑉)    .أخيرا، استقطاب القلب تم ادخاله في الحسابات لحساب  تمت دراستها

  موتيلسون وانموذج تاسي وانموذج التكافؤ.-عوامل التشكل الكولومية غير المرنة باستخدام انموذج بور
 

1. Introduction 

     Studying the structure of the nucleus using the electron scattering method has been 

considering very effective for two reasons. The first reason is that the electron interaction is 

understood, as the electron interacts with the target's charge and current density 

electromagnetically. Such interaction is relatively weak; it can be carried out without causing 

a defect in the structure of the target. The second reason is that the energy lost by the target is 

fixed, while the momentum transfer (q) can be varied [1, 2]. The theory of calculations for 

electron scattering off nucleon intensively depend on the opted nuclear wave functions (WF) 

[1,3].  Such wave functions (WF) must mainly have exponential behavior at large r; such 

exponential behavior plays significant enhancement in the many calculated nuclear properties 

[4]. For harmonic-oscillator (HO) wave functions, there is a lack in the suitability coming 

from the Gaussian fall-off behavior at large r, although it is analytically plausible to use [5, 

6]. The two-frequency shell model approach using two HO size parameters were applied to 

exotic and stable nuclei with limited success [7]. The ground states in stable and unstable 

nuclei have been effectively studied using the Woods-Saxon (WS) potential WFs [8,9]. The 

approach to WFs is done through numerical solution for the radial Schrodinger problem. 

Nikiforov–Uvarov technique is a novel and promising method for solving a radial 

Schrodinger for the WS potential and other complicated forms [10,11, 12]. In addition, the 

properties of stable and exotic nuclei were extensively studied using transformed harmonic-

oscillator (THO) WFs [13,14,15,16]. The theoretical outcomes utilizing THO WFs 

were encouraging and in excellent accord with empirical data. Utilizing the self-consistent 

mean-field WFs using Hartree-Fock with Sykrme forces is an additional approach [17,18,19]. 

Another useful tool for researching stable and unstable nuclei is the Cosh potent [20]. The 

Ginocchio potential was infrequently employed by Ginocchio(1984)[21], Ginocchio 

(1985)[22] and Coon and Jaqua (1991) [23] to investigate bulk characteristics of nuclei. The 

HO plus modified Bessel functions [24] and HO plus Hulthen-Weinberg WFs [25] have been 

successfully applied to both stable and exotic nuclei. 

This work aims to study the ground charge densities, elastic electron scattering differential 

cross sections and elastic and inelastic form factors for 40,48Ca isotopes. The radial WFs of 

THO in the local scaling transformation (LST) were used to study the different parity 

Coulomb transitions in 40Ca and the same parity Coulomb transitions in 48Ca. The nuclear 

shell approach with THO bases were harnessed. The HW [26]  (with 1d3/21f7/2 subshells as a 

model space) and GXPF1 [27]  (with fp model space) were used for 40Ca and 48Ca, 

correspondingly. The theoretical findings were compared to available empirical data. 

 

2. Theory  

     In the formulation of LST, the radial WFs of THO is given by [13] 

     𝑅𝑛𝑙𝑗,𝑛/𝑝
𝑇𝐻0 (𝑟) =

𝑓(𝑟,𝛾𝑛/𝑝,𝑚)

𝑟
√

𝑑𝑓(𝑟,𝛾𝑛/𝑝,𝑚)

𝑑𝑟
𝑅𝑛𝑙(𝑓(𝑟, 𝛾𝑛/𝑝, 𝑚), 𝑏𝑛/𝑝)                               (1) 

 

     where for single nucleon in Eq. (1) the quantum numbers are:  𝑛 (principle quantum 

number), 𝑙 (orbital quantum number), 𝑗 (spin quantum number). The 𝑛/𝑝 represents the 

neutron/proton. In Equation (1), the scale function is given by (Karataglidis and Amos, 2005) 

[13]. 
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𝑓(𝑟, 𝛾𝑛/𝑝, 𝑚) =

[
 
 
 
 

1

(
1
𝑟)

𝑚

+ (
1

𝛾√𝑟
)

𝑚

]
 
 
 
 

1
𝑚

                                                                     (2) 

For HO potential, their wave functions exhibit a Gaussian behavior (𝑒
−

𝑟2

2𝑏2). This 

characteristic is inconvenient to bulk properties of nuclei, because the radial WFs must 

behavior exponentially(𝑒−𝛽𝑟) at r. To achieve such feature and diminish such deficiency, a 

LST is applied to the HO WF, the so-called transformed harmonic oscillator (THO) WFs. In 

the LST, the 𝑟′ = 𝑓(𝑟) (new coordinate) is put instead of the previous coordinate 𝑟 ⃗⃗  is . The 

function 𝑓(𝑟) or LST function or scaling function has the characteristic of being real, 

increasing, and subject to the conditions 𝑓(0) = 0 and 𝑓(∞) = ∞. Finally, the new WF is 

denoted by 𝑅𝑛𝑙
𝑇𝐻𝑂(𝑟, 𝑏𝑛/𝑝) to differentiate it from 𝑅𝑛𝑙

𝐻𝑂(𝑟, 𝑏𝑛/𝑝). 

The derivative to scale function can be written as 

𝑑𝑓(𝑟, 𝛾𝑛/𝑝,𝑚)

𝑑𝑟
=

−

(

 
 1

(
1
𝑟)

𝑚

+ (
1

𝛾√𝑟
)

𝑚

)

 
 

1
𝑚

(

 
 

−
𝑚 (

1
𝑟)

𝑚

𝑟 −

𝑚 (
1

𝛾√𝑟
)

𝑚

2𝑟

)

 
 

𝑚 ((
1
𝑟)

𝑚

+ (
1

𝛾√𝑟
)

𝑚

)

                       (3) 

     The variables 𝑚 and 𝛾𝑛/𝑝 in Eqs. (1) and (3) take integers and real numbers for 𝑚 and 𝛾𝑛/𝑝, 

correspondingly. Both variables govern behavior of HO wave function shape in the 

asymptotic part. 

For any nuclear species, the proton/neutron density distributions in pure configuration is 

derived from [5]: 

𝜌𝑛/𝑝(𝑟) =
1

4𝜋
∑𝕆𝑛𝑙𝑗,𝑛/𝑝 |𝑅𝑛𝑙𝑗

𝑇𝐻𝑂(𝑟, 𝑏𝑛/𝑝)|
2

𝑛𝑙𝑗 

                                                                       (4) 

The proton/neutron density distributions in mixing configuration is obtained from [5]:  

𝜌𝐶𝐽,𝑛/𝑝(𝑟) =
1

√4𝜋

1

√2𝐽𝑖 + 1
∑𝒳

𝑎,𝑏,𝑛/𝑝

𝐽𝑓  𝐽𝑖  𝐽 ⟨𝑗𝑎||𝑌𝐽||𝑗𝑏⟩

𝑎𝑏

𝑅𝑛𝑎𝑙𝑎𝑗𝑎,𝑛/𝑝
𝑇𝐻0 (𝑟)𝑅𝑛𝑏𝑙𝑏𝑗𝑏,𝑛/𝑝

𝑇𝐻0 (𝑟)            (5) 

     In the equation above, The 𝒳
𝑎,𝑏,𝑛/𝑝

𝐽𝑓  𝐽𝑖  𝐽
, represents the weight of the transition [28], which is 

yielded by the Nushell shell model code (Brown and Rae, 2007)[29]. The symbols a and b, 

stands for the quantum numbers of the single nucleon in the initial and final states, 

respectively. In Eq. (5), the J is the multipolarity of transition determined from selection rule. 

The density of nuclear charge is evaluated using the folding process for the proton and 

neutron densities, as follows [30,8]:  

𝜌𝑐ℎ(𝑟) = 𝜌𝑐ℎ,𝑛(𝑟) + 𝜌𝑐ℎ,𝑝(𝑟)                                                                                                (6) 

The size radii of the studied 40,48Ca isotopes were calculated from (Elton and Swift, 1967) [8]: 

〈𝑟2〉𝑖
1/2

= √
4𝜋

𝑖
∫ 𝜌𝑖(𝑟)𝑟4𝑑𝑟

∞

0

                                                                                                   (7) 

the letters i in the above equation stand for protons, neutrons, and nucleons. 
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In the Born approximation, the longitudinal form factor for the scattering of electrons in the 

first order is provided by [28, 31]:  

                   𝐹𝐽,𝑐ℎ
𝐶 (𝑞) =

1

𝑍
√

4𝜋

(2𝐽𝑖+1)
∑ ⟨𝐽𝑓‖𝑶𝐽

𝐶(𝑞, 𝑛/𝑝)‖𝐽𝑖⟩𝑛/𝑝 𝑓𝑛/𝑝(𝑞)                                  (8) 

In Eq. (8), the longitudinal transition operator is [28]:  

          𝑶𝐽𝑀𝐽

𝐶 (𝑞, 𝑛/𝑝) = ∫ 𝑗𝐽(𝑞𝑟)𝑌𝐽𝑀𝐽
(Ω𝑟)𝜌̂𝑛/𝑝(𝑟 )𝑑𝑟                                                             (9)                                        

The density operator 𝜌̂𝑛/𝑝(𝑟 )), spherical harmonic oscillator (𝑌𝐽𝑀𝐽
(Ω𝑟), and spherical Bessel 

function  (𝑗𝐽(𝑞𝑟) are described in detail by Arfken et al.(2013) [32]. 

The relationship between single nucleon matrix elements and many-nucleon matrix elements 

in Eq. (8) is [28]: 

⟨𝐽𝑓‖𝑶𝐽
𝐶(𝑞, 𝑛/𝑝)‖𝐽𝑖⟩ = ∑𝑋

𝑎,𝑏,𝑝/𝑛

𝐽𝑖,𝐽𝑓,𝐽

𝑎𝑏

⟨𝑏, 𝑛/𝑝‖𝑂𝐽
𝐶(𝑞, 𝑟, 𝑡𝑧)‖𝑎, 𝑛/𝑝⟩                              (10) 

The 𝜒
𝑎,𝑏,𝑛/𝑝

𝐽𝑓  𝐽𝑖  𝐽
 in the above equation denotes the weight of transition, evaluated from Nushell 

shell model code [28]. 

𝜒
𝑎,𝑏,𝑛/𝑝

𝐽𝑖,𝐽𝑓,𝐽
=

⟨𝐽𝑓| |[𝑐𝑏,𝑡𝑧
+ ⊗ 𝑐̃𝑎,𝑡𝑧]

𝐽
| |𝐽𝑖⟩

√2𝐽 + 1
                                                                                 (11) 

In isospin formalism, the 𝜒
𝑎,𝑏,𝑛/𝑝

𝐽𝑖,𝐽𝑓,𝐽
 in Eq. (11) can be written as 

𝜒
𝑎,𝑏,𝑝/𝑛

𝐽𝑖,𝐽𝑓,𝐽
= (−1)𝑇𝑓−𝑇𝑍 (√2 (

𝑇𝑓 0 𝑇𝑖

−𝑇𝑍 0 𝑇𝑍
)
𝜒

𝛼,𝛽

Γ𝑖,Γ𝑓,(𝐽,𝑇=0)

2

+/−√6(
𝑇𝑓 1 𝑇𝑖

−𝑇𝑍 0 𝑇𝑍
)
𝜒

𝛼,𝛽

Γ𝑖,Γ𝑓,(𝐽,𝑇=1)

2
)                                                               (12) 

where 𝜒
𝛼,𝛽

Γ𝑖,Γ𝑓,(𝐽,𝑇=0)
 is the weight of transition in isospin formalism. 

The Coulomb form factor for any multipolarity J was accounted by:  

𝐹𝐽,𝑐ℎ(𝑞) =
4𝜋

𝑍
∫ 𝑗𝐽(𝑞𝑟)𝜌𝐽,𝑐ℎ(𝑟)𝑟2𝑑𝑟

∞

0

                                                                              (13) 

For 𝐽 = 0, the charge form factor is Fourier transform to the ground state distribution of 

charge. With the Born plane wave approximation, the scattering cross-section of scattered 

electrons can be expressed in terms of the square of charge form factor [8]: 

(
𝑑𝜎

𝑑𝛺
)
𝑒𝑥𝑝.

= (
𝑑𝜎

𝑑𝛺
)
𝑀𝑜𝑡𝑡

|𝐹𝐽(𝑞)|
2
                                                                                         (14) 

                                                                                                       

The (
dσ

dΩ
)
Mott

 stands for the elastic relativistic scattering cross section of electrons from a 

point nucleus. The (
dσ

dΩ
)
Mott

 gives the relationship between the scattering angle and the 

energy of the incident electron, and is based on the Coulombic interaction between the 

electron and the nucleus: 

 (
𝑑𝜎

𝑑𝛺
)
𝑀𝑜𝑡𝑡

=
𝑍2𝛼2(ℏ𝑐)2

4𝐸2 𝑠𝑖𝑛4(
𝜃

2
)
[1 − 𝛽2 𝑠𝑖𝑛 (

𝜃

2
)]                                                                                 (15)                                                                                                    

where 𝛽 =
𝑣

𝑐
 is Lorentz factor. 
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For inelastic Coulomb transitions (𝐽 ≠ 0) with different parities, the selection rule becomes,  

πi. πf = (−1)J+1. In Eq. (13), the transition density of charge 𝜌𝐽,𝑐ℎ(𝑟) is separated into two 

parts: one for the model space and the other by the core polarization (CP) [22], i.e.,  

𝜌𝑐ℎ,𝐽(𝑟) = 𝜌𝑐ℎ,𝐽
𝑀𝑆 (𝑟) + 𝜌𝑐ℎ,𝐽

𝐶𝑃 (𝑟)                                                                                       (16) 

The 𝜌𝑐ℎ,𝐽
𝐶𝑃 (𝑟) in Eq. (16) is evaluated using Tassie [33], Bohr-Mottelson [34] models and 

valence model [28] as follows: 

𝜌𝑐ℎ,𝐽
𝐶𝑃,𝑇(𝑟) = 𝑁𝑇𝑟𝐽−1 𝑑

𝑑𝑟
𝜌𝑐ℎ(𝑟)                                                                                             (17)   

𝜌𝑐ℎ,𝐽
𝐶𝑃,𝐵−𝑀(𝑟) = 𝑁𝐵−𝑀

𝑑

𝑑𝑟
𝜌𝑐ℎ(𝑟)                                                                                          (18) 

and 

𝜌𝑐ℎ,𝐽
𝐶𝑃,𝑉(𝑟) = 𝑁𝑉𝜌𝑐ℎ(𝑟)                                                                                                          (19) 

The above CP methods are used to include the effect 𝜌𝑐ℎ,𝐽
𝐶𝑃 (𝑟) in Eq. (16).  

The N’s constants in Eq. (17), (18) and (19) were fixed to reproduce the experimental 

reduced transition probabilities. Finally, the 𝜌𝐽,𝑐ℎ,𝑡𝑧
𝑀𝑆 (𝑟) in Eq (16) were obtained from shell 

model calculations using Nushell code for active nucleons within the assigned model spaces 

[5]. 

 

3. Results and discussion 

     The current theoretical calculations were mainly based on using shell model approach. 

The nuclear shell model Nushell code was run to yield the values of 𝜒
𝑎,𝑏,𝑛/𝑝

𝐽𝑖,𝐽𝑓,𝐽
  necessary to 

initiate the theoretical calculations. The distinctive addition to the theory of the work is the 

use of the basis of THO WFs instead of HO potential. Such addition is important to improve 

the behaviour of HO WFs at large r. For 40Ca, the HW interaction was chosen with 1d3/21f7/2 

subshells as a model space; the core is 32S. For 48Ca, the GXPF1 interaction was opted with 

1f7/22p3/21f5/2 2p1/2 subshells as a model space; The core is 40Ca. the THO basis in parallel 

with the OBDMEs of HW and GXPF1 interactions, the charge densities, elastic electron 

scattering differential cross sections, and elastic and inelastic Coulomb form factors were 

searched.  

For 40Ca, the adjusted occupancies for protons over subshells were as follows: 𝕆1𝑠1/2,𝑝 = 2, 

𝕆1𝑝3/2,𝑝 = 3, 𝕆1𝑝1/2,𝑝 = 2, 𝕆1𝑑5/2,𝑝 = 6, 𝕆1𝑑3/2,𝑝 = 4, 𝕆2𝑠1/2,𝑝 = 1, 𝕆1𝑓7/2,𝑝 = 2.    For 
48Ca, the adjusted occupancies were 𝕆1𝑠1/2,𝑝 = 1.2, 𝕆1𝑝3/2,𝑝 = 3, 𝕆1𝑝1/2,𝑝 = 2, 𝕆1𝑑5/2,𝑝 =

5, 𝕆1𝑑3/2,𝑝 = 3.4, 𝕆2𝑠1/2,𝑝 = 1.2, 𝕆1𝑓7/2,𝑝 = 3.2,   𝕆1𝑝3/2,𝑝 = 1.  

Such occupancies were used to initiate the present calculations. 

 

     In Table 1, the parameters of total initial spin (J) quantum numbers, total initial isospin (T) 

quantum numbers, parity, and 𝑏𝑝 ,𝑚 and 𝛾𝑝 of THO wave functions were displayed. The 

values of 𝑏𝑝 , 𝑚 and 𝛾𝑝 were fixed to recreate the empirical size radii for 40,48Ca isotopes. 

In Table 2, the experimental [35] and calculated rms proton and charge radii were tabulated. 

With the fixed parameters in Table 1, the theoretical findings were in very good match with 

empirical data.  

 

     The computed excitation energies using HW and GXPF1 were shown and compared with 

available empirical findings in Table 3. It is obvious that the computed energy levels for the 

studied transition were in good match with corresponding empirical data [36].  

  

     The evaluated and empirical charge densities were portrayed in Figure 1 for 40Ca (a) and 

48Ca (b), correspondingly. The solid curves represent the theoretical results using THO WFs 
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with adjusted occupancies for 40Ca (a) and 48Ca (b). The filled dotted symbols represent 

experimental results. From the depicted results, it is clear that the theoretical results were in 

excellent match with experimental data [36,37]. 

Elastic charge structure factors for 40Ca (a) and 48Ca (b) were drawn. The computed results 

were represented by the solid curves, while the dotted filled circles represent the experimental 

data. As it is shown from the graphs that the calculations were in good agreement with 

empirical findings; at small q, there was a slight difference between theoretical and empirical 

results while at large q, there was slight underestimation in the calculations. 

In Figure 3, the graphs (a) for 40Ca and (b) for 48Ca represent the theoretical and empirical 

elastic electron scattering differential cross-sections at the (E=250 MeV) represented by solid 

curves for theoretical calculations and dotted filled circles for experimental data [38].  The 

calculated results were very good match with experimental data at small and middle 𝜃, while 

at very large 𝜃 values there were slight differences. 

Figure 4 shows the experimental and calculated inelastic charge structure factor for 40Ca  

using shell model with THO basis for the different parity transitions: (𝑎) 0+ → 31
− (𝐸𝑥 =

3.74 𝑀𝑒𝑉),  (𝑏) 0+ → 32
− (𝐸𝑥 = 6.29 𝑀𝑒𝑉), (𝑐) 0+ → 33

− (𝐸𝑥 =  6.59 𝑀𝑒𝑉), 𝑎𝑛𝑑 (𝑑) 0+ →
51

− (𝐸𝑥 = 4.49 𝑀𝑒𝑉). The experimental data were represented by the dotted circles [36], 

while the solid, dashed, and dashed-dotted curves represent the theoretical results with the 

inclusion of CP effect using the B-M, the T and the V models, respectively. it is clear from 

the four graphs that the B-M model were well described that experimental data for (𝑎) 0+ →
31

− (𝐸𝑥 = 3.74 𝑀𝑒𝑉) and (𝑑)0+ → 51
− (𝐸𝑥 = 4.49 𝑀𝑒𝑉), while the transition in (𝑏) 0+ →

32
− (𝐸𝑥 = 6.29 𝑀𝑒𝑉) was well described by T model. Finally, all CP models for the 

transition in (𝑐) 0+ → 33
− (𝐸𝑥 =  6.59 𝑀𝑒𝑉) was in poor match with empirical data. 

Figure 5 shows the experimental and calculated inelastic charge structure factors using the 

shell model using THO basis for 48Ca for the same parity transitions: (𝑎) 0+ → 21
+ (𝐸𝑥 =

3.841 𝑀𝑒𝑉), (𝑏) 0+ → 22
+ (𝐸𝑥 = 9.29𝑀𝑒𝑉) (𝑐)  0+1 → 42

+ (𝐸𝑥 = 6.34 𝑀𝑒𝑉). The  

experimental data were represented by the filled circles [37], while the solid, dashed, and 

dashed-dotted curves represent the inclusion of CP effect using the B-M, the T and the V 

models, respectively. It is obvious that the results of B-M model were in very good match 

with empirical data for the transitions in (𝑎) 0+ → 21
+ (𝐸𝑥 = 3.841 𝑀𝑒𝑉), (𝑏) 0+ →

22
+ (𝐸𝑥 = 9.29𝑀𝑒𝑉), (𝑐)  0+1 → 42

+ (𝐸𝑥 = 6.34 𝑀𝑒𝑉). all CP models had poor behaviour to 

reproduce the experimental finding. It is worth mentioning that with the dominance of small 

deformation, the Bohr-Mottelson elucidate the laboratory data unlike Tassie and valence 

models which success in nuclei with large deformation, i.e., the Tassie model. The 40,48Ca 

nuclei are even-even nuclear samples, therefore, one expects small deformations due to high 

stability of such nuclei. The poor results of valence and Tassie models is due to such small 

deformation.  

   

Table1: Total spin, isospin, and the parameters of THO 

𝑋𝑁𝑍
𝐴  𝐽𝜋𝑇 [36][37] 𝑏𝑝 𝑚 𝛾𝑝 

𝐶𝑎2020
40  0+0 1.891 8 3.028 

𝐶𝑎2820
48  0+0 1.845 8 3.019 

 

Table2: Evaluated 𝑟𝑚𝑠 neutron, proton, matter radii, and charge for 𝐶𝑎20  20
40 and 𝐶𝑎2820

48  

nuclei 

𝑋𝑁𝑍
𝐴  〈𝑟𝑐ℎ

2 〉1/2 Exp. 〈𝑟𝑐ℎ
2 〉1/2 [35] 〈𝑟𝑝

2〉1/2 

𝐶𝑎2020
40  3.450 3.482(25) 3.374 

𝐶𝑎2820
48  

 
3.459 3.470 3.390 
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Table 3: Empirical and Calculated energy levels for 40,48Ca isotopes, 

𝑿𝑵𝒁
𝑨  𝐽𝑖

+𝑇 → 𝐽𝑓
+𝑇 [36][37] Calculated 𝐸𝑥(𝑀𝑒𝑉) 

Empirical 

𝐸𝑥(𝑀𝑒𝑉) 

 

 

𝑪𝒂𝟐𝟎𝟐𝟎
𝟒𝟎  

0+ → 31
− 4.164 3.74 

0+ → 32
− 7.633 6.29 

0+ → 33
− 9.683 6.59 

0+ → 51
− 4.934 4.49 

 

𝑪𝒂𝟐𝟖𝟐𝟎
𝟒𝟖  

 

0+ → 21
+ 3.791 3.831 

0+ → 22
+ 6.397 2.29 

0+ → 42
+ 6.006 6.34 

  

  

 

Figure 1: CDDs calculated by adjusted occupancies for 40Ca (a), and 48Ca (b) are represented 

by the solid curve compared with data represented by dotted circles symbols taken from 

Vries, Jager and Vries (1987 ) [35] 

 

  

 

Figure 2: Calculated elastic charge form factor for 40Ca (a), and 48Ca(b) are represented by 

the solid curves. The filled dotted circles represent the experimental data, which were taken 

from Sinha et al.(1973) [39] and Wise et al.(1985) [37] . 
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Figure 3: calculated elastic differential the cross section for, 40Ca (a), and 48Ca (b) at 

E=250MeV are represented by the solid curve. The filled dotted circles represent the 

experimental data, which were taken from Frosch, Hofstadter, Mccarthy et al.(1968) [38]. 

  

 

 

Figure 4: Calculated data for Inelastic transitions related to form factors to the C3 and C5 for 

the 40Ca (𝑎) 31
−, (𝑏) 32

−, (𝑐) 33
−, 𝑎𝑛𝑑(𝑑) 51

−. The theoretical results were computed using 

Bohr-Mottelson, valence, and Tassie models represented by solid, dashed-dotted, and dashed 

curves. The experimental data were represented by dotted circles symbols taken Itoh, 

Oyamada and Torizuka (1970) [36]. 
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Figure 5: Calculated data for Inelastic transitions related to form factors to the C2 and C4 for 

the 48Ca (𝑎) 21
+, (𝑏) 22

+, 𝑎𝑛𝑑(𝑐)41
+. The results were computed using valence, Tassie, and 

Bohr-Mottelson models represented by dashed-dotted, dashed, and solid curves, 

correspondingly. The experimental data were represented by dotted circles symbols from 

Wise et al. (1985) [37].  

 

3. Conclusion 

     The elastic and inelastic Coulomb multipoles for the different and for the same parity 

transitions were searched for 40,48 Ca. For 40Ca, the three different parity transitions: 0+ →
31

− (𝐸𝑥 = 3.74 𝑀𝑒𝑉), 0+ → 32
− (𝐸𝑥 = 6.29 𝑀𝑒𝑉) and 0+ → 33

− (𝐸𝑥 =  6.59 𝑀𝑒𝑉) in parallel 

with C5 transitions,  0+ → 51
− (𝐸𝑥 = 4.49 𝑀𝑒𝑉) were searched.   For 48Ca, the two same 

parity C2 transitions: 0+ → 21
+ (𝐸𝑥 = 3.841 𝑀𝑒𝑉) and 0+ → 22

+ (𝐸𝑥 = 9.29𝑀𝑒𝑉) in parallel 

with C4 transitions 0+1 → 42
+ (𝐸𝑥 = 6.34 𝑀𝑒𝑉) were investigated. The theory of the present 

work was based on shell model approach using HW and GXPF1 interactions for 40Ca and 
48Ca, respectively. the basis of THO in the LST were applied to evaluate the charge densities, 

differential cross sections, and elastic and inelastic form factors. The model space for 40Ca in 

the HW interaction is 1d3/21f7/2 subshells while for 48Ca in the GXPF1 interaction, the model 
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space is fp-shell. With the inclusion of THO, the computed charge densities and electron 

scattering differential cross sections were in very good match with empirical data. Finally, the 

inclusion of the CP effects improved the outcome of the computed inelastic Coulomb form 

factors were greatly enhanced. In general, the results of Bohr-Mottelson model possess 

acceptability more than Tassie and valence models for 40,48 Ca which have small deformation 

on contrary to Tassie model which is successful in nuclei with large deformation. The poor 

agreement of results of valence model is attributed to its simple mathematical form. It is 

recommended to enlarge the model space of nucleon in the valence in presence of more 

sophisticated computers for such run.  
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