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Abstract  

     This article examines how the rotation variable and other variables affect the 

Jeffrey fluid's peristaltic flow through a porous medium in an asymmetric channel 

under the influence of an electric field, foundational equations following the Jeffrey 

fluid model were used. The flow analysis is based on the long-wavelength 

assumption and low Reynolds number assumptions, and the governing partial 

differential equations of the system were solved using the approximate analytical 

perturbation method. Mathematical expressions are used to represent the pressure 

gradient, axial velocity distributions, and stream function, with the most influential 

parameters identified as velocity, pressure, and stream function. Examples of these 

parameters include the Helmholtz-Smoluchowski number, Darcy number, and 

rotation element. It was observed that some parameters lead to an increase in 

velocity, while others cause a decrease, and the same applies to pressure. Graphs are 

used to represent velocity, pressure gradient, and their effect on the parameters 

influencing the equations of motion. Using a set of numbers to produce numerical 

results, the impact of different parameters is explored, as illustrated in the graphs. 

The MATHEMATICA software was used to achieve these results. 
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ي قناةغير متماثلة مع وسط   ئتأثير الدوران على التدفق التمعجي لسائل جيفري بوجود المجال الكهربا
 مسامي 

 

 لقاء زكي حمادي   , ملاذ صكبان عبد*

 قسم الرياضيات ،كلية العلوم ،جامعه بغداد،بغداد،العراق 
 

 الخلاصة   
يبحث هذا المقال في كيفية تأثير متغير الدوران والمتغيرات الأخرى على تدفق سائل جيفري الحركي عبر       

تتبع نموذج   تأسيسية  تم استخدام معادلات  تأثير مجال كهربائي،  قناة غير متماثلة تحت  وسط مسامي في  
سائل جيفري. يعتمد تحليل التدفق على فرضية الطول الموجي الطويل وافتراضات العدد رينولدز المنخفض،  
وتم حل المعادلات التفاضلية الجزئية الحاكمة للنظام باستخدام طريقة الاضطراب التقريبية التحليلية. تُستخدم  
تحديد   وتم  الانسياب،  ودالة  المحورية،  السرعة  وتوزيعات  الضغط،  تدرج  عن  تمثيلا   الرياضية   التعبيرات 

هيلمهولتز عدد  المعلمات  هذه  أمثلة  من  الانسياب.  ودالة  والضغط،  السرعة،  مثل  تأثيرًا  الأكثر  -المعلمات 
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المعلمات تؤدي إلى زيادة في السرعة   سمولوخوفسكي، وعدد دارسي، وعنصر الدوران، وقد لوحظ أن بعض 
للتعبير عن السرعة   البيانية  وأخرى تؤدي إلى انخفاضها، وينطبق نفس الأمر على الضغط. تُستخدم الرسوم 

وتأثيرهما على المعلمات المؤثرة في معادلات الحركة. باستخدام مجموعة من   وتدرج الضغط  ودالة الجريان 
الأعداد لإنتاج نتائج رقمية، يتم استكشاف تأثير مختلف المعلمات كما هو موضح بالرسم البياني. تم استخدام  

 .ائجلتحقيق هذه النت  MATHEMATICAالبرنامج الرياضي 
 

1. Introduction 

     Via a process called peristaltic transport, fluid is transported by means of wave trains that 

go through the channel. Chyme moving through the digestive tract, ovum being transferred, 

urine being delivered through the ureter, lymph traveling through the lymphatic arteries, 

blood passing through the bile duct, and food being swallowed.  This phenomenon has 

numerous applications in body structure and biomedical engineering, including other real-

world usage. First of all, A. M. Abd-Alla and S. M. Abo-Dahab [1], and R. S. Kareem and A. 

M. Abduhadi [2] explored two different scenarios to investigate peristaltic transport: one 

focused on peristaltic flow in asymmetric channel and the other one study the peristaltic flow 

in inclined channel.  Z. A. Jaafari, L. Hummady and M.H. Thaw  [3], S. Akram  and S. 

Nadeem [4], A. W. Salih [5], and D. Gamachu and W. Ibrahim   [6] looked into the peristaltic 

transport process, which has drawn interest from many scholars. Furthermore, many 

industrial and physiological processes are more familiar with non-Newtonian fluids than with 

viscous liquids [7-10]. The Jeffrey liquid is the most fundamental linear model among these 

materials that deals with the non-Newtonian fluid properties for which analytical or precise 

solutions are theoretically possible. Geo-fluid dynamics, biomechanics, and engineering are 

three fields in which fluid flow through porous media is particularly relevant. In the human 

physiological systems, these fluxes are observed in the kidneys, lungs, small blood vessels, 

cartilage, bones, etc. One might imagine the human body's tissues as porous, pliable material 

[11], [12] and [13]. To function, they need to be able to transfer blood and other nutrients. 

Scientists have simulated the flow of Newtonian and non-Newtonian fluids across porous 

surfaces to detect a variety of disorders, including tumor growth. Several recent the 

phenomenon of rotation has multiple applications in geophysical and cosmic fluxes. In 

addition, rotation helps us understand the behavior of ocean circulation and the evolution of 

galaxies. Investigations of the orientation of nanoparticles in fluid systems are also conducted 

by rotating diffusion. In rotational spectroscopy, rotation is also utilized to quantify the 

energy of transitions between quantized rotational states of gas phase molecules. One flow 

scenario where the peristalsis of fluid in the presence of rotation is particularly significant is 

the movement of physiological fluids, such as blood and saline water [14], [15] and [16]. The 

movement of biofluid in the ureters, arterioles, and intestines is clearly aided by the rotation 

field. In order to analyze the impacts, the rotation in the electric field in an asymmetric 

porous media channel a mathematical model must be developed. There are five sections in 

this study. In order to facilitate the governing equations with the assumption of a very long 

wavelength or a very small Reynolds number in order to solve the problem, the governing 

equations with the boundary conditions are formed and the dimensionless transformations are 

displayed in the first part. The dimensionless equations are analytically solved using the 

perturbation method in the following section, providing the Jeffrey fluid's electric 

distribution, velocity profile, pressure gradient, and stream function equations. The third 

section describes the effects of altering the fourth section solved the equation. The final 

section provides a quick summary of the three main variables (Jeffery parameter, Darcy 

number, and electric parameter) that affect the fluid's velocity [17], [18]  and S. R. Mahmoud, 

[19] conducted research on the impact of rotation and peristaltic motion of Jeffrey fluid in a 

porous medium under the influence of a magnetic field. Our study focuses on the effect of an 
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electric field on the fluid due to its significance in various fields, such as its importance in 

neural signaling for cerebrospinal fluid.The objective of this research is to examine the 

peristalsis in transport of Jeffrey fluid when there is rotation, porous medium, electric field, 

The velocity of the fluid increases with an increase in the electrical coefficient, and this 

benefits us in real-life applications, for example in electrohydraulic therapy electric fields are 

used to 

direct the flow of medical fluids in the body to stimulate healing or improve the distribution 

of medications. 

 

2. Problem mathematical description  

     The peristaltic motion is incompressible motion to Jeffrey fluid with width (d'+ d) in a 

two-dimensional asymmetric channel. The endless sinewave that flows and travels along the 

walls of the channel, what is the forward motion (c) that produces the flow. The geometric 

definition of the wall structure is: 

 

ℎ1(𝑥, 𝑡) = 𝑑 − 𝑎1𝑠𝑖𝑛[(𝑥 − 𝑐𝑡̅)]       upper wall.                                    (1) 

h2(x, t) = −d′ − a2sin[(x − ct)̅ + θ]  lower wall.    (2) 

  

     We  h1 (x̅, t)̅  and h2(x̅ ,t)̅ are the lower and  upper walls, respectively, where (d, d′) 

represents the channel's width, (𝑎1 , 𝑎2 ) waves are amplified, (λ) is wave length, (c) is the 

velocity of the wave, and (𝜙) the speed of the waves (0 ≤ 𝜙 ≤ π), then 𝜙 = 0, is an out- of -

phase channel that is symmetric, also 𝜙 = π waves are in phase, and of square-shaped 

coordinates is selected to that ( 𝑋̅ - axis) pointing in the wave's direction, and (𝛾̅- axis) is 

perpendicular to X̅, with  𝑡̅ representing the time. 

a1
2 + a2

2 + 2a1a2 cos i(∅) ≤  (d′ +  d) 2                                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Coordinates of Asymmetric Cartesian Dimensional Channels. 

 

     It is also presumed that the walls do not move longitudinally. This assumption restricts the 

deformation capacity of the walls; it does not imply that the channel remains rigid during 

longitudinal motions. 

 

3. Basic equation 

     The Cauchy stress tensor 𝑆̅ for a fluid that obeys the Jeffery model [20], is provided below 

𝑺𝒊𝒋
̅̅̅̅ =

𝟏

(𝟏+𝝀𝟏)
 (𝑌 +̇ λ2Y)̈                                                              (3) 

Y ̇̅ = ∇𝑉̅ + ∇𝑉̅⊥                                                                 (4) 
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Ÿ  =
𝜕𝑌̇̅

𝜕𝑋
+ (∇. 𝑉̅)𝑌̇̅                                                      (5) 

∇. V̅ =
∂U̅

∂X̅
+

∂V̅

∂Y̅
 .                                                      (6) 

Where 𝑌 ̇ is the shear rat, λ2 is the retardation time,  λ1   is the ratio relaxation time and (Y)̈   

represent differential of ( 𝑌)̇. (∇V̅) Given the Cartesian coordinate system (x, y) and     (∇V ̅ 

)^T, is the fluid velocity. The fluid velocity in the Cartesian coordinates system (x, y) 

  

𝑠̅x̅x̅ =
1

1+𝜆1
(2𝑢̅𝑥̅ + 𝜆2(2𝑢̅𝑥𝑥̅̅̅̅  + 2𝑢̅𝑥̅𝑣̅𝑦̅ )                                        (7) 

𝑆𝑥̅𝑦̅̅ ̅̅ =
1

1+𝜆1
((u̅𝑦̅ + 𝑣̅𝑥̅) + 𝜆2((𝑢̅𝑥̅ + 𝑣̅𝑦̅)(𝑢̅𝑦̅ + 𝑣̅𝑥̅))                                           (8) 

S̅yx̅̅̅̅ =
1

1+𝜆1
((u̅𝑦̅ + 𝑣̅𝑥̅) + 𝜆2((𝑢̅𝑥̅ + 𝑣̅𝑦̅)(𝑢̅𝑦̅ + 𝑣̅𝑥̅)).                                          (9) 

 

4. The governing equation 

     Three pair nonlinear partial differentials of continuity and momentum, expressed in an 

affixed frame (X, Y), control the flow with the laboratory serving as a point of reference, [21] 

the following equations govern flow:  

 

The equation for continuity. 
∂U̅

∂X̅
+

∂V̅

∂Y̅
= 0.                                                                                                                             (10) 

In X-axis 

ρ ( 
∂ 

∂t̅
+ U̅

∂ 

∂x̅
+ V̅

∂ 

∂y̅
) U̅ − ρΩ (Ωu̅ + 2

∂ V̅

∂t̅
) =  −

∂p̅

∂x̅
+

∂ 

∂x̅
s̅x̅x̅ +

∂ 

∂y̅
s̅xy̅ + p̅cEx −

μ0

k̅
U̅                                                                                               (11) 

               In Y-axis 

  ρ ( 
∂ 

∂t̅
+ U̅

∂ 

∂x̅
+ V̅

∂ 

∂y̅
) V̅ − ρΩ (Ωv̅ + 2

∂ U̅

∂t̅
) =  −

∂p̅

∂x̅
+

∂ 

∂x̅
s̅x̅y̅ +

∂ 

∂y̅
s̅yy̅ + p̅cEx −

μ0

k̅
V̅ .        (12) 

 

The Famous Poisson Equation 

               pc = −∈ ∇2∅̅ 

                ∅̅ =electric potential 

                ∅(y) =
sinh(y+h)k

sinh(2hk)
 .                                                                                                              (13) 

Where the (ρ) , (u̅) , (v̅) , (y ̅), ( p̅), ( μ), (k̅), (𝜖𝐸𝑥), (Ω) are the fluid density, axial  velocity, 

transverse velocity, transverse coordinate, pressure, dynamic viscosity, permeability 

parameter, constant electric field, and rotation. 

 

     In the laboratory frame (x, y), the flow is unstable; in the wave frame (X, Y), a coordinate 

system moving at wave speed (c) experiences steady motion. The subsequent phrases 

X = x − ct, Y = y,  U(X, Y) = u(x ̅, y̅) − c, V(X, Y) = v(x ̅, y ̅), T(X, Y) = T(x, y, t) , P(X, Y) 

= P(x, y)                                                                                                                                                (14) 

wherever ( U̅,  Ѵ̅ ) indicate the speed  p̅ is a symbol for the pressure inside the wave frame. 

Now, we swap out Equation (14) into formulas (1) (2) and (7-12) and add the non – 

dimensional variables to the final equation to normalize it. 

 

x =
1

λ
x̅ , y =

1

d
y̅, u =

1

c
u̅, v =

1

δ c
v̅, t =

 c

λ
t,̅  δ =

d

λ
,  Re =

ρ c d 

 μ 
, Da =

 k̅

d2, sxx =
λ

μ c
s̅x̅x̅ 

sxy =
d

μ c
s̅x̅y̅ ,  syy =

d

μ c
s̅y̅y̅ ,  h1 =

1

d
h1
̅̅ ̅,  Uhs=

−Ex∈ε

μ0c
 ,   h2 =

1

d
h2
̅̅ ̅ ,                                    (15)                                                                                          
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where the wave number is (δ), the Darcy number is (Da), the Helmholtz-Smoluchowski 

velocity is (Uhs), and the Reynold number is (Re). The following non-dimensional variables 

have been used to normalize the resultant equation after Equation (15) have been replaced 

into Equations (10), (11) and (12) 

  

Reδ (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) −

ρd2Ω2

μ
𝑢 −

d2𝑐

μ
δ

𝜕𝑣

𝜕𝑡

= −
𝜕𝑝

𝜕𝑥
+ δd

𝜕𝑠𝑥𝑥

𝜕𝑥
+ 𝑑

𝜕𝑠𝑥𝑦

𝜕𝑦
+ δ2

𝜖𝐸𝑥𝜀

𝜇𝑐
 
𝜕2∅

𝜕𝑥2
− 𝑈ℎ𝑠

𝜕2∅

𝜕𝑦2

−
𝑑2

𝑘
𝑢                                                                                                                         (16)  

∂p

∂x
=

ρΩ2𝑑2

𝜇
u +

𝜕𝑠𝑥𝑦

𝜕𝑦
− 𝑈ℎ𝑠

𝜕2∅

𝜕𝑦2

−
1

𝐷𝑎
𝑢                                                                                                                       (17 ) 

 

Re δ3(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) −

ρd2

μ
δ2Ω2v −

2Ωδ2Re

λ
(

∂u

∂t
)

= −
∂p

∂y
+ δ2

∂

∂x
τxy + δ

∂

∂y
τyy + Uhs (δ2

∂2∅

∂x2
+

∂2∅

∂y2
)

− vδ2 (
1

Da
)                                                                                                             (18) 

∂p

∂y
= 0.                                                                                                                                     (19) 

 The Equation (8) becomes: 

sxy =
1

1+𝜆1
[

𝑐

𝑑

∂u 

∂y
+ 𝜆2 ((

𝑐

𝑑

𝜕𝑢

𝜕𝑥
) (

𝑐

𝑑

𝜕𝑢

𝜕𝑦
))].                                                                        

 (20) 

The Equation (12) becomes: 
𝜕𝑝

𝜕𝑥
=

ρΩ2𝑑2

𝜇
u +

𝑐

1+𝜆1
(

𝜕2𝑢

𝜕𝑦2) − 𝑈ℎ𝑠
𝜕2∅

𝜕𝑦2 −
1

𝐷𝑎
𝑢                                                                          

 (21) 

  Let α=
c

1+λ1
                      𝜉 =

      ρΩ2𝑑2  

𝜇
.                                            (22) 

By derivation Equation (21) respect to (y) 

𝜉
𝜕𝑢

𝜕𝑦
+ α

𝜕3𝑢

𝜕𝑦3
− 𝑈ℎ𝑠

𝜕3∅

𝜕𝑦3
−

1

𝐷𝑎

𝜕𝑢

𝜕𝑦
= 0.                                                                                                                              (23) 

The stream function (ψ) is connected with the velocity components by the relations  

    Let u =
 𝜕ψ

𝜕𝑦
             and                   v =

− 𝜕ψ

𝜕𝑥
.                                                                             (24)                     

( 𝜉 −
1

𝐷𝑎
) 

𝜕2ψ

𝜕𝑦2
+ α

𝜕4ψ

𝜕𝑦4
− Uhs

𝜕3∅

𝜕𝑦3
= 0.                                         (25) 

         

Substitution Equation (24) in continuity Equation 
∂2ψ

∂x ∂y
−

∂2ψ

∂x ∂y
= 0.                                                                                                                                   (26) 

The wave frame's dimensionless boundary conditions are: 
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ψ =
F

2
 , 

∂ψ

∂y
= −1 at y= h1,  ψ =

−F

2
 , 

∂ψ

∂y
= −1at y= h2                               (27)                                                                                                                                                                                                                                      

5. Resolution of the issue  

    With all of the arbitrary parameters, an accurate result is unattainable. To obtain the 

solution, we utilize the perturbation approach. We then discuss the solution to the 

disturbance. 

  

                                            ψ = ψ0 + αψ1 + O(α2)  

P =   P0 + αP1  + O (α2) 

   F = F0 +  αF1 + O(α2).                                                                                                      (28) 

Substitute the terms Equation (28) into Equation (25) together with the boundary conditions 

Equation (27) (δ ≪ 1). The following system of equations is produced by equating the 

coefficients of equivalent powers of (α), where the higher order terms involving the power of 

δ are smaller and hence unimportant.  

 

5.1 Order zero system  

     In the zeroth order system, we obtain: when the terms of order (α) are small 

                                                  𝜉ψ0yy − Uhs ∅yyy −
1

Da
 ψ0yy = 0                                            (29) 

ψ0 =
F0

2
 , 

∂ψ0

∂y
= −1 at y= h1    and   ψ0 = −

F0

2
 , 

∂ψ0

∂y
= −1 at y= h2.    

5.2 Order first system 

𝜉ψ1yy
+ ψ0yyyy

= 0.                                                                                                             (30) 

ψ1 =
F1

2
 , 

∂ψ1

∂y
= −1 at y= h1     and ψ1 = −

F1

2
 , 

∂ψ1

∂y
= −1 at y= h2 

ψ = ψ0 + α ψ1.                                                                                                                    (31) 

 

6. The findings and discussion 

     The primary focus of this study is how fluid flow in a porous medium is affected by Darcy 

number (Da), (Uhs) Helmholtz-smoluchowsk, (α)   parameter of Jeffrey fluid and other 

parameters in the presence of an electric field on the pressure) P) and velocity curves (U) and 

the stream function (ψ). Even studied  (M. Kothandapani 2008) the same effects in the 

presence of magnetic fields, our study it looks at the impact of an electric field, which allows 

us to learn more about the relevant physical processes. We intend to compare the results with 

those of previous studies and provide more insight into how different parameters impact flow 

behavior in these complex systems. 

 

7. Pressure gradient dp/dx: 

     The Figures (2 – 8) are portrayed to analyze the various vital parameters on pressure 

gradient (Da, Ω, uhs, c, ρ, α, 𝜇 ,)  where the dp/dx refer to the change in axial pressure 

gradient across the channel  

• It is clear from Figures (2), (5), and (6) that as the Darcy number (Da), rotation rate 

(Ω), and Jeffrey fluid parameter (α) increase, so does the pressure gradient. The effect 

becomes more noticeable at increasing (Da) values. Greater permeability is indicated by a 

bigger Darcy number, which makes it easier for fluid to flow through porous material, 

lowering flow resistance and enhancing the pressure gradient. Centrifugal forces intensify 

this gradient as a result of rotation, particularly in situations where there is little flow 

resistance because of high permeability. The elastic properties of the fluid are reflected in the 

Jeffrey fluid parameter (α). The fluid's elasticity increases with Jeffrey fluid parameter, 

improving its sensitivity to rotating forces and raising the pressure gradient. 
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•  Figure (3) illustrates how the pressure gradient decreases as the Helmholtz-Smoluchowski 

value (Uhs) increases. This is because of the fluid's electrokinetic effects, which reduce the 

pressure needed to keep the fluid moving by enhancing electroosmotic flow with increasing 

Uhs values. The pressure gradient is countered by electrokinetic forces, which less strength. 

•  In Figures (4) and (7) steady pressure gradient is produced by increases in viscosity (μ) 

and density (ρ), as seen Density has an impact on the fluid's inertia, but viscosity raises the 

internal resistance to flow. But when both variables increase in proportion, they counteract 

one another and keep the pressure gradient constant. Because viscosity and density affect 

resistive and driving forces in tandem, they can balance out variations to maintain a constant 

pressure gradient under a range of circumstances. 

 

8. Stream function(ψ) 

     The changing values of stream function is reflects the variation to changing the values of 

(Da, Ω, Uhs, c, ρ, α, 𝜇 ), 

• In Figures  (8), (9), and  (10), the factors Da (Darcy number), Ω (rotational parameter), and 

ρ (density) exhibit beneficial impacts on fluid dynamics. These parameters improve inertial 

contributions, raise centrifugal forces, and improve permeability. The fluid's velocity field is 

thus represented by the overall stream function, which tends to grow with increasing values 

of Da, Ω, and ρ. Higher stream function values are a result of increased fluid motion brought 

on by increased centrifugal forces and inertial contributions, as well as enhanced 

permeability, which permits more fluid to pass through the porous material. 

• In Figures  (11), (12), and (13) illustrate the effects of α (  parameter   of Jeffrey fluid), c 

(slip coefficient), and Uhs (electrokinetic parameter). These parameters make the stream 

function equal. The balance between enhancing forces (e.g., viscoelastic or electrokinetic 

effects) and resistive forces (e.g., slip or drag at the boundaries) determines the overall impact 

on the stream function. Depending on the specific system configuration, these factors can 

cause the stream function to increase, decrease, or remain constant. For instance, boundary 

slip may reduce resistance to flow, while electrokinetic forces can enhance or inhibit fluid 

motion depending on the charge distribution and fluid properties. Thus, the combined effects 

of these parameters result in non-uniform and complex behaviour in the stream function. 

 

9. Velocity distribution (U) 

     The fluctuating value of u indicates how the axial velocity across the channel varies. The 

impact of various (Da, Ω, Uhs, c, ρ, α, μ) values 

 

• In Figures (14), (15), (16), and (19), the velocity distribution increases, as a result of 

increases in the Helmholtz-Smoluchowski value (Uhs), viscosity (μ), rotation rate (Ω), and 

Darcy number (Da). The effect of Uhs is the most notable. Higher permeability, which lowers 

flow resistance and increases velocity, is indicated by an increase in Da. Ω increases velocity 

by introducing centrifugal forces that create secondary flows, but its impact is smaller than 

that of Uhs. Although viscosity (μ) typically opposes flow, it occasionally aids in stabilizing 

and dispersing velocity equally, particularly when electric forces are present. 

• In Figures (17) and (18), more balanced increase in velocity is seen where an increase 

in the slip parameter (c) and the Jeffrey fluid parameter (α) results. A greater α increases 

elasticity, enabling the fluid to react to applied forces faster and producing a smoother 

distribution of velocity. Concurrently, c lessens boundary drag, improving fluid flow and 

promoting a more even distribution of velocity throughout the domain 
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Figure 2: Variation in pressure for varying 

(Da) when Da=2, Da=4, Da=6, 

 α =0.5, μ =0.5, c =2, ρ =0.1, Ω =0. 1, Uhs = 

3. 

 

Figure 3: Variation in pressure for varying 

(Uhs) when  Uhs=2, Uhs=4, Uhs=6 Da=1.5, 

α=0. 5, Ω=0.1, c=2, μ=0.5, ρ=0.1. 

 

 
 

Figure 4 : Variation in pressure for varying 

(μ) when μ=0.5, μ=0.7, μ=0.9,  c=2, ρ=0.1, 

Ω=0. 1, Uhs=3, Da=1.5. 

 

Figure 5 : Variation in pressure for varying 

(α) when, α=0.5, α=0.7, α=0.9 Da=1.5, 

μ=0.5, c=2, ρ=0.1 Ω=0.1, Uhs=3. 
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a b c 

Figure 8 : Stream function variation for different of (Da) when Da=2, Da=4, Da=6, α =0.5, 

μ=0.5, c=2, ρ=0.1, Da=0. 1, Uhs=3. 

 

a 
b c 

Figure 9 : Stream function variation for different of (Ω) when Ω=0.2, Ω=0.4, Ω=0.6, α =0.5, 

μ=0.5, c=2, ρ=0.1, Da=0. 1, Uhs=3. 

 

  

 

Figure (6): Variation in pressure for varying 

(Ω)when Ω=0.2, Ω=0.4, Ω=0.6 α =0.5, c=2, 

ρ=0.1, μ=0.5, Uhs=3, Da=1.5.   

 

 

Figure (7): Variation in pressure for 

varying (ρ) when, ρ=0.1, ρ=0.3, ρ=0.5, 

μ=0.5, Da=1.5, μ=0.5, c=2, Ω=0.1, Uhs=3. 
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a 

b  c 

Figure 10 : Stream function variation for different of (ρ) when ρ=0.1 ρ=0.3, ρ=0.5, α =0.5, 

μ=0.5, c=2, Ω=0.1, Da=0. 1, Uhs=3. 

 

a 
b 

c 

Figure 11 : Stream function variation for different (c), when c=2, c=4, c=6, ρ=0.1 α =0.5, 

μ=0. 5, Ω=0.1, Da=0.1, Uhs=3 

 

a 
b   

c  

Figure 12: Stream function variation for different (α), when α=0.5, α=0.7, α=0.9, ρ=0.1 c =2, 

μ=0. 5, Ω=0.1, Da=0. 1, Uhs=3. 
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a b  c 

Figure 13 : Stream function variation for different Uhs when Uhs=3, Uhs=4,Uhs=5, α=0.5, 

ρ=0.1, c =2, μ=0. 5, Ω=0.1, Da=0.1. 

 

 

 

 

 
 

Figure 14 : Velocity variation for different 

of (Da)when Da=2, Da=4, Da=6, Uhs=1. 5, 

μ=0.1, Ω=0.1, c=2. ρ=0.1 , μ=0. 5 

 

 

Figure 15 : Velocity variation for different 

of (Ω) when Ω=0.1, Ω=0.3, Ω=0.5, α=0. 2, 

Da=3, c=0. 2, Uhs=3, μ =0.1, c=2, ρ=0.1  

 

 

 

 

Figure 16 : Velocity variation for different 

of (α) when α=0.5, α=0.7, α=0.9, Da=1.3, 

c=2, Ω=1.5 n=2, Uhs=3, μ=0.5, μ =0.1, 

ρ=0.1   

 

Figure 17 : Velocity variation for different 

of (c) when c=2, c=4, c=6, Da=1.3, μ =0.1, 

c=0.2, n=2, Ω=0.1, α=0. 2. ρ=0.1, Uhs=3   
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Figure 18 : Velocity variation for different 

of (μ) when μ =0.1, μ =0.3, μ =0.5, Da=3, 

c=2, Ω=0.1, α=0. 2, Uhs=3, ρ=0.1 

 

Figure 19 : Velocity variation for different 

of (Uhs) when Ω=0.1, c=0.2 ,Uhs=2, 

Uhs=3, Uhs=5, Da=1.5, α=0. 2 

 

. 

10. Applications 

     Neural signaling and impulse transmission through cerebrospinal fluid are practical 

examples of electrical effects in action in biological systems, where the electric field is 

crucial for fostering neuronal connections and regulating fluid flow inside the central nervous 

system. 

 

 

Figure 20 : A schematic of the 

transmission of neurological signals and 

the fluid in   cerebrospinal the brain 

 

11. Conclusions 

     This study examines how rotation affect in electric field, on the peristaltic movement of a 

Jeffery fluid through a porous medium within waves with different amplitudes and phases on 

the non-uniform walls and a low Reynolds number create the asymmetric channel. The axial 

velocity, pressure gradient, and stream function formulas are generated. 

• A higher (Da) Darcy number value denotes greater permeability, which lowers the fluid's 

resistance. As a result, less pressure gradient is needed to force the fluid through the medium 

The pressure gradient curve shows a decline in slope as )Da( increases in response to this. 

Stream Function and Velocity Curves: A higher (Da) results in a more uniform velocity 

distribution and better fluid flow. As a result of the improved fluid flow and less internal 

resistance, the stream function and velocity curves both rise as (Da) increases.  
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•  As (Ω) rotational parameter rises, the fluid is subject to stronger centrifugal forces, which 

necessitate a larger pressure gradient to offset and preserve flow. This is shown as an increase 

in value with rising )Ω( in the pressure gradient curve. Ω's impact on Stream Function and 

Velocity Curves.  

• A higher parameter of Jeffrey fluid  (α), means that a greater pressure gradient is needed to 

sustain fluid flow. The pressure gradient curve has an increasing slope as α increases, 

reflecting this phenomenon. α's effect on stream function and velocity curves. A higher 

viscosity causes a decrease in velocity with an increase in α, which results in a less even 

distribution of velocity. As a result, the velocity either drops or stays constant, and the stream 

function curve diminishes. 

• A higher (Uhs   ( Helmholtz-Smoluchowski value raising )Uhs ( reduces the resistance and 

pressure gradient required for fluid flow. This is demonstrated by The pressure gradient, 

which decreases in value as Uhs effect on velocity curves and stream function: Because of 

the fluid's increased electroosmotic forces, raising )Uhs( significantly increases fluid flow 

which in turn enhances stream function and velocity values. 

•   )𝜇( The pressure gradient curve rises with increasing μ, indicating that a bigger pressure 

gradient is needed to maintain fluid flow when viscosity increases.  The μ's impact on the 

Velocity Curve: Higher viscosity typically results in a more even distribution of velocity 

across the medium and can even produce a reasonably constant velocity. This causes the 

velocity curve to be more balanced, with the pressure increasing. 

• By emphasizing the role electric fields play in fluid dynamics and neural transmission, it 

highlights the interaction between neurons and fluid flow. 
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