

THE INVERSE OF OPERATOR MATRIX A WHERE A≥I

Mohammed Saleh Balasim

Department of Mathematics, Collage of Science, University of AL-Mustansiryah. Baghdad-Iraq

Abstract

Let H and K be Hilbert spaces and let $H \oplus K$ be the cartesian product of them. Let $B(H), B(K), B(H \oplus K), B(K, H), B(H, K)$ be the Banach spaces of bounded(continuous) operators on $H, K, H \bigoplus K$, and from K into H and from H into K respectively. In this

paper we find the inverse of operator matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & E \end{bmatrix}$ \rfloor $\overline{}$ L $\overline{\mathsf{L}}$ $=$ *D E B C* $A = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} \in B(H \oplus K)$ where $B \in B(H)$, $C \in B(K,H)$, $D \in B(H,K)$, $E \in B(K)$ and $A \ge I_{H \oplus K}$ where $I_{H \oplus K}$ is the

identity operator on H \oplus K.

معكوس مصفوفة المؤثرA حيث I≥A

محمد صالح بالسم

قسم الرياضيات،كلية العلوم،الجامعه المستنصرية. بغداد العراق.

الخالصة

ليكن كل من $\mathrm{H\mathrm{,}K}$ فضاء هلبرت وليكن $\mathrm{H\oplus K}\oplus\mathrm{K}$ هو الضرب الديكارتي لهما وليكن $B(H), B(K), B(H \bigoplus K), B(K,H), B(H,K)$ فضاءات باناخ لكل المؤثرات المقيده(المستمره)على H,K,H \oplus K ، ومن K ومن K ومن K على المؤثرات المقيده(المستمره) الترتيب.في ىذا البحث سنجد معكوس مصفوفة المؤثر

 \cdot \perp $\overline{}$ \mathbf{r} L $=$ *D E* $A = \begin{bmatrix} B & C \\ D & D \end{bmatrix} \in B(H \oplus K)$

> حيث أن وأن *H K I* A≥ حيث B B(H) ,C B(K,H), D B(H,K), E B(K).H \oplus K هو المؤثر المحايد على $I_{_H \oplus K}$

Introduction

Let \le , $>$ denotes an inner product on a Hilbert space, and we will denote Hilbert spaces by H, K, H_{i,}K_i and H \oplus K denotes the Cartesian product of the Hilbert spaces H, K , and $B(H)$ $,B(H \oplus K),B(K,H),$ be the Banach spaces of bounded(continuous) operators on H , $H \oplus K$ and from K into H respectively[see2]. The inner product on $H \oplus K$ is define by: $\langle (x, y), (w, z) \rangle \ge \langle x, w \rangle + \langle y, z \rangle$ $x,w \in H$, $y,z \in K$.

we say that \overrightarrow{A} is positive operator on H and denote that by $A \ge 0$ if $\langle Ax, x \rangle \ge 0$ for all x in H,and in this case it has a unique positive square root ,we denote this square root by \sqrt{A} [see2], it is easy to check that A is invertible if and only if \sqrt{A} is invertible.

 A^* denotes the adjoint of A and I_H denotes the identity operator on the Hilbert space H . We define the operator matrix

$$
A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \in B(H \oplus K, L \oplus M) \quad \text{where}
$$

$$
B \in B(H, L), C \in B(K, L),
$$

\n
$$
E \in B(H, M), D \in B(K, M)
$$

\nas f following $A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$

 $\overline{}$ \rfloor $\overline{}$ L L L $\ddot{}$ $\ddot{}$ *Ex Dy* $Bx + Cy$ \mathbf{w} , where $\left| \begin{array}{c} \n\cdot \cdot \cdot \end{array} \right| \in H \oplus K$ *y x* $\in H \oplus$ J \setminus $\overline{}$ \setminus ſ similar

for the case $m \times n$ operator matrix [see 1,3,6].

If
$$
A = \begin{bmatrix} B & C \\ E & D \end{bmatrix}
$$
 then $A^* = \begin{bmatrix} B^* & E^* \\ C^* & D^* \end{bmatrix}$.
\nIf $A = \begin{bmatrix} B & C \\ E & D \end{bmatrix} \ge 0$ then A is a self- adjoint

and so has the form $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ \perp $\overline{}$ I L $=\begin{vmatrix} B & C \\ C^* & D \end{vmatrix}$ *B C* $A = \begin{bmatrix} 2 & 1 \end{bmatrix}$ and similar

for the case $n \times n$ operator matrix [see 1,3]. For elementary facts about matrices [see5 ,8] and for elementary facts about Hilbert spaces and operator theory [see 2,6].

Remark: we will sometimes denote $I_{H \oplus K}$ (the identity operator on $H \oplus K$) or I_H (the identity on H) or I_K (the identity on K) or any identity operator by ,and also we will sometimes denote any zero operator by 0

Preliminaries

Proposition1.1.: Let $T \in B(H,K)$ then

1)if $T^*T \geq I$ and $TT^* \geq I$ then T is invertible, 2)if T is self-adjoint, $T^2 \geq I$ then T is invertible,

3)if $T \ge 0$ then T is invertible if and only if *T* is invertible, and in this case we have $((\sqrt{T}))^2$)⁻¹ = $((\sqrt{T}))^{-1}$)².

4)if T is self-adjoint then T is invertible from right if and only if it is invertible from left,

5)if $T \geq I$ then T is invertible,

6) if $T \ge 0$ and it is invertible then $T^{-1} \geq 0$, and in this case we have

$$
\sqrt{T^{-1}} = (\sqrt{T})^{-1}
$$

7) $T \geq I$ if and only if $0 \leq T^{-1} \leq I$.

Proof:1)see[2]p.156

2) From 1.

3) if T is invertible then there exists an operator S such that ST =TS=I ,so $(S\sqrt{T})\sqrt{T} = \sqrt{T}$ $(\sqrt{T} \text{ S})$ =I i.e. \sqrt{T} is invertible . Conversely if \sqrt{T} is invertible then there exists an operator R such that $R\sqrt{T} = \sqrt{T}$ $R = \sqrt{T}$, so I=I.I= $(\sqrt{T} \quad R)(\sqrt{T}R) = \sqrt{T} \quad (R\sqrt{T})R$ $=\sqrt{T}(\sqrt{T}R)R = TR^2 = R^2T$, hence T is invertible, and in this case we have ם. ²(((*x*/T))⁻¹)² –T⁻¹=R²=(((*x*/T))⁻¹)². 4) if T is self-adjoint then $T=T^*$, but T is

invertible from right if and only if T^* is invertible from left.ם 5) if $T \geq I$ then $T \geq 0$, so \sqrt{T} exists and it is

self-adjoint and $(\sqrt{T})^2 \ge I$,so \sqrt{T} is invertible and hence T is invertible.ם

6)if $T \ge 0$ and it is invertible then $\langle Tx, x \rangle \ge 0$, so $\langle TT^{-1}x, T^{-1}x \rangle \ge 0$ i.e. $\langle x, T^{-1}x \rangle \ge 0$, $\forall x$. Hence $T^{-1} \ge 0$ Now $\overline{I} = I$ because $\sqrt{I} \cdot \sqrt{I} = I$, and *I.I=I*, but the positive square root is unique(see[2]p.149) so \overline{I} =I.and since

$$
T \ge 0, T^{-1} \ge 0, T^{-1}T = I \ge 0, \text{we have } \sqrt{T^{-1}}
$$

$$
\sqrt{T} = \sqrt{T^{-1}T} \text{ (see [2]p.149), so } \sqrt{T^{-1}} \sqrt{T} = \sqrt{I} = \sqrt{I} = \sqrt{T^{-1}} = (\sqrt{T})^{-1} = 0
$$

7) If $T \geq I$ then $T \geq 0$ and it is invertible .so [from 6] we have $T^{-1} \ge 0$.Now $T^{-1} \ge 0$ $& \mathcal{L} T - I \geq 0 \& T^{-1}(T-I) = (T-I) T^{-1}$ [because

 T^{-1} (T-I) = T¹T- T⁻¹ = I-T⁻¹ and (T-I) T⁻¹ = $TT^{-1} - T^{-1} = I - T^{-1}$ So, $T^{-1}(T - I) \ge 0$ (see $[2]$ p.149) ,hence $T^{-1} \leq I$. Conversely if $0 \le T^{-1} \le I$ then [from 6] we have $T \ge 0$ but $I - T^{-1} \ge 0$ and $T(I - T^{-1}) = (I - T^{-1})T$ so $T(I-T^{-1}) \geq 0$, hence $T \geq I$.

Proposition 1.2:1) if
$$
A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \ge 0
$$
 then
\nC=D^{*} and B_≥0 & E_≥0
\n2) If $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \ge I$ then
\nC=D^{*} and B_≥I & E_≥I
\n3) if $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \le I$ then C=D^{*} and $B \le I$
\n& E \le I

 $Proof:1$)see $[1]p.18$

2) if
$$
T \ge I
$$
 then $T - I \ge 0$ but $I = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$
\nso $\begin{bmatrix} B & C \\ D & E \end{bmatrix} - \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} = \begin{bmatrix} B - I & C \\ D & E - I \end{bmatrix} \ge 0$
\nThen from 1) we have that $C = D^*$ B-I>0 & E-

Then from 1) we have that $C=D$, B-1 $\geq 0 \& B$ ם.l≥0 i.e. B≥I & E≥I $3)$ Similar to 2)

Proposition 1.3.: if
$$
A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix}
$$
 is invertible,

 $A \geq I$ then B, E are invertible

Proof: from Proposition1.2. 2) we have $B \geq I \&$ E \geq I,so B,E are invertible.

To show that the converse is not true we need the following theorem from $[1]p.19$:-

Theorem1.4.:Let $BeB(H), E\epsilon B(K), C\epsilon B(K,H)$ such that $B \ge 0$ & $E \ge 0$ then:

 ≥ 0 if and only if there exists a C^*

contraction XeB(K,H) such that $C = \sqrt{BX} \sqrt{E}$ Now the following example show that the converse of proposition1.3. is not true

Example 1.5: Let
$$
A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}
$$
, so B=2 \ge 1,E=2 \ge 1

and they are invertible but A is not invertible[since detA=0]. Note that $A \ge 0$ [since $\sqrt{2}$ $\sqrt{2} = \sqrt{B}X \sqrt{E}$ $C=2=$ where

X=1, hence
$$
|X| \le I
$$
], but $A \ge I$ [since
\n $A - I = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, and if $\exists X$ such that
\n $2 = \sqrt{1}X \sqrt{1}$, so $X=2$, hence $|X| \ne 1$
\ni.e. $A - I \ge 0$, hence $A \ge I$].

Remark1.6: it is easy to check that:

1) If A is invertible $m \times n$ operator matrix (i.e. \exists an $n \times m$ operator matrix B s.t.

 $AB=I_m\&BA=I_n$ Where $I_m \& I_n$ are the $m \times m$ and the $n \times n$ identity operator matrices respectively) and if matrix C results from A by interchanging two rows (columns) of A then C is also invertible.

2) If two rows (columns) of an $m \times n$ operator matrix A are equal then A is not invertible.

3) If a row (column) of an $m \times n$ operator matrix A consists entirely of zero operators then A is not invertible.

4)
$$
A = \begin{bmatrix} B & 0 \\ 0 & E \end{bmatrix}
$$
 is invertible if and only if B,E

are invertible. and this \mathbf{in} case $A^{-1} = \begin{bmatrix} B^{-1} & 0 \\ 0 & E^{-1} \end{bmatrix}$.

$$
A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in B \text{ (H} \oplus K, L \oplus M) \text{ then}
$$

\n
$$
A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \text{ is invertible if and only}
$$

\nif $\begin{bmatrix} C & B \\ E & D \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} D & E \\ B & C \end{bmatrix}$
\nis invertible if and only if $\begin{bmatrix} E & D \\ C & B \end{bmatrix}$ is invertible.

2) The inverse of a 2x2 operator matrix A where $A \geq I$

Theorem2.1.:1)if $A = \begin{vmatrix} B & C \\ C^* & E \end{vmatrix} \ge I$ then B,E, $B-CE^{-1}C^*$, $E-C^*B^{-1}C$ are invertible and

$$
A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1} CE^{-1} \\ E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \\ E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \\ C^*E \end{bmatrix}
$$

\nIn fact 2) if $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$ then $B \ge I, E \ge I$, B .
\n $CF^{-1}C^* \ge I, E - C^*B^{-1}C \ge I$.
\nProof 1) if $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$ then A is
\ninvertible[proposition1.1.5)] and $B \ge I, E \ge I$ a.
\n[proposition1.1.5)]
\nNow, let $A^{-1} = \begin{bmatrix} J & G \\ G^* & F \end{bmatrix}$ i.e. $AA^{-1} \begin{bmatrix} C & C \\ C & C \end{bmatrix}$
\nand i) $BI + CG^* = I_H$ ii) $BG + CF = 0$
\nand i) $BI + CG^* = I_H$ iii) $BG + CF = 0$
\nand t) $BC^*J + EG^* = 0$ iv) $C^*G + EF = I_K$
\nSo from iii) we have $IC + GE = 0. So, G = JCE^{-1} = -B$
\n ICF Then we have from iv) that
\n $(E - C^*B^{-1}C)^{-1}$
\n $IF = (E - C^*B^{-1}C)^{-1}$
\n $IF = (B - CE^{-1}C^*)^{-1}$,
\n $G = (B - CE^{-1}C^*)^{-1}$,
\n $G = (B - CE^{-1}C^*)^{-1}$
\n $H = 0$ it is clear **R**
\n $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end$

also from proposition 1.2.2) we have that $B \geq I \&$ $E > I$

Remark2.2.: it is easy to check that if B, E, B- $CE^{-1}C^*$, $E-C^*B^{-1}C$ are invertible then $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix}$ is invertible and

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -(B - CE^{-1}C^*)^{-1}CE^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}.$ \mathbf{u}^{\dagger} what is about: **Question2.3.:** is it true that if $B \ge I, E \ge I$, $B-CE^{-1}C^{\ast}\geq I, E-C^{\ast}B^{-1}C\geq I.$ then $A \geq I$? demark2.4.:since $B-CE^{-1}C^{\ast})^{-1}CE^{-1} = B^{-1}C(E-C^{\ast}B^{-1}C)^{-1}$ and since $A = \begin{bmatrix} B & C \\ C^* & E \end{bmatrix} \ge I$, hence A-I ≥ 0 and ≥ 0 , therefore there exists a contraction X and a ontraction Y such that $\sum \sqrt{B} X \sqrt{E} = \sqrt{B - I} Y \sqrt{E - I}$
hen we have alternative forms of A⁻¹ such: $A^{-1} = \begin{bmatrix} (B - CE^{-1}C^*)^{-1} & -B^{-1}C(E - C * B^{-1}C)^{-1} \\ -E^{-1}C^*(B - CE^{-1}C^*)^{-1} & (E - C^*B^{-1}C)^{-1} \end{bmatrix}$ $A^{-1} = \begin{bmatrix} (\sqrt{B})^{-1} (\textbf{I} - \textbf{X} \textbf{X}^*)^{-1} (\sqrt{B})^{-1} & - (\sqrt{B})^{-1} (\textbf{I} - \textbf{X} \textbf{X}^*)^{-1} \textbf{X} (\sqrt{E})^{-1} \ - (\sqrt{E})^{-1} \textbf{X}^* (\textbf{I} - \textbf{X} \textbf{X}^*)^{-1} (\sqrt{B})^{-1} & (\sqrt{E})^{-1} (\textbf{I} - \textbf{X}^* \textbf{X})^{-1} (\sqrt{E})^{-1} \end{bmatrix}$

Lemark 2.5.: the second form of A^{-1} above show at I-X^{*} X,I-XX^{*} are invertible and this is easy α check.

Lemark 2.6.: we know that if a, c , e are complex umbers (the complex number is a special case f an operator) and

$$
A = \begin{bmatrix} b & c \\ c^* & e \end{bmatrix} \text{ where } c^* \text{ is the conjugate of } c
$$

then
$$
A^{-1} = \begin{bmatrix} \frac{e}{be-|c|^2} & \frac{-c}{be-|c|^2} \\ \frac{-c^*}{be-|c|^2} & \frac{b}{be-|c|^2} \end{bmatrix} \text{ but from above:}
$$

$$
A^{-1} = \begin{bmatrix} (b - ce^{-1}c^*)^{-1} & -(b - ce^{-1}c^*)^{-1}ce^{-1} \\ -e^{-1}c^*(b - ce^{-1}c^*)^{-1} & (e - c^*b^{-1}c)^{-1} \end{bmatrix} =
$$

$$
\begin{bmatrix} \frac{1}{be-|c|^2} & -\frac{1}{be-|c|^2}c\frac{1}{e} \\ -\frac{1}{e}c^*\frac{1}{be-|c|^2} & \frac{1}{e-e^{-|c|^2}} \end{bmatrix} =
$$

$$
= \begin{bmatrix} \frac{e}{be-|c|^2} & \frac{-c}{be-|c|^2} \\ \frac{-c^*}{be-|c|^2} & \frac{-c}{be-|c|^2} \end{bmatrix}
$$

Remark2.7.:of course we can generalize the 2×2 case to the $n \times n$ case by iteration. For

example: if
$$
A = \begin{bmatrix} B & C & D \\ C^* & E & G \\ D^* & G^* & F \end{bmatrix} \ge I
$$
, then
\n
$$
A = \begin{bmatrix} B & C & D \\ C^* & E & G \\ D^* & G^* & F \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} B & C \\ C^* & E \\ C^* & E \end{bmatrix} \begin{bmatrix} D \\ G \end{bmatrix} = \begin{bmatrix} B & C \\ C^* & E \\ G \end{bmatrix} \begin{bmatrix} D \\ G \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} B & C \\ C^* & E \\ D^* & G^* \end{bmatrix} \begin{bmatrix} D \\ G \end{bmatrix} = \begin{bmatrix} B & C \\ C \\ G \end{bmatrix} \begin{bmatrix} D \\ G \end{bmatrix} + C \begin{bmatrix} D \\ G \end{
$$

and we can first find the inverse of *I* C^* *E B C* \vert \geq $\frac{1}{2}$ $\overline{}$ L $\overline{}$ L $\left| \begin{array}{c} \n\ast \\ \n\end{array} \right| \geq I$, then find the inverse of A.

Remark2.8.: there is no general relation between the invertiblity of $A = \begin{bmatrix} 1 & 1 \\ 0 & F \end{bmatrix}$ \rfloor $\overline{}$ L $\overline{}$ $=$ *D E B C* $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and the invertiblity of B,C,D,E ,and all the 32 cases can be hold,for example

1) $A = \begin{vmatrix} 1 & 1 \end{vmatrix}$ \rfloor $\overline{}$ \mathbf{r} L $=$ 1 1 1 1 $A = \begin{bmatrix} 1 & 1 \end{bmatrix}$ is not invertible but B,C,D,E are invertible

2) $A = \begin{vmatrix} 1 & 2 \end{vmatrix}$ \rfloor $\overline{}$ L L $=$ 1 2 2 1 $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ is invertible and also B,C,D,E are invertible

 $|1 \t1 \t2 \t1|$

3)A=
$$
\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 \end{bmatrix}
$$
 is not invertible

[since detA=0] and
$$
B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
$$
 is not

invertible,but

$$
C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, E = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}
$$
 is

invertible And so on.

of course,
$$
A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}
$$
 is invertible if and
only if $\begin{bmatrix} C & B \\ E & D \end{bmatrix}$ is invertible if and only
if $\begin{bmatrix} D & E \\ B & C \end{bmatrix}$ is invertible if and only if $\begin{bmatrix} E & D \\ C & B \end{bmatrix}$
is invertible is useful here

Question2.9.:How can we find the inverse of the general case

$$
A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \in B(H \oplus K, L \oplus M) ?.
$$

References

- 1. Balasim, M.S., **1999***.*completion of operator matrices, thesis ,university of Baghdad, collage of science, department of mathematics. pp.18-19.
- 2. Berberian, S.K., **1976**. *Introduction to Hilbert space,* Chelesea Publishing Company,New York, N.Y. pp:149-.156,
- 3. Choi M.D, Hou j. and Rosehthal P. **1997.** *Completion of operator partial matrices to square-zero contractions*, *Linear algebra and its applications* 2561-30**.**
- 4. Douglas R. G**. 1966.** On majorization, factorization and range inclusion of operators on Hilbert space. *Proc. Amer. Math. Soc.***17**:413-41**6,**
- 5. Frank Ayres**, 1962.** *Matrices*, Schaum outline series, pp:1-53.
- 6. Halmos ,P.R.*,* **1982**. *A Hilbert space problem book*, Van Nostrand princetron, Nj. 217-221.
- 7. Heuser, H. J.**, 1982**. *Functional analysis*, John Wiley, New york ,pp:44-45, 133-137.
- 8. Kolman, B.**, 1988**. *Introductory linear algebra with applications* $,4^{\text{th}}$ edition, Macmillan Publishing Company,New york, Collier Macmillan Publishers,London, pp:11-98.