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Abstract: 

     This work includes calculating the orbital elements around the Moon with 

different heights, ranging from 100 to 1000 km, at an eccentricity of (e = 0.05 and 

0.1) with an inclination=28.48 deg. Cowell’s equation was used to calculate the 

effect of the Earth's attraction on a satellite orbiting around the Moon using the 

MATLAB program. In this paper, research was conducted to find the best orbit of a 

satellite orbiting the Moon, which has the least possible perturbation and the least 

possible change of orbital elements, in order to get the longer life of the sent 

satellites. The lowest height was found to be the best  way to obtain more efficient 

images with the lower-cost camera. Newton-Raphson method was used to solve  

Kepler’s equation for the ellipse orbit. Cowell’s method was used to solve the 

perturbation with the equation of motion which was solved by the 4TH order Runge–

Kutta integration. Results showed that each orbital element changed across time due 

to the Earth's gravity only. The altitude change of an orbit had a relatively slight 

effect, while the eccentricity of the orbit had a greater effect on the orbital elements. 

When altitudes were changed between 100 to 1000 km, the results showed that the 

behavior of the orbital elements remained almost the same. Whereas when the value 

of eccentricity was changed from 0.1 to 0.05, it had a greater impact on the orbital 

elements. It was also found that inclination had an important effect on the orbital 

elements. It was found that the best orbit around the Moon had a height of 100km 

and an eccentricity of 0.05. It was also found that inclination had an important 

effect on the orbital elements.  

 

Keywords: Moon orbit, satellite orbit, 3rd body attraction, orbital elements, 

perturbations. 
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للعناصرالمدارية و الحصول على عمر اطول للقمر الصناعي المرسل .وجدت الدراسه ان استخدام اقل ارتفاع  
نيوتن   تم استخدام  طريقة    . كلفة  اقل  بكامرات  كفاءه  اكثر  للحصول على صور  لحل    –هو أفضل  رفسن 

. الناقص  للقطع  كبلر  وحلها   معادلة  الحركة  معادلة  على  الاضطرابات  كول لأضافة  طريقة  استخدام  تم  و 
النتائج ان كل عنصر    بينت  كوتا من الدرجة الرابعة لحل معادلة الحركة المضطربة.   -باستخدام طريقة رانج

من العناصر المدارية يتغير مع الزمن بوجود تأثير جذب الارض , لكن تأثير الارتفاع المستخدم يكون ضئيلا   
كم(،  1000الى     100نسبيا فيما كان للانحراف المركزي تاثير اكبر . و عندما تم تغيير الارتفاعات )من  

الانحراف   قيمة  تغيير  تم  عندما  لكن   . تقريبا  نفسه  يبقى  الزمن  مع  المدارية  العناصر  تغير  ان  النتائج  بينت 
)من   ،فأنه اثر بصورة اكبر على العناصر المداريه.  كما وجد  ايضا ان ميل    0.05الى    0.1المركزي   )

كم وانحرافه  100المدار له تأثير مهم على العناصر المدارية . وجد أن أفضل مدار حول القمر يكون ارتفاعه  
 . كما وجد  ايضا ان ميل المدار له تأثير مهم على العناصر المدارية .    0.05المركزي 

 

1-Introduction: 

     The planets revolve around the Sun  according to Kepler’s laws, as well as the orbit of the 

Moons around the planets [1]. In the same way, artificial satellites orbit around the planets 

and moons [2]. Studying satellite orbits has significant importance because it has become one 

of the most important means used by the world in managing many fields [3] 

We must invest in what satellites provide by transmitting information about the Earth, and its 

atmosphere and exploit outer space for peaceful purposes  where satellites have made a great 

scientific breakthrough in many fields [4]. Two-body problem is the movements of two huge 

bodies around the center of a mass of each other [5]. In (2003) de Almeida Prado and A. F. B. 

were among the researchers who studied the evolution of orbits for natural satellites in the 

solar system [6]. Al-Ali (2011) studied Kepler's equation to solve the problem of the two 

bodies with the presence and absence of perturbation of the ellipse orbit around the Moon [2].  

Lara, Martin, et al (2012) investigated the long-term consequences of a far-off third-body on 

a satellite orbiting an oblate body for a high-order expansion of the third-body disturbing 

function [7]. R. H. Ibrahim and A. H. Saleh (2024) found a solution to Kepler's equation by 

using a function called the first kind Bessel, for an elliptical orbiting satellite [8]. The 

satellite's orbits were classified into several types according to inclination, altitude, 

eccentricity, and missions for which the satellite was sent. The closer satellite was better in 

terms of imaging and exploration [9], but it was exposed to higher perturbation due to the 

gravity of the other bodies and the non-sphericity of the Moon [8]. In this research, the effect 

of the third body was taken, which is the Earth, on a satellite orbiting around the Moon. For 

the purpose of describing the orbit, six parameters must be known. These are [10]: a semi-

major axis (a), eccentricity (e), inclination (i), angle of ascending node (Ω), argument of 

perigee (ω), and the true anomaly (ta). One of Kepler's main problems or mistakes is the 

assumption that the orbital motion of the body is the result of gravity between two objects 

only [11]. This is an ideal situation that does not occur because there are other forces caused 

by perturbations, which affect the movement of the orbital body that must be taken into 

account. There are two types of methods to determine the satellite motion. These methods are 

general perturbation and special perturbation. The types of general perturbation are [12]: 

Atmospheric drag (in this work, the effect of atmospheric perturbation will be neglected 

because the Moon doesn’t have an atmosphere  which can affect the orbits) [13], non-

spherical of the Moon (the satellite's orbit around the Moon is exposed to major perturbations 

due to the Moon's non-spherical as it is flatter than the Earth) [14] and third body attractions 

(any two bodies in the universe attract each other by the forces of gravity) [15], but in reality 

there are other bodies that affect the object, they are called " third term "[6]. The dominant 

third body that affects the satellite orbit around the Moon is the Earth, therefore it's used in 

this research. The Earth's attraction on the orbits around the Moon depends on the distance 
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between the satellite and the Earth more precisely. This effect depends on the Earth's 

coordination in relevance to the satellite at any moment. Therefore, the position of the Moon 

and the position of the Earth must be calculated at any time. There are also other 

perturbations that affect the body such as solar radiation, pressure perturbation (SRP), the 

Moon’s magnetic field, and the solar wind perturbation [16]. 

 

2. Theoretical background: 

     Six parameters are typically required to define the position of any physical object in three 

dimensions. Three-dimensional elements x, y, and z are present on each axis. and three-angle 

elements. This, however, is not very helpful in terms of seeing the spacecraft in its orbit. It is 

difficult to determine the size, shape, and position of the satellite within the orbit. In this 

regard, Kepler has made a huge contribution by defining a set of six classical orbital 

elements, often known as Keplerian elements. The semi-major axis measures 50% of the 

major axis length of the orbit. The relationship which will make it possible for us to calculate 

the semi-major axis is the following equation [17]: 

𝑎 =
(𝑟𝑎+𝑟𝑝)

2
    𝑜𝑟   𝑎 =  − µ/2ɛ                                                                                           (1) 

Where ra: is the radius to apogee (km), rp: is the radius to perigee (km)[20,15], a: is the semi-

major axis (km),  ɛ:is specific mechanical energy (km2/s2), and µ is the central body's 

gravitational parameter (km3 /s2 ).  

The value of the semi-major axis  varies depending on the shape of the orbit or the 

eccentricity of the orbit [18]. 

The second orbital element is eccentricity (e). It is the relationship between the two foci's 

distance and the major axis' length [19]. ; 

𝑒 =
ra−𝑟𝑝

𝑟𝑎+𝑟𝑝
                                                                                                                              (2) 

ra: is the radius to apogee (km) and it’s equal a (1+e) and 

 rp: is the radius to perigee (km) and it’s equal a (1-e). 

 

     The shape of the orbit depends on the value of the eccentricity. The third orbital element is 

inclination (i), it is the angular distance, expressed in degrees, between the orbital plane and 

the plane of reference, which is often the ecliptic or the planet's equator. It is one of the six 

orbital parameters that characterize the form and direction of a celestial orbit. The fourth 

element is the longitude of the ascending node (Ω). It is the angle between the node direction 

and the vernal equinox direction on the reference plane. The other orbital element is the 

argument of the perihelion (ω)it is the angle between the node direction and the perigee 

direction on the orbit plane [20]. 

The last element of the orbit is the time of perigee or the mean anomaly (M) 

𝑀 = 𝑛 ∗ (𝑡 − 𝑡𝑝)                                                                                                                 (3) 

Where M: is the mean anomaly in radian, n: is the mean motion in rad/sec, t: is epoch time, 

and 𝑡𝑝: is the time at perigee.  

The eccentric anomaly calculated by Kepler’s equation of an ellipse, solved by the Newton-

Rafson method [21]: 

𝐸 =  𝑀 +  𝑒 𝑠𝑖𝑛 𝐸                                                                                                                             (4) 
E: Eccentric anomaly in radian  

e: Eccentricity of orbit.                                               

The orbit of a satellite is determined by the state vector of the satellite. This vector is 

described based on six parameters in the equatorial plane, velocity vectors (vx, vy, vz) and 

position vectors (x, y, z). The eccentric anomaly or true anomaly is needed to calculate the  

following [[22],[12]]. 

𝑥` = 𝑎(cos(𝐸) − 𝑒)                                                                                                             (5) 
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𝑦` = 𝑎√1 − 𝑒2 sin(𝐸)                                                                                                         (6) 

𝑧` = 0                                                                                                                                   (7) 

𝑣`𝑥 = − √(µₘ/𝑝) sin(𝑡𝑎)2
                                                                                                  (8) 

  𝑣`𝑦 = √(µₘ/𝑝)(𝑒 + cos (𝑡𝑎))2
                                                                                              

(9) 

Where: 

                        tan (
𝑡𝑎

2
) = √(1 + 𝑒)/(1 − 𝑒) ∗ tan (

𝐸

2
)                            

𝑣`𝑧 = 0                                                                                                                              (10) 

𝑡𝑎 is a true anomaly and the mass gravity constant of the Moon µm=4904.8695 km3/s2 at 

distance in km, mass in kg, and time in second [22] 

𝑝 = 𝑎(1 − 𝑒2)                                                                                                                   (11) 

  The period, which is determined by the third Kepler's law, is the amount of time, that a 

satellite takes to complete one orbit [21]. 

𝑇2 =
4𝜋

µ
𝑎3                                                                                                                          (12) 

  Convert the coordinates of the satellite's position from the plane of its orbit to the plane of 

the equator by using the Gauss matrix [23]. 

R=[
𝑃𝑥 𝑄𝑥 𝑊𝑥
𝑃𝑦 𝑄𝑦 𝑊𝑦
𝑃𝑧 𝑄𝑧 𝑊𝑧

]                                                                                                           (13) 

𝑃𝑥 =  𝑐𝑜𝑠𝜔 𝑐𝑜𝑠𝛺 −  𝑠𝑖𝑛𝜔 𝑠𝑖𝑛𝛺 𝑐𝑜𝑠 𝑖                                                                       
𝑃𝑦 =  𝑐𝑜𝑠𝜔 𝑠𝑖𝑛𝛺 + 𝑠𝑖𝑛𝜔 𝑐𝑜𝑠𝛺 𝑐𝑜𝑠 𝑖                                                  
𝑃𝑧 =  𝑠𝑖𝑛𝜔 𝑠𝑖𝑛 𝑖                                                                                                                       
𝑄𝑥 =  −𝑠𝑖𝑛𝜔 𝑐𝑜𝑠𝛺 − 𝑐𝑜𝑠𝜔 𝑠𝑖𝑛𝛺 𝑐𝑜𝑠 𝑖                                                  
𝑄𝑦 = − 𝑠𝑖𝑛𝜔 𝑠𝑖𝑛𝛺 +  𝑐𝑜𝑠𝜔𝑐𝑜𝑠𝛺𝑐𝑜𝑠 𝑖                                                 
𝑄𝑧 = 𝑐𝑜𝑠 𝜔 𝑠𝑖𝑛 𝑖                                                                                                                         
𝑊𝑥 =  𝑠𝑖𝑛Ω 𝑠𝑖𝑛 𝑖                                                                                                                         

𝑊𝑦 = − 𝑐𝑜𝑠Ω 𝑠𝑖𝑛 𝑖                                                                            
𝑊𝑧 =  𝑐𝑜𝑠 𝑖                                                                                                                       (14) 

[
𝑥
𝑦
𝑧

] = R−1 [
x`
𝑦`
𝑧`

]       ;      [
𝑣𝑥
𝑣𝑦
𝑣𝑧

] = 𝑅−1 [
𝑣`𝑥
𝑣`𝑦
𝑣`𝑧

]                                                                        (15) 

The equation of motion without perturbations can be written as: 

       ȑ = µ(
ṝ

𝑟3)                                                                                                                     (16) 

To add the perturbations’ effects on the orbit, the equatorial coordinate of the Earth from the 

Moon center must be calculated at any moment across the time. 

  The Calculation of the Earth’s position from the Moon as references [24,25]. The obliquity 

angle of the Earth's orbit with the equatorial plane was calculated using: 

     є =  23.452294 −  0.0130125 ∗  𝑇 −  0.00000164 ∗ 𝑇2 −  0.000000503 ∗  𝑇3  +
0.00256 ∗ 𝑐𝑜𝑠(Ω)                                                                                                              (17) 

The input date and time (year, month, day, hour, min, sec), and the date and time used are 

(2023,9,15,0,0,0) to determine the Julian date (J.D.) as in reference [24,25]. 

Next, compute the Julian century starting on January 1, 1900 

T = ( JD – 2415020 ) / 36525                                                                                         (18-a) 

    The following formula can be applied after the year 2000 

T2 = ( JD - 2451545 ) / 36525                                                                                        (18-b) 

 

     The ecliptic geocentric coordinate of the Moon or the Moon's ecliptic longitude and 

latitude can be calculated at that moment by utilizing these values: 
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𝜆𝑚 =  218.32 + 481267.883T2 + 6.29 sin (134.9 +  477198.85T2 ) −
1.27  sin (259.2 − 413335.38 ) + 0.66 sin (235.7 +  890534.23 ) +  0.21 sin (269.9 +
 954397.7 ) −  0.19 sin (357.5 +  35999.05 ) −  0.11 sin (186.6 +
 966404.05 T2)                                                                                                                                  ( 19)                                                                                    

       𝛽𝑚 = 5.13 𝑠𝑖𝑛(93.3 + 483202.03𝑇2) + 0.280606 𝑠𝑖𝑛(228.2 + 960400.87 𝑇2) 
 −0.28 ∗ 𝑠𝑖𝑛(318.3 + 6003.18 𝑇2) − 0.17 ∗ 𝑠𝑖𝑛(217.6 − 407332.2 𝑇2)                         (20)                                            

The following formula can be used to get the Moon's distance from the Earth's center  

 𝑅𝑚 =  385000 −  20905 𝑐𝑜𝑠 𝑀 −  3699 𝑐𝑜𝑠 (2𝐷 −  𝑀)  −  2956 𝑐𝑜𝑠 (2𝐷) −
 570 𝑐𝑜𝑠 (2𝑀)  +  246 𝑐𝑜𝑠 (2𝑀 −  2𝐷) − 171 ∗ 𝑐𝑜𝑠( 𝑀 + 2𝐷) −  152 𝑐𝑜𝑠 (𝑀 +  𝑀′ −
 2𝐷) (𝑘𝑚)                 (21) 
M: mean anomaly of the Moon 

M': mean anomaly of the Sun 

D: The difference between the Sun's and the Moon's mean longitudes  

𝑀 =  134°. 96292 +  477198°. 86753 𝑇  
𝑀′ =  358°. 42543 +  35999°. 04944 𝑇 
𝐷 =  297°. 85027 +  445267°. 11135 𝑇 

The equation of perturbed motion of the satellite on the orbit around the Moon is  

ȑ = µₘ(ṝ𝑙𝑟3) + 𝑎3_𝑏𝑜𝑑𝑦                                                                                                  (22) 

This equation was solved by integration using the 4th order Rang-Kotta method [22]. To get 

the state vector in the equatorial plane (x,y,z,vx,vy,vz) and the momentum components 

(hx,hy,hz), the following formula can be used to determine the perturbing acceleration brought 

on by a third body's gravitational attraction [2]: 

  Form can be expressed as acceleration due to forces of third-body as: 

𝑎d= −(𝐺(𝑚ₑ + 𝑚ₘ)/ 𝑟³м) ∗ 𝑟м + 𝐺𝑚₃(
𝒓dm

r3dm
−

𝐫d

r3d
)                                                                                  (23) 

                                    

                                                    Satellite 

 

                                              rM                     rdm  

 

 

 

 

                                     Moon                         rd                         Third body 

 

Fig ure1: Definitions of third body attraction vectors. 

 

3. The program algorithm: 

1- Input the information hp=(100-1000)km, e1=0.1, e2=0.05, the Moon mean radius (R 

m)=1737.4, pi=3.141592653589793 ,µMoon=4904.8695, µearth=398602, Ω=20 ; ω=80, 

i=28.48°; the values of Ω and ω assumed but the used value of i equal the inclination of the 

Moon at used date and time 

2- Use the formula to determine the semi-major axis without perturbation a=rp/(1-e). 

3- The program begins on the date and time (2023/9/15). 

4- Calculate the position and velocity component of the satellite by solving Kepler's equation. 

5- Calculate the position values of the Earth from the Moon. xE= -xm  , yE=-ym , zE=zm 

6- Calculate the satellite state vectors with perturbation by solving the equation of 

motion using the 4th order Range-Kotta integration. 

7- Calculate angular momentum, semi-major axis, eccentricity longitude of ascending node, 

eccentric anomaly, true anomaly, and the velocity with perturbation. 
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8- Use the next time to recalculate all steps 4 to 8. 

9- Use other height or other eccentricity and recalculate all the above steps. 

 

4-The Results and discussion: 

     All cases were calculated and plotted, but not all figures were used in this study due to 

similar behaviors in some cases. 

Case 1: The orbital elements variation with i=28.48°, e=0.05, and through 1000 period on the 

orbits around the Moon, due to the effect of the Earth’s attraction.  

  
Figure 2 : The orbital elements variation at height=100km. 

 

 
Figure 3 :The orbital elements variation at height=200km 
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                                         Figure 4  : The orbital elements variation at height=600km  

 

 
Figure 5 : The orbital elements variation at height=1000km. 

 

Case (2): The orbital variation through the 1000 period with i=28.48°, eccentricity=0.1 on the 

orbits around the Moon, due to effect of the Earth's attraction.   
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Figure 6 : Shows the orbital variation at height=100km 

 

 
Figure 7 :Shows the orbital variation at height=1000km 

Case 1: e=0.05 

 

Table 1: The orbital variation through the 1000 period with the Earth’s gravity at 

eccentricity=0.05  

h(km) 100 200 400 600 800 1000 

Δⅰ(deg) 0.01 0.02 0.009 0.03 0.005 0.002 

ΔΩ(deg) 0.011 0.01 0.02 0.1 0.015 0.02 

Δω(deg) 0.50 0.50 0.48 0.47 0.47 0.48 

Δe 0.04 0.05 0.02 0.04 0.04 0.001 

Δa(m) 1999 2000 2300 2499 2250 2900 

Δr(m) 1501 1600 2000 2300 2100 2100 

ΔTp(sec) 1.3*10^4 1.5*10^4 1.8*10^4 1.9*10^4 2.3*10^4 2.6*10^4 

Case 2: e=0.1 
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 Table 2: The orbital variation through 1000 periods with the Earth’s gravity at 

eccentricity=0.1 

h(km) 100 200 400 600 800 1000 

Δⅰ(deg) 0.04 0.025 0.046 0.006 0.039 0.041 

ΔΩ(deg) 0.022 0.014 0.01 0.007 0.04 0.01 

Δω(deg) 15.42 14.76 16.097 14.855 15.691 17.179 

Δe 0.06 0.053 0.087 0.071 0.038 0.11 

Δa(m) 1900 2139 2265 2557 2858 2898 

Δr(m) 1500 1646 1899 1900 2250 2100 

ΔTp(sec) 1.9*10^4 1.62*10^4 1.8*10^4 2*10^4 2.6*10^4 2.7*10^4 

 

     In figure (2), the inclination variation increases throughout seven big periods; all seven 

have five small periods. The scalar variation has made a linear increase from 28.48 to 28.5 

degrees. The longitude of ascending node variation has slightly decreased. This decrease was 

with seven periods including five small periods through 1000 periods (rotation) of the 

satellite. The reason for the difference between the amount of variation of inclination and 

(long) of ascending nodes is due to the change in the location and the distance of the Earth in 

relation to the satellite. The distance from the Moon to the Earth changes according to the 

changes taking place in time and date. Semi-major axis increases curvature from 2000 to 

4300 km throughout 1000 periods. This means that the satellite orbit and its period will 

increase. The eccentricity’s increase vibrated with the range of period increase too.  The 

argument of perigee depends on all orbital elements. Semi-major axis, the distance between 

the satellite and the Moon, ranges from 2000 to 3500 km. This Semi-major axis has a wave 

increase variation of about 10 periods through 1000 periods. The time of period (Tp)  

depends on semi-major axis increase curvature ranging from 0.8*10^4 to 2.1*10^4 sec 

according to the 3rd  Kepler’s law. True anomaly increased throughout 1000 period and 

changed from (0 to 360) degree due to perturbation. The Earth’s acceleration amount is not 

constant and it changes through 1000 periods due to the gravity of the Earth depending on the 

Moon's position from the Earth. 

At 200km, as shown in Figure (3), the same beaver variation of all elements slightly 

increased in variation values. 

 

     In other heights, as shown in Figure (4), it was found that the increase in height increases 

the variation values because the period of satellite increased. The increase in variation and 

acceleration of the Earth’s period will result in the same variation for all other elements along 

with an increase in variation value, which means it shows the same behaviors. In Figure (5), 

at 1000 km, the orbital elements have the same behavior described in Figures (2,3,4), but at 

this height, the final values are greater, whereas the maximum value of the semi-major axis at 

100 km is 3700 km (Figure 2), while at 600 km the final value of the semi-major axis is 4700 

km (Figure 4). The final value at 1000 km is 5800 km. This implies that at a height of 1000 

km, the orbit becomes less stable. That is, the satellite in this orbit is prone to escape because 

increases the Earth's gravity with respect to the Moon's gravity.   

 

     In Figure (6), at eccentricity 0.1 this leads to an increase in the perigee height, which 

increases the gravitational effect of the third body (the Earth) relative to the gravitational 

effect of the Moon, so the orbital elements have the same behavior but the amount change 

will increase because the satellite is at apogee position, as shown in Figure (7). This means 

that the Earth's gravity will increase. Therefore, the Earth's gravity effect is greater on the 

satellite. 
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Other heights have the same behavior for all elements, but the variations are more because 

the effect of the Earth's attraction is more near the apogee, which is higher at e=0.1 .  

Tables (1, 2) show the orbital elements, distance, and period variations for all studied orbits. 

These orbits have different perigee heights, for e=0.05 Table (1) and for e=0.1, Table (2).    

In this research, it is found that the orbital elements are changed by the Earth’s attraction for 

all orbits around the Moon. The best height of the lower orbit is 100 km when the eccentricity 

is 0.05.  

 

5. Conclusions: 

 1. The satellite's orbit around the Moon is highly influenced by the gravity of the Earth, 

especially the semi-major axis after many periods. The effects are not constant in relation to 

date. This is due to the change in distance between the Earth and the Moon as well as the 

variation of the Moon’s inclination angle. 

 2. The Earth’s gravity perturbation on the orbit around the Moon has a very slight effect at 

the higher orbit. 

 3. The Earth's gravity effect on the orbit around the Moon has a greater effect when 

eccentricity increases. 

4. The Earth's gravity perturbation on the orbit around the Moon is affected by the inclination 

of the orbit’s change. 

5. The best height of the lower orbit around the Moon is 100 km when the eccentricity is 0.05 

and the inclination is 28.45 degrees. 
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