

)

THE INVERSE OF OPERATOR MATRIX A WHERE A≥I

Mohammed Saleh Balasim

Department of Mathematics, Collage of Science, University of AL-Mustansiryah. Baghdad-Iraq

Abstract

Let H and K be Hilbert spaces and let $H \oplus K$ be the cartesian product of them.Let B(H),B(K),B(H $\oplus K$),B(K,H),B(H,K) be the Banach spaces of bounded(continuous) operators on H,K,H \oplus K,and from K into H and from H into K respectively. In this

paper we find the inverse of operator matrix $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in B(H \oplus K)$ where

 $B \in B(H)$, $C \in B(K,H)$, $D \in B(H,K)$, $E \in B(K)$ and $A \ge I_{H \oplus K}$ where $I_{H \oplus K}$ is the identity operator on $H \oplus K$.

معكوس مصفوفة المؤثر A حيث I

محمد صالح بلاسم

قسم الرياضيات،كلية العلوم،الجامعه المستنصرية. بغداد العراق.

الخلاصة

ليكن كل من H,K فضاء هلبرت وليكنH طَ لهو الضرب الديكارتي لهما وليكن B(H),B(K),B(H \oplus K),B(K,H),B(H,K) فضاءات باناخ لكل المؤثرات المقيده(المستمره)على H,K,H \oplus K ، ومنK الى H ومنH الىK على الترتيب.في هذا البحث سنجد معكوس مصفوفة المؤثر

 $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in \mathbf{B}(\mathbf{H} \oplus \mathbf{K})$

حيث أن $A \ge I_{H \oplus K}$ وأن $B \in B(H)$, $C \in B(K,H)$, $D \in B(H,K)$, $E \in B(K)$ حيث $I_{H \oplus K}$ هو المؤثر المحايد على $H \oplus K$.

Introduction

Let \langle , \rangle denotes an inner product on a Hilbert space, and we will denote Hilbert spaces by H, K, H_i, K_i and H \oplus K denotes the Cartesian product of the Hilbert spacesH, K ,and B(H) ,B(H \oplus K),B(K,H),be the Banach spaces of bounded(continuous) operators on H, H \oplus Kand from K into H respectively[see2]. The inner product on H \oplus K is define by: $\langle (x, y), (w, z) \rangle \ge \langle x, w \rangle + \langle y, , z \rangle$ x,w \in H, y,z \in K.

we say that **A** is positive operator on H and denote that by $A \ge 0$ if $\langle Ax, x \rangle \ge 0$ for all x in H,and in this case it has a unique positive square root ,we denote this square root by \sqrt{A} [see2],it is easy to check that A is invertible if and only if \sqrt{A} is invertible.

 A^* denotes the adjoint of A and I_H denotes the identity operator on the Hilbert space H.We define the operator matrix

$$A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \in B(H \oplus K, L \oplus M) \quad \text{where}$$

$$B \in B(H, L), C \in B(K, L),$$

$$E \in B(H, M), D \in B(K, M)$$

as following $A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$

 $\begin{bmatrix} Bx + Cy \\ Ex + Dy \end{bmatrix}, \text{where} \begin{pmatrix} x \\ y \end{pmatrix} \in H \oplus K \text{, and similar}$

for the case $m \times n$ operator matrix [see 1,3,6].

If
$$A = \begin{bmatrix} B & C \\ E & D \end{bmatrix}$$
 then $A^* = \begin{bmatrix} B^* & E^* \\ C^* & D^* \end{bmatrix}$.
If $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \ge 0$ then A is a self-adjoint

and so has the form $A = \begin{bmatrix} B & C \\ C^* & D \end{bmatrix}$ and similar

for the case $n \times n$ operator matrix [see 1,3]. For elementary facts about matrices [see5,8] and for elementary facts about Hilbert spaces and operator theory [see 2,6].

Remark: we will sometimes denote $I_{H\oplus K}$ (the identity operator on $H \oplus K$) or I_H (the identity on H) or I_K (the identity on K) or any identity operator by ,and also we will sometimes denote any zero operator by 0

Preliminaries

Proposition1.1.: Let $T \in B(H,K)$ then

1) if $T^*T \ge I$ and $TT^* \ge I$ then T is invertible, 2) if T is self-adjoint, $T^2 \ge I$ then T is invertible,

3) if $T \ge 0$ then T is invertible if and only if \sqrt{T} is invertible, and in this case we have $((\sqrt{T}))^2)^{-1} = ((\sqrt{T}))^{-1})^2$.

4) if T is self-adjoint then T is invertible from right if and only if it is invertible from left, f(T) = f(T) + f(T)

5) if $T \ge I$ then T is invertible,

6) if $T \ge 0$ and it is invertible then $T^{-1} \ge 0$, and in this case we have

$$\sqrt{T^{-1}} = (\sqrt{T})^{-1}$$

7) $T \ge I$ if and only if $0 \le T^{-1} \le I$.

Proof:1)see[2]p.156

2) From 1.3) if T is invertible

invertible from left.a

3) if T is invertible then there exists an operator S such that ST =TS=I ,so $(S\sqrt{T})\sqrt{T} = \sqrt{T}$ $(\sqrt{T} S)=I$ i.e. \sqrt{T} is invertible . Conversely if \sqrt{T} is invertible then there exists an operator R such that $R\sqrt{T} = \sqrt{T}$ $R = \sqrt{T}$, so I=I.I= $(\sqrt{T} R)(\sqrt{T} R) = \sqrt{T} (R\sqrt{T})R$ $= \sqrt{T} (\sqrt{T} R)R =TR^2 = R^2T$, hence T is invertible, and in this case we have $((\sqrt{T}))^2)^{-1} = T^1 = R^2 = ((\sqrt{T}))^{-1}^2$. \square 4) if T is self-adjoint then T=T^{*}, but T is invertible from right if and only if T^{*} is

5) if $T \ge I$ then $T \ge 0$, so \sqrt{T} exists and it is self-adjoint and $(\sqrt{T})^2 \ge I$, so \sqrt{T} is invertible and hence T is invertible.

6) if $T \ge 0$ and it is invertible then $\langle Tx, x \rangle \ge 0$, so $\langle TT^{-1}x, T^{-1}x \rangle \ge 0$. i.e. $\langle x, T^{-1}x \rangle \ge 0$, $\forall x$. Hence . $T^{-1} \ge 0$ Now $\sqrt{I} =_I$ because $\sqrt{I} \cdot \sqrt{I} =_I$, and I.I = I, but the positive square root is unique(see[2]p.149) so $\sqrt{I} = I$. and since

$$T \ge 0, T^{-1} \ge 0, T^{-1}T = I \ge 0$$
, we have $\sqrt{T^{-1}}$
 $\sqrt{T} = \sqrt{T^{-1}T}$ (see[2]p.149), so $\sqrt{T^{-1}} \sqrt{T} = \sqrt{I} = \sqrt{I}$, hence $\sqrt{T^{-1}} = (\sqrt{T})^{-1}$.

7) If $T \ge I$ then $T \ge 0$ and it is invertible .so [from 6)] we have $T^{-1} \ge 0$.Now $T^{-1} \ge 0$ & $T - I \ge 0$ & $T^{-1}(T-I) = (T-I) T^{-1}$ [because $\begin{array}{l} {\rm T}^{-1} \ ({\rm T}\text{-}{\rm I}) = {\rm T}^{1}{\rm T}\text{-}~{\rm T}^{-1} = {\rm I}\text{-}{\rm T}^{-1} \quad \text{and} \ ({\rm T}\text{-}{\rm I})~{\rm T}^{-1} = \\ {\rm T}{\rm T}^{-1}\text{-}{\rm T}^{-1} = {\rm I}\text{-}{\rm T}^{-1} \quad {\rm So}, \quad T^{-1}(T-I) \ge 0 \quad (\text{see} \\ [2]p.149) \ \text{,hence} \quad T^{-1} \le I \ \text{.} \ \ \text{Conversely} \ \text{if} \\ 0 \le T^{-1} \le I \quad \text{then} \quad [\text{from 6})] \text{ we have} \quad T \ge 0 \\ \text{but} \quad I - T^{-1} \ge 0 \text{ and} \quad {\rm T}({\rm I}\text{-}{\rm T}^{-1}) = ({\rm I}\text{-}{\rm T}^{-1}){\rm T} \quad \text{so} \\ T(I - T^{-1}) \ge 0 \text{ ,hence} \ T \ge I \ . \end{array}$

Proposition1.2:1) if
$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \ge 0$$
 then
 $C=D^*$ and $B\ge 0$ & $E\ge 0$
2) If $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \ge I$ then
 $C=D^*$ and $B\ge I$ & $E\ge I$
3) if $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \le I$ then $C=D^*$ and $B\le I$
& $E\le I$

Proof:1)see[1]p.18

2) if
$$T \ge I$$
 then $T - I \ge 0$ but $I = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$
,so $\begin{bmatrix} B & C \\ D & E \end{bmatrix} - \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} = \begin{bmatrix} B - I & C \\ D & E - I \end{bmatrix} \ge 0$
Then from 1) we have that $C = D^*$ B-I ≥ 0 & F-

.Then from 1) we have that $C=D^*$, $B-I\geq 0$ & $E-I\geq 0$ i.e. $B\geq I$ & $E\geq I$.n 3)Similar to 2)

Proposition1.3.: if
$$A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix}$$
 is invertible,

A \geq I then B,E are invertible

Proof: from Proposition1.2. 2) we have $B \ge I \& E \ge I$, so B,E are invertible.

To show that the converse is not true we need the following theorem from[1]p.19:-

Theorem1.4:Let $B \in B(H), E \in B(K), C \in B(K,H)$ such that $B \ge 0$ & $E \ge 0$ then:

$$\begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge 0 \quad \text{if and only if there exists a}$$

contraction X \in B(K,H) such that C= $\sqrt{B}X \sqrt{E}$ Now the following example show that the converse of proposition 1.3. is not true

Example 1.5: Let
$$A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$
, so $B=2\ge 1, E=2\ge 1$

and they are invertible but A is not invertible[since detA=0].Note that A ≥ 0 [since C=2= $\sqrt{2} \sqrt{2} \sqrt{2} = \sqrt{B}X \sqrt{E}$ where

X=1,hence
$$|X| \le I$$
],but $\mathbf{A} \ge \mathbf{I}$ [since
 $A - I = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$,and if $\exists X$ such that
 $2 = \sqrt{1}X \sqrt{1}$,so $X = 2$,hence $|X| \ne 1$
i.e. $\mathbf{A} - \mathbf{I} \ge \mathbf{0}$,hence $\mathbf{A} \ge \mathbf{I}$].

Remark1.6: it is easy to check that:

1) If A is invertible $m \times n$ operator matrix (i.e. \exists an $n \times m$ operator matrix B s.t. $AB=I_m \& BA=I_n$

Where $I_m \& I_n$ are the $m \times m$ and the $n \times n$ identity operator matrices respectively) and if matrix C results from A by interchanging two rows (columns) of A then C is also invertible.

2) If two rows (columns) of an $m \times n$ operator matrix A are equal then A is not invertible.

3) If a row (column) of an $m \times n$ operator matrix A consists entirely of zero operators then A is not invertible.

4)
$$A = \begin{bmatrix} B & 0 \\ 0 & E \end{bmatrix}$$
 is invertible if and only if B,E
are invertible, and in this

case
$$A^{-1} = \begin{bmatrix} B^{-1} & 0 \\ 0 & E^{-1} \end{bmatrix}$$
.

Remark1.7.: from remark1.6. 1) We can conclude: if

$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in B \ (H \oplus K, L \oplus M) \text{ then}$$
$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \text{ is invertible if and only if } \begin{bmatrix} D & E \\ B & C \end{bmatrix}$$
is invertible if and only if
$$\begin{bmatrix} D & E \\ B & C \end{bmatrix}$$
is invertible if and only if
$$\begin{bmatrix} E & D \\ C & B \end{bmatrix}$$
is invertible.

2) The inverse of a 2x2 operator matrix A where $A \ge I$

Theorem2.1.:1)if $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$ then B,E, B-CE⁻¹C^{*}, E-C^{*}B⁻¹C are invertible and

$$A^{-1} = \begin{bmatrix} (B - CE^{-1}C^{*})^{-1} & -(B - CE^{-1}C^{*})^{-1}CE^{-1}_{A^{-1}} \\ E^{-1}C^{*}(B - CE^{-1}C^{*})^{-1} & (E - C^{*}B^{-1}C)^{-1} \end{bmatrix}$$

In fact :2) if $A = \begin{bmatrix} B & C \\ C^{*} & E \end{bmatrix} \ge I$ then $B \ge I, E \ge I$, B-
CE⁻¹C^{*} $\ge I, E - C^{*}B^{-1}C \ge I$.
Proof 1) if $A = \begin{bmatrix} B & C \\ C^{*} & E \end{bmatrix} \ge I$ then A is
invertible [proposition 1.1.5)] and $B \ge I, E \ge I$ and sir
[proposition 1.2.2)] , so B, E are invertible
[proposition 1.1.5)] and $B \ge I, E \ge I$ and sir
(B-CE
invertible [proposition 1.1.5)] and $B \ge I, E \ge I$ and sir
[proposition 1.2.2)] , so B, E are invertible
[proposition 1.2.2)] , so B, E are invertible
[proposition 1.1.5)] and $B \ge I, E \ge I$ and sir
(B-CE $\begin{bmatrix} I_{H} & 0 \\ 0 & I_{K} \end{bmatrix}$, then $J \ge 0$ & $F \ge 0$ since $A^{-1} \ge 0$
and i)BJ + CG^{*}=I_{H} ii) $BG + CF = 0$
ii)C^{*}J + EG^{*}=0 iv)C^{*}G + EF = I_{K} or
So from ii) we have $JC + GE = 0.S, G_{E} - JCE^{-1} = -B^{-1}C^{*}$
'CF Then we have from iv) that
(E-C^{*}B^{-1}C)^{-1} = I_{K} i.e. $(E - C^{*}B^{-1}C)$ is invertible, and
 $J = (B - CE^{-1}C^{*})^{-1}$ ce⁻¹C^{*}B^{-1}C^{-1} ...etc.
Remaa
that,
 $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^{*})^{-1} & -(B - CE^{-1}C^{*})^{-1}CE^{-1} \\ C^{*} & E \end{bmatrix} \ge I$ then
 $0 \le A^{-1} = \begin{bmatrix} B & C \\ C^{*} & E \end{bmatrix} \ge I$ then
 $0 \le A^{-1} = \begin{bmatrix} (B - CE^{-1}C^{*})^{-1} & -(B - CE^{-1}C^{*})^{-1}CE^{-1} \\ -E^{-1}C^{*}(B - CE^{-1}C^{*})^{-1} & (E - C^{*}B^{-1}C)^{-1} \end{bmatrix} \le I$
so from proposition 1.2.1&3) We
have $0 \le (B - CE^{-1}C^{*})^{-1} \le I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} = I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} = I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} \ge I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} \ge I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} \ge I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} \ge I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} \ge I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} = I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} = I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} = I$, $A^{-1} = \begin{bmatrix} -2 \\ C^{*} & E \end{bmatrix} = I$, $B^{-1} = C^{*} = C^$

also from proposition 1.2.2) we have that B \geq I& E \geq Ia

Remark 2.2.: it is easy to check that if B, E, B-CE⁻¹C^{*}, E-C^{*}B⁻¹C are invertible then $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix}$ is invertible and

$$A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix} .$$
But what is about:
Question2.3.: is it true that if $B \ge I, E \ge I$,
 $B - CE^{-1}C^* \ge I, E - C^*B^{-1}C \ge I$.
then $A \ge I$?
Remark2.4.: since
 $(B - CE^{-1}C^*)^{-1}CE^{-1} = B^{-1}C(E - C^*B^{-1}C)^{-1}$
and since $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$, hence $A - I \ge 0$ and
 $A \ge 0$, therefore there exists a contraction X and a
contraction Y such that
 $C = \sqrt{BX} \quad \sqrt{E} = \sqrt{B - IY} \quad \sqrt{E - I}$
then we have alternative forms of A^{-1} such:
1)
 $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -B^{-1}C(E - C^*B^{-1}C)^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}$
or
2)
 $A^{-1} = \begin{bmatrix} (\sqrt{B})^{-1}(I - XX^*)^{-1}(\sqrt{B})^{-1} & -(\sqrt{B})^{-1}(I - XX^*)^{-1}X(\sqrt{E})^{-1} \\ -(\sqrt{E})^{-1}X^*(I - XX^*)^{-1}(\sqrt{B})^{-1} & (\sqrt{E})^{-1}(I - X^*X)^{-1}(\sqrt{E})^{-1} \end{bmatrix}$

Remark 2.5.: the second form of A^{-1} above show that I-X^{*} X,I-XX^{*} are invertible and this is easy to check.

Remark 2.6.: we know that if a ,c , e are complex numbers(the complex number is a special case of an operator) and

$$A = \begin{bmatrix} b & c \\ c^* & e \end{bmatrix} \text{ where } c^* \text{ is the conjugate of } c$$

$$then_{A^{-1}} = \begin{bmatrix} \frac{e}{be - |c|^2} & \frac{-c}{be - |c|^2} \\ \frac{-c^*}{be - |c|^2} & \frac{b}{be - |c|^2} \end{bmatrix} \text{ but from above:}$$

$$A^{-1} = \begin{bmatrix} (b - ce^{-1}c^*)^{-1} & -(b - ce^{-1}c^*)^{-1}ce^{-1} \\ -e^{-1}c^*(b - ce^{-1}c^*)^{-1} & (e - c^*b^{-1}c)^{-1} \end{bmatrix} =$$

$$\begin{bmatrix} \frac{1}{b - \frac{|c|^2}{e}} & -\frac{1}{b - \frac{|c|^2}{e}}c\frac{1}{e} \\ -\frac{1}{e}c^* \frac{1}{b - \frac{|c|^2}{e}} & \frac{1}{e - \frac{|c|^2}{b}} \end{bmatrix} =$$

$$\begin{bmatrix} \frac{e}{be - |c|^2} & \frac{-c}{be - |c|^2} \\ \frac{-c^*}{be - |c|^2} & \frac{b}{be - |c|^2} \end{bmatrix}$$

Remark2.7.: of course we can generalize the 2×2 case to the $n \times n$ case by iteration. For

example: if
$$A = \begin{bmatrix} B & C & D \\ C^* & E & G \\ D^* & G^* & F \end{bmatrix} \ge I$$
, then

$$A = \begin{bmatrix} B & C & D \\ C^* & E & G \\ D^* & G^* & F \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} B & C \\ C^* & E \\ D^* & G^* \end{bmatrix} \begin{bmatrix} D \\ G \\ B \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \begin{bmatrix} D \\ G \\ B \end{bmatrix}$$

and we can first find the inverse of $\begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$, then find the inverse of A.

Remark2.8.: there is no general relation between the invertibility of $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$ and the invertibility of B,C,D,E ,and all the 32 cases can be hold, for example

1) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is not invertible but B,C,D,E are invertible

2) $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ is invertible and also B,C,D,E are invertible

$$3)A = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 \end{bmatrix}$$
 is not invertible

[since detA=0] and $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is not

invertible,but

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, E = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$
 is

invertible And so on.

of course,
$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$$
 is invertible if and
only if $\begin{bmatrix} C & B \\ E & D \end{bmatrix}$ is invertible if and only
if $\begin{bmatrix} D & E \\ B & C \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} E & D \\ C & B \end{bmatrix}$
is invertible is useful here

Question2.9.:How can we find the inverse of the general case

$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in B(H \oplus K, L \oplus M) ?.$$

References

- 1. Balasim, M.S., **1999**.completion of operator matrices, thesis ,university of Baghdad, collage of science, department of mathematics. pp.18-19.
- 2. Berberian, S.K., **1976**. *Introduction to Hilbert space*, Chelesea Publishing Company,New York, N.Y. pp:149-.156,
- 3. Choi M.D, Hou j. and Rosehthal P. **1997.** *Completion of operator partial matrices to square-zero contractions, Linear algebra and its applications* 2561-30.
- 4. Douglas R. G. 1966. On majorization, factorization and range inclusion of operators on Hilbert space. *Proc. Amer. Math. Soc.*17:413-416,
- 5. Frank Ayres, **1962.** *Matrices*, Schaum outline series, pp:1-53.
- 6. Halmos ,P.R., **1982**. *A Hilbert space problem book*, Van Nostrand princetron, Nj. 217-221.
- 7. Heuser, H. J., **1982**. *Functional analysis*, John Wiley, New york ,pp:44-45, 133-137.
- Kolman, B., 1988. Introductory linear algebra with applications ,4th edition, Macmillan Publishing Company,New york, Collier Macmillan Publishers,London, pp:11-98.