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Abstract

This article examines how the rotation variable and other variables affect the
Jeffrey fluid's peristaltic flow through a porous medium in an asymmetric channel
under the influence of an electric field, foundational equations following the Jeffrey
fluid model were used. The flow analysis is based on the long-wavelength
assumption and low Reynolds number assumptions, and the governing partial
differential equations of the system were solved using the approximate analytical
perturbation method. Mathematical expressions are used to represent the pressure
gradient, axial velocity distributions, and stream function, with the most influential
parameters identified as velocity, pressure, and stream function. Examples of these
parameters include the Helmholtz-Smoluchowski number, Darcy number, and
rotation element. It was observed that some parameters lead to an increase in
velocity, while others cause a decrease, and the same applies to pressure. Graphs are
used to represent velocity, pressure gradient, and their effect on the parameters
influencing the equations of motion. Using a set of numbers to produce numerical
results, the impact of different parameters is explored, as illustrated in the graphs.
The MATHEMATICA software was used to achieve these results.
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1. Introduction

Via a process called peristaltic transport, fluid is transported by means of wave trains that
go through the channel. Chyme moving through the digestive tract, ovum being transferred,
urine being delivered through the ureter, lymph traveling through the lymphatic arteries,
blood passing through the bile duct, and food being swallowed. This phenomenon has
numerous applications in body structure and biomedical engineering, including other real-
world usage. First of all, A. M. Abd-Alla and S. M. Abo-Dahab [1], and R. S. Kareem and A.
M. Abduhadi [2] explored two different scenarios to investigate peristaltic transport: one
focused on peristaltic flow in asymmetric channel and the other one study the peristaltic flow
in inclined channel. Z. A. Jaafari, L. Hummady and M.H. Thaw [3], S. Akram and S.
Nadeem [4], A. W. Salih [5], and D. Gamachu and W. Ibrahim [6] looked into the peristaltic
transport process, which has drawn interest from many scholars. Furthermore, many
industrial and physiological processes are more familiar with non-Newtonian fluids than with
viscous liquids [7-10]. The Jeffrey liquid is the most fundamental linear model among these
materials that deals with the non-Newtonian fluid properties for which analytical or precise
solutions are theoretically possible. Geo-fluid dynamics, biomechanics, and engineering are
three fields in which fluid flow through porous media is particularly relevant. In the human
physiological systems, these fluxes are observed in the kidneys, lungs, small blood vessels,
cartilage, bones, etc. One might imagine the human body's tissues as porous, pliable material
[11], [12] and [13]. To function, they need to be able to transfer blood and other nutrients.
Scientists have simulated the flow of Newtonian and non-Newtonian fluids across porous
surfaces to detect a variety of disorders, including tumor growth. Several recent the
phenomenon of rotation has multiple applications in geophysical and cosmic fluxes. In
addition, rotation helps us understand the behavior of ocean circulation and the evolution of
galaxies. Investigations of the orientation of nanoparticles in fluid systems are also conducted
by rotating diffusion. In rotational spectroscopy, rotation is also utilized to quantify the
energy of transitions between quantized rotational states of gas phase molecules. One flow
scenario where the peristalsis of fluid in the presence of rotation is particularly significant is
the movement of physiological fluids, such as blood and saline water [14], [15] and [16]. The
movement of biofluid in the ureters, arterioles, and intestines is clearly aided by the rotation
field. In order to analyze the impacts, the rotation in the electric field in an asymmetric
porous media channel a mathematical model must be developed. There are five sections in
this study. In order to facilitate the governing equations with the assumption of a very long
wavelength or a very small Reynolds number in order to solve the problem, the governing
equations with the boundary conditions are formed and the dimensionless transformations are
displayed in the first part. The dimensionless equations are analytically solved using the
perturbation method in the following section, providing the Jeffrey fluid's electric
distribution, velocity profile, pressure gradient, and stream function equations. The third
section describes the effects of altering the fourth section solved the equation. The final
section provides a quick summary of the three main variables (Jeffery parameter, Darcy
number, and electric parameter) that affect the fluid's velocity [17], [18] and S. R. Mahmoud,
[19] conducted research on the impact of rotation and peristaltic motion of Jeffrey fluid in a
porous medium under the influence of a magnetic field. Our study focuses on the effect of an
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electric field on the fluid due to its significance in various fields, such as its importance in
neural signaling for cerebrospinal fluid.The objective of this research is to examine the
peristalsis in transport of Jeffrey fluid when there is rotation, porous medium, electric field,
The velocity of the fluid increases with an increase in the electrical coefficient, and this
benefits us in real-life applications, for example in electrohydraulic therapy electric fields are
used to

direct the flow of medical fluids in the body to stimulate healing or improve the distribution
of medications.

2. Problem mathematical description

The peristaltic motion is incompressible motion to Jeffrey fluid with width (d'+ d) in a
two-dimensional asymmetric channel. The endless sinewave that flows and travels along the
walls of the channel, what is the forward motion (c) that produces the flow. The geometric
definition of the wall structure is:

hy(x,t) = d — a;sin[(x — cf)]  upper wall. (1)
h_z(i, E) = —d' — a,sin[(X — ct) + 0] lower wall. @)

We h; (X,t) andh,(X.t) are the lower and upper walls, respectively, where (d, d")
represents the channel's width, (a,,a, ) waves are amplified, (1) is wave length, (c) is the
velocity of the wave, and (¢) the speed of the waves (0 < ¢ < m), then ¢ = 0, is an out- of -
phase channel that is symmetric, also ¢ = m waves are in phase, and of square-shaped
coordinates is selected to that ( X - axis) pointing in the wave's direction, and (y- axis) is
perpendicular to X, with  representing the time.

a;? +a,? +2aja,cosi(@) < (d'+ d)?

Figure 1: Coordinates of Asymmetric Cartesian Dimensional Channels.

It is also presumed that the walls do not move longitudinally. This assumption restricts the
deformation capacity of the walls; it does not imply that the channel remains rigid during
longitudinal motions.

3. Basic equation
The Cauchy stress tensor S for a fluid that obeys the Jeffery model [20], is provided below

—_— 1 . .o
y = (1+41) (Y +2;Y) (3)

Y =V + VIt 4)
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¥ =4 (v (5)

= 00 av
V.V = X t5- (6)"
Where Y is the shear rat, A, is the retardation time, A; is the ratio relaxation time and (Y)

represent differential of ( Y). (VV) Given the Cartesian coordinate system (x, y) and (VV_
)T, is the fluid velocity. The fluid velocity in the Cartesian coordinates system (X, y)

4. The governing equation

Three pair nonlinear partial differentials of continuity and momentum, expressed in an
affixed frame (X, Y), control the flow with the laboratory serving as a point of reference, [21]
the following equations govern flow:

The equation for continuity.

ou | ov

S+ =0 (10)
In X-axis

9, =0 S0 \n _ oV _ _9p , 8 _ 9 -5

p(a—f+U&+Va—y)U— pa (Qu +2%]) = 22+ 3255 + 55y + Pk
20 (11)

In Y-axis

3 =0  =0\o _ 90\ _ 9,0 . 0 _ | o g
p(a—E+U£+Va—y)V— p0 (v +257) = 4SSyt Sy BB — 2V, (12)

The Famous Poisson Equation

pc = —€ V?0

@ =electric potential

__ sinh(y+h)k
B(y) = sinh(2hk) (13)

Where the (p), (@), (), 7), (D), (W), (k), (€E,), (Q) are the fluid density, axial velocity,
transverse velocity, transverse coordinate, pressure, dynamic viscosity, permeability
parameter, constant electric field, and rotation.

In the laboratory frame (X, ), the flow is unstable; in the wave frame (X, Y), a coordinate
system moving at wave speed (c) experiences steady motion. The subsequent phrases

X=%X—-ct, Y=, UXY) =0, —c VXY)=v(E,7), TXY) =T(xy,t), P(X,Y)
=Py (14)
wherever ( U, V') indicate the speed p is a symbol for the pressure inside the wave frame.
Now, we swap out Equation (14) into formulas (1) (2) and (7-12) and add the non —
dimensional variables to the final equation to normalize it.

1_ 1_

1 A
X=Xx,y=—y,u=; ,V=§V,t_xt, 8=X, Re = , D =§’Sxx ES)—Q—(
_d _ _d _ 1 _ —Exee 1
Sxy we Xy Syy Esyya hl Ehla Uhs= B h2 - tha (15)
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where the wave number is (), the Darcy number is (Da), the Helmholtz-Smoluchowski
velocity is (Uhs), and the Reynold number is (Re). The following non-dimensional variables
have been used to normalize the resultant equation after Equation (15) have been replaced
into Equations (10), (11) and (12)

ou  Ou au) pd2Q?  d%c _ov

at dx dy il “ i at
op 0S,x 0Syxy eE.e 9%0 %0
= —— d 2 — Uhs —
zax + &d % + 3y + 68 i O Uhs 3y7
d
op pQid? 0Syxy L 0%p
x  u dy > ay?
1
— D—au (17)
ov  dv. pd? 208%Re /0u
R883(E+U&+Va—y —TSZQZV— B\ (a)
_dp _, 0 0 5 0’0 0%p
_—a—y+6 &TXy-i_Sa_yTyy-l_UhS(S ﬁ-i‘a—yz
1
2
— — 1
vo <Da) (18)
o _ (19)

ay
The Equation (8) becomes:

1 c du cou\ [codu
S = 5 [m T4 ((aa) (m))l-

(20)
The Equation (12) becomes:
O _p0& ¢ (0w)_ 0% 1
ax  n 1+ (ayz) Uhs 9y Dpat
21)
Let a= &= __pa?a? o)
o= e @2)
By derivation Equation (21) respect to (y)
gau N 3u Uh 03¢ 1 ou
ay ¢ dy3 s dy3® Dady
= 0. (23)
The stream function () is connected with the velocity components by the relations
_ 9y _ 9y
Letu = % and vV=— (24)
1) 92¥ atv 2% _
(E_E)W-HXW_U}ISE_O' (25)
Substitution Equation (24) in continuity Equation
2y 9%y
_9 . (26)

dxdy  0xdy -
The wave frame's dimensionless boundary conditions are:
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-F oy
q;:;,a—yz—laty:hl, ¢:7,a_y:_1aty:h2 (27)

5. Resolution of the issue

With all of the arbitrary parameters, an accurate result is unattainable. To obtain the
solution, we utilize the perturbation approach. We then discuss the solution to the
disturbance.

¥ =+ af; +0(c?)
P= P0+(XP1 +O((X2)

F=TFy+ aF; + 0(a?). (28)
Substitute the terms Equation (28) into Equation (25) together with the boundary conditions
Equation (27) (6 < 1). The following system of equations is produced by equating the
coefficients of equivalent powers of (o), where the higher order terms involving the power of
0 are smaller and hence unimportant.

5.1 Order zero system
In the zeroth order system, we obtain: when the terms of order (o) are small

1

ELIJOyy — Uhs (Dyyy " Da Woyy =0 (29)
Fo oy Fo Oy

¢0=7°,0—;=—1aty=h1 and ¢o=—70»a—yo=—1at}’:h2-

5.2 Order first system

fq}lyy; lI;‘l’pyyyy = 0. . (30)

l|11=?1,6—yl=—1aty=h1 andtplz—gl,a—ylz—latyth

U =1y +ay;. G

6. The findings and discussion

The primary focus of this study is how fluid flow in a porous medium is affected by Darcy
number (Da), (Uhs) Helmholtz-smoluchowsk, (o) parameter of Jeffrey fluid and other
parameters in the presence of an electric field on the pressure( P) and velocity curves (U) and
the stream function (y). Even studied (M. Kothandapani 2008) the same effects in the
presence of magnetic fields, our study it looks at the impact of an electric field, which allows
us to learn more about the relevant physical processes. We intend to compare the results with
those of previous studies and provide more insight into how different parameters impact flow
behavior in these complex systems.

7. Pressure gradient dp/dx:

The Figures (2 — 8) are portrayed to analyze the various vital parameters on pressure
gradient (Da,Q, uhs, c,p,a, 1 ,) where the dp/dx refer to the change in axial pressure
gradient across the channel
. It is clear from Figures (2), (5), and (6) that as the Darcy number (Da), rotation rate
(Q2), and Jeffrey fluid parameter (a) increase, so does the pressure gradient. The effect
becomes more noticeable at increasing (Da) values. Greater permeability is indicated by a
bigger Darcy number, which makes it easier for fluid to flow through porous material,
lowering flow resistance and enhancing the pressure gradient. Centrifugal forces intensify
this gradient as a result of rotation, particularly in situations where there is little flow
resistance because of high permeability. The elastic properties of the fluid are reflected in the
Jeffrey fluid parameter (o). The fluid's elasticity increases with Jeffrey fluid parameter,
improving its sensitivity to rotating forces and raising the pressure gradient.
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e Figure (3) illustrates how the pressure gradient decreases as the Helmholtz-Smoluchowski
value (Uhs) increases. This is because of the fluid's electrokinetic effects, which reduce the
pressure needed to keep the fluid moving by enhancing electroosmotic flow with increasing
Uhs values. The pressure gradient is countered by electrokinetic forces, which less strength.

e In Figures (4) and (7) steady pressure gradient is produced by increases in viscosity (L)
and density (p), as seen Density has an impact on the fluid's inertia, but viscosity raises the
internal resistance to flow. But when both variables increase in proportion, they counteract
one another and keep the pressure gradient constant. Because viscosity and density affect
resistive and driving forces in tandem, they can balance out variations to maintain a constant
pressure gradient under a range of circumstances.

8. Stream function(y)

The changing values of stream function is reflects the variation to changing the values of
(Da, Q, Uhs, ¢, p,a, 1t ),
e In Figures (8), (9), and (10), the factors Da (Darcy number), Q (rotational parameter), and
p (density) exhibit beneficial impacts on fluid dynamics. These parameters improve inertial
contributions, raise centrifugal forces, and improve permeability. The fluid's velocity field is
thus represented by the overall stream function, which tends to grow with increasing values
of Da, Q, and p. Higher stream function values are a result of increased fluid motion brought
on by increased centrifugal forces and inertial contributions, as well as enhanced
permeability, which permits more fluid to pass through the porous material.
e In Figures (11), (12), and (13) illustrate the effects of a ( parameter of Jeffrey fluid), c
(slip coefficient), and Uhs (electrokinetic parameter). These parameters make the stream
function equal. The balance between enhancing forces (e.g., viscoelastic or electrokinetic
effects) and resistive forces (e.g., slip or drag at the boundaries) determines the overall impact
on the stream function. Depending on the specific system configuration, these factors can
cause the stream function to increase, decrease, or remain constant. For instance, boundary
slip may reduce resistance to flow, while electrokinetic forces can enhance or inhibit fluid
motion depending on the charge distribution and fluid properties. Thus, the combined effects
of these parameters result in non-uniform and complex behaviour in the stream function.

9. Velocity distribution (U)
The fluctuating value of u indicates how the axial velocity across the channel varies. The
impact of various (Da, Q, Uhs, c, p, a, 1) values

e In Figures (14), (15), (16), and (19), the velocity distribution increases, as a result of
increases in the Helmholtz-Smoluchowski value (Uhs), viscosity (i), rotation rate (€2), and
Darcy number (Da). The effect of Uhs is the most notable. Higher permeability, which lowers
flow resistance and increases velocity, is indicated by an increase in Da. Q increases velocity
by introducing centrifugal forces that create secondary flows, but its impact is smaller than
that of Uhs. Although viscosity (n) typically opposes flow, it occasionally aids in stabilizing
and dispersing velocity equally, particularly when electric forces are present.

o In Figures (17) and (18), more balanced increase in velocity is seen where an increase
in the slip parameter (c) and the Jeffrey fluid parameter (o) results. A greater a increases
elasticity, enabling the fluid to react to applied forces faster and producing a smoother
distribution of velocity. Concurrently, ¢ lessens boundary drag, improving fluid flow and
promoting a more even distribution of velocity throughout the domain
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ap

Figure 2: Variation in pressure for varying
(Da) when Da=2, Da=4, Da=6,

a=0.5, n=0.5,c=2, p=0.1, 2=0. 1, Uhs =
3.

Figure 3: Variation in pressure for varying
(Uhs) when Uhs=2, Uhs=4, Uhs=6 Da=1.5,
0=0. 5, Q=0.1, c=2, u=0.5, p=0.1.

ap

Figure 4 : Variation in pressure for varying
(n) when p=0.5, p=0.7, p=0.9, c=2, p=0.1,
Q=0. 1, Uhs=3, Da=1.5.

Figure 5 : Variation in pressure for varying
(a) when, 0=0.5, 0=0.7, 0=0.9 Da=1.5,
p=0.5, c=2, p=0.1 Q=0.1, Uhs=3.

412



Abied and Hummady Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp.: 405-418

iap
ap

Figure (6): Variation in pressure for varying | Figure (7): Variation in pressure for
(QQ)when Q=0.2, Oe0.4, Q=0.6 o =0.% c=2, varying (p) when, p=0.1, p=0.3, p=0.5,
p=0.1, p=0.5, Uhs=3, Da=1.5. u=0.5, Da=1.5, u=0.5, c=2, Q=0.1, Uhs=3.

a

Figure 8 : Stream function variation for different of (Da) when Da=2, Da=4, Da=6, a =0.5,
u=0.5, c=2, p=0.1, Da=0. 1, Uhs=3.

0.5r

0.0}g

-1.0L /A: S ! i -1.0H

a

Figure 9 : Stream function variation for different of () when Q=0.2, Q=0.4, Q=0.6, a. =0.5,
u=0.5, c=2, p=0.1, Da=0. 1, Uhs=3.
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0.5F]

X C

Figure 10 : Stream function variation for different of (p) when p=0.1 p=0.3, p=0.5, a =0.5,
p=0.5, c=2, Q=0.1, Da=0. 1, Uhs=3.

a

Figure 11 : Stream function variation for different (c), when ¢=2, c=4, ¢=6, p=0.1 a =0.5,
u=0. 5, Q=0.1, Da=0.1, Uhs=3

Il . 1 1 I
x a -4 -2 0 2 4

b X

Figure 12: Stream function variation for different (o), when 0=0.5, 0=0.7, 0=0.9, p=0.1 ¢ =2,
p=0. 5, Q=0.1, Da=0. 1, Uhs=3.
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A
0.5 /

-4

-2 0 2 4

C

Figure 13 : Stream function variation for different Uhs when Uhs=3, Uhs=4,Uhs=5, a=0.

p=0.1, ¢ =2, p=0. 5, Q=0.1, Da=0.1.

5,

092

-0.94

-096r

Figure 14 : Velocity variation for different
of (Da)when Da=2, Da=4, Da=6, Uhs=1. 5,
p=0.1, Q=0.1,\(¢=2. p=0"1 , p=0. 5

Figure 15 : Velocity variation for different
of (Q) when Q=0.1, Q=0.3, Q=0.5, a=0. 2,
Da=3, ¢=0. 2, Uhs=3, n =0.1, c=2, p=0.1

Figure 16 : Velocity variation for different
of (a) when 0=0.5, 0=0.7, 0a=0.9, Da=1.3,
c=2, Q=1.5 n=2, Uhs=3, p=0.5, p =0.1,
p=0.1

Figure 17 : Velocity variation for different
of (¢) when ¢=2, c=4, c=6, Da=1.3, u =0.1,
c=0.2, n=2, Q=0.1, 0=0. 2. p=0.1, Uhs=3
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Figure 18 : Velocity variation for different | Figure 19 : Velocity variation for different
of (W) when p =0.1, p =0.3, p =0.5, Da=3, | of (Uhs) when Q=0.1, ¢=0.2 ,Uhs=2,
c=2, Q=0.1, 0=0. 2, Uhs=3, p=0.1 Uhs=3, Uhs=5, Da=1.5, 0=0. 2

10. Applications

Neural signaling and impulse transmission through cerebrospinal fluid are practical
examples of electrical effects in action in biological systems, where the electric field is
crucial for fostering neuronal connections and regulating fluid flow inside the central nervous
system.

Figure 20 : A schematic of the
transmission of neurological signals and
the fluid in cerebrospinal the brain

11. Conclusions

This study examines how rotation affect in electric field, on the peristaltic movement of a
Jeffery fluid through a porous medium within waves with different amplitudes and phases on
the non-uniform walls and a low Reynolds number create the asymmetric channel. The axial
velocity, pressure gradient, and stream function formulas are generated.
¢ A higher (Da) Darcy number value denotes greater permeability, which lowers the fluid's
resistance. As a result, less pressure gradient is needed to force the fluid through the medium
The pressure gradient curve shows a decline in slope as (Da) increases in response to this.
Stream Function and Velocity Curves: A higher (Da) results in a more uniform velocity
distribution and better fluid flow. As a result of the improved fluid flow and less internal
resistance, the stream function and velocity curves both rise as (Da) increases.
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e As (Q) rotational parameter rises, the fluid is subject to stronger centrifugal forces, which
necessitate a larger pressure gradient to offset and preserve flow. This is shown as an increase
in value with rising (Q) in the pressure gradient curve. 's impact on Stream Function and
Velocity Curves.

o A higher parameter of Jeffrey fluid (o), means that a greater pressure gradient is needed to
sustain fluid flow. The pressure gradient curve has an increasing slope as o increases,
reflecting this phenomenon. o's effect on stream function and velocity curves. A higher
viscosity causes a decrease in velocity with an increase in a, which results in a less even
distribution of velocity. As a result, the velocity either drops or stays constant, and the stream
function curve diminishes.

e A higher (Uhs) Helmholtz-Smoluchowski value raising (Uhs) reduces the resistance and
pressure gradient required for fluid flow. This is demonstrated by The pressure gradient,
which decreases in value as Uhs effect on velocity curves and stream function: Because of
the fluid's increased electroosmotic forces, raising (Uhs) significantly increases fluid flow
which in turn enhances stream function and velocity values.

e (u) The pressure gradient curve rises with increasing p, indicating that a bigger pressure
gradient is needed to maintain fluid flow when viscosity increases. The p's impact on the
Velocity Curve: Higher viscosity typically results in a more even distribution of velocity
across the medium and can even produce a reasonably constant velocity. This causes the
velocity curve to be more balanced, with the pressure increasing.

e By emphasizing the role electric fields play in fluid dynamics and neural transmission, it
highlights the interaction between neurons and fluid flow.
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