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Abstract

Despite ample research on soft linear spaces, there are many other concepts that
can be studied. We introduced in this paper several new concepts related to the soft
operators, such as the invertible operator. We investigated some properties of this
kind of operators and defined the spectrum of soft linear operator along with a
number of concepts related with this definition; the concepts of eigenvalue,
eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator
was divided into three disjoint parts.

Keywords: Soft linear operator, invertible soft operator, spectrum of soft operator,
eigenvalue of soft operator, eigenvector of soft operator.
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1. INTRODUCTION
In 1999, Molodtsov [1] started the concept of soft sets as a new mathematical instrument for
dealing with uncertainties. He introduced some presentations of this theory for solving several real-
world problems in engineering, economy, medical science, community science, etc. Few years later,
Maji et al. [2] introduced a number of operations on soft sets to solve decision making problems. Feng
et al. [3] described some new operations on soft sets. On the reduction line and addition of parameters
of the soft sets, some work was done by Chen [4]. Aktas and Cagman [5] introduced the notion of soft
group and discussed various properties. Feng et al. [6] worked on soft ideals, soft semiring and
idealistic soft semiring. Shabir and Naz [7] introduced the idea of soft topological spaces. Mappings
between soft sets were described by Majumdar and Samanta [8]. Feng et al. [3] worked on soft sets
together with fuzzy sets and rough sets. Das and Samanta [8] introduced the notions of soft real sets,
soft real numbers, soft complex sets, soft complex numbers and investigated some of their basic
properties. They presented some applications of soft real sets and soft real numbers in real life
problems. Later, they introduced the concepts of soft metric over an absolute soft set and soft norm, as
well as soft inner product over soft linear spaces. Many properties of soft metric spaces, soft linear
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spaces, soft normed linear spaces and soft inner product spaces were investigated with examples and
counter examples.
2. PRELIMINARIES

The basic definitions and theorems were introduced in this section that may also be found in earlier
studies.

Definition 2.1 [1] Suppose X is a universe set and E is a set of parameters. Let o(X) symbolizes the
power set of X and A # @ be a subset of E. A pair (H, A) is named a soft set over X, where H is a
mapping given by H: A - g(X). In other words, a soft set over X is a parameterized family of subsets
of the universe X. For w € A, H (w) can be thought as the set of «- approximate elements of the
soft set (H, A).

Definition 2.2 [3] For two soft sets (H, A) and (G, D) over a shared universe X, then (H, A) is a soft
subset of (G, D) if:

(1) AcD.
(2) Foralle € A, H (e) < G (e). We write (H, A) € (G, D).
(G, D) is said to be a soft superset of (H, A). We write (H, A) &( (G, D) if (H, A) is a soft subset of
(G, D).
Definition 2.3 [3] Two soft sets (H, A) and (G, D) over a shared universe X are said to be identical, if
(H, A) is a soft subset of (G, D) and (G, D) is a soft subset of (H, A).
Definition 2.4 [2] The union of two soft sets (H, A) and (G, D) over the shared universe X is the soft
set
(J,C),whereC=AuDandforalle e C,
H(e) ife €eA—-D
J(e)={G(e) ife ED—-A
H(e) U G(e) ife eAnNnD

We express it as (H, A) U(G, D) = (J, C).

Definition 2.5 [6] The intersection of two soft sets (H , A)and (G , D) over the shared universe X is
the soft set (L , C), where C = An D and for all e €C, L (e) = H(e) n G(e). We write (H, A) N (G,
D)=(L, C).

Suppose that X is an initial universal set and A is the non-empty set of parameters. In the above
definitions, the set of parameters may differ from a soft set to another, but in our considerations
through this paper, all soft sets have the same set of parameters A. The above definitions are also
useable for these types of soft sets as a particular case of those definitions.

Definition 2.6 [8] The complement of a soft set (F, A) is denoted by (F,A)“= (F¢, A), where F€:
A- (X) is a mapping given by F¢(A)=X —F (1), forall 1 € A.

Definition 2.7 [2] A soft set (F, A) over X is said to be an absolute soft set symbolized by X if F (1) =
X forevery 1 € A.

Definition 2.8 [2] A soft set (F, A) over X is said to be a null soft set symbolized by @ if for every 1 €
A, FQ) = ¢.

Definition 2.9 [7] The difference (H, A) of two soft sets (F, A) and (G, A) over X, denoted by ( F,
AN(G,A), is defined by H (1) = F(A)\G(A) for all 1 € A.

Proposition 2.10 [7] Let (F, A) and (G, A) be two soft subsets of X. Then:

() [(F,4) T (G, =(F,A° A (G,AF.
(i) [(F,A) A((G,A)° = (F,A)F TG A"

Definition 2.11 [9] Let X be a non-empty set of elements and A+ @ is a set of parameters. Then, a
function e: A =X is called a soft element of X. A soft element ¢ of X belongs to a soft set B of X,
which is symbolized by € € B, if ¢ (1) € B(A) for every A €A. Thus, for a soft set B of X (with respect
to the index set A) we have B (1) = {&(1), € €B}, 1 € A.

It is to be well-known that each singleton soft set (a soft set (H, A) for which H () is a singleton set,
for every 1 € A), can be recognized with a soft element by just identifying the singleton set with the
element that it contains for all 1 € A.

Definition 2.12 [10] Let B (R) be the collection of all non-empty bounded subsets of R ( R is real
number ) and A booked as a parameters set. Then, a mapping H: A — B (R) is named a soft real set. It
is symbolized by (H, A). If specifically (H, A) is a singleton soft set, then when identifying (H, A)
with the corresponding soft element, it will be named a soft real number.
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The collection of each soft real numbers is symbolized by R(A) and the collection of all non-
negative soft real numbers is symbolized by R(A)".

Definition 2.13 [11] Let p (C) be the set of all non-empty bounded subsets of the set of complex
numbers C, and let A be a set of parameters. Then, a mapping H: A = p (C) is named a soft complex
set symbolized by (H, A). If, in particular, (H, A) is a singleton soft set, then by identifying (H, A)
with the agreeing soft element, it will be named a soft complex number.

The set of all soft complex numbers is denoted by C(A).

Definition 2.14 [11] Let (H, A) be a soft complex set. The complex conjugate of (H, A) is symbolized
by (H, A) and is defined by H(1) = {Z: z € H (1)}, for every 1 € A, where Z is a complex conjugate
of the ordinary complex number z. The complex conjugate of a soft complex number (H, A) is H(1) =
Z:z2=H(A), forevery 1 € A.

Definition 2.15 [11] Let (F, A), (G, A) € C(A). Then, the sum, difference, product and division are
defined by

F+G)(AV)=z+w,zeFA),we G (1), forall 1 € A.
F-G)V)=z—w;zeFQ),weG (1), forall 1 € A.

(FG)(A)=zw,ze F(A),we G (1), forall 1 € A.

(FIG) (A) =zlw,z € F (A1), w € G (A), provided G (1) # 0, for all 1 € A.

Definition 2.16 [11] Let (F, A) be a soft complex number. Then, the modulus of (F, A) is denoted by
(|F], A) and is defined by |F|(A) =|z|; z€ F (A1), for all A € A, where z is an ordinary complex
number.

Since the modulus of each ordinary complex number and ordinary real number are a non-negative
real number, and by definition of soft real numbers, it follows that (|F|, A) is a non-negative soft real
number for every soft complex number (F, A) or soft real number (F, A) .

Let X be a non-empty set and X be the absolute soft set, i.e. V (1) = X, for each 1 € A, where (V,
A) = X. Suppose S (X) be the collection of all soft sets (H, A) over X for which H (1) # ¢, for all 1 €
A, together with the null soft set @. Let (H, A) (# @) € S(X), then the collection of all soft elements of
(H, A) will be denoted by SE ( H, A ). For a collection B of soft elements of X, the soft set
generated by B is denoted by SS(B).

Definition 2.17 [12] A mapping d: SE(X) x SE(X) — R(A)" is called a soft metric on the soft set X if
d satisfies the following conditions:

1) d@®; y)=0,forall ¥, 7EX.

(2)d (%, ) =0, ifand only if = 7.

Q) d(x, y)=d @, x) forallx, yE X .

@) Forall %,7,z €X,d(®,z)2d(x,9)+d(¥,2).

The soft set X with a soft metric d on X is said to be a soft metric space and is denoted by (X, d, A) or
(X, d).

Definition 2.18 [13] Let V be a vector space over K (in which K is a field) and A is a set of
parameters. Let G be a soft set over (V, A). If for all 1 € A, G (1) is a vector subspace of V, then G is
called a soft vector space of V over K.

Definition 2.19 [14] Suppose that H is a soft vector space of V over K. Let G: A — p (V) be a soft set
over (V, A). If for each A2 € A, G (1) is a vector subspace of V over K and H (1) 2 G (1), then G is
called a soft vector subspace of H.

Definition 2.20 [13] Suppose that G is a soft vector space of V over K, then a soft element of G is
called a soft vector of G. In a similar manner, a soft element of the soft set (K, A) is said to be a soft
scalar, with K being the scalar field.

Definition 2.21 [13] Let & , 7 be soft vectors of G and k be a soft scalar. The addition % + ¥ of ¥ ,
and the scalar multiplication k. % of k and % are defined by (¥ +%) (1) =% (1) +y (1) , k. ¥ (1) =k
(1) . % (1) for all 2 € A. Obviously, % + 7, k . % are soft vectors of G.

Definition 2.22 [15] Let X be the absolute soft vector space, i.e. X (1) = X, for all 1 € A. Then a
mapping || .|| : SE(X ) —» R(A)*is said to be a soft norm on the soft vector space X if || .|| satisfies the
following situations:

(D). |l.|l =0 foreveryx € X.

(2). I%]l = 0 if and only if % =0.
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(). |l@.%|| = |@| ||®|| for each ¥ € X as well as for each soft scalar & .
(4).Foreachz, yEX, IIx + I 2Nzl +lgl

The soft vector space X with a soft norm || .|| on X is said to be a soft normed linear space and is
symbolized by (X .|| .1, A) or (X , || . ). The exceeding conditions are called soft norm axioms.
Theorem 2.23 [13] Suppose that a soft norm || . || achieves the situation (N5). Foré € X and A € A,
the set {||%]|(1) : (1) =&} is a one element set. Then for each A € A, the mapping || .||, : X = R™,
defined by ||€ ||,=||%||(2), forall £ € X and % € X such that & (1) = &, can be considered as a norm
on X.
Definition 2.24 [14] Consider (X, .||, A) as a soft normed linear space, # = 0 is a soft real number.
We define the followings:

B(x,7)={JE€X:|Ix — yll <7 }= SE(X),

Bx,7)={yEX:|Ix — yll <7 }= SE(X),

Sx,7)={yEX:Ix — yll =7 }= SE(X),

B(X,7), B(X,7), S(x,) are respectively called an open ball, a closed ball and a sphere with a
center at ¥ and a radius 7. SS(B(% , 7)), SS(B(X , 7)) and SS(S(% , 7)) are respectively called a soft
open ball, a soft closed ball and a soft sphere with a center at X and a radius 7.

Definition 2.25 [13] A sequence of soft elements {X;} in a soft normed space (X,||.||,A) is called
convergent sequence, if ||x, — ¥|| » 0 as n - oo, we say that the sequence converges to a soft
element %. In other words, for each € > 0, there exists NEN, N=N (&) and0 < ||x;,, — ¥|| <€
whenever n > N.

i.e.,, n> N implies X, € B (¥, €) . We symbolize this by x;, - ¥ asn — oo or by lim,,_, X, = . The
soft element X is said to be the limit of the sequence x,, as n — oo.

Definition 2.26 [13] A sequence {x;,} of soft elements in a soft normed space (X, || .||, A) is said to
be a Cauchy sequence in X, if corresponding to each € S 0, there exists m > N such that ||9?l -

g|| L e, forall ij=m,ie,|% — %] >0 asi;j— .

Definition 2.27 [13] Let (X, || .|| , A) be a soft normed space. Then, X is said to be complete if every
Cauchy sequence in X converges to a soft element of X. The complete soft normed space is said to be
a soft Banach Space.

Theorem 2.28 [13] Every Cauchy sequence in R(A), where A is a finite set of parameters, is
convergent, i.e. the set of all soft real numbers together with its usual modulus soft norm, with respect
to finite set of parameters, is a soft Banach space.

Definition 2.29[14] A series Y.z~ Xj of soft elements is called soft convergent, if the partial sum of
the series S, = Y:1_, X is soft convergent.

LetX, Y be the corresponding absolute soft normed spaces, i.e., X(A) =X, Y (A) = Y, for all A € A.
We use the notation X , ¥, Z to represent soft vectors of a soft vector space.

Definition 2.30[13] Suppose that T: SE(X) — SE(Y ) is an operator. T is called soft linear, if

(L1). T is additive, i.e., T (£ + %3) = T (%7) + T(%3) for all soft elements %7, X5 € X.

(L2). T is homogeneous, i.e., for all soft scalars k, T (k. %) = k T (), for all soft elements %€ X .

The properties (L1) and (L2) can be put in a combined form T (k1. %1 + k,.%5) =k; T (57) + k, T(%3)
for every soft element %7, X; € X and every soft scalar k; , k.

Definition 2.31[13] The operator T : SE(X) — SE(Y) is said to be continuous at %5 € X, if for every
sequence {%;} of soft elements of X with X, - X, as n — oo, we have T(X;) — T(X5) as n — oo, i.e.,
I, — %oll > 0asn— oo implies ||T(xy) - T(xe)|| = 0as n—oo. If Tis continuous at every soft
element of X , then T is called a continuous operator.

Theorem 2.32[13] Let T: SE(X) —SE(Y) be a soft linear operator, where X, Y are soft normed linear
spaces. If T is continuous at some soft element X € X, then T is continuous at every soft element of X.
Definition 2.33[13] Let T: SE(X) —»SE(Y) be a soft linear operator, where X, Y are soft normed linear
spaces. The operator T is said to be bounded if there exists some positive soft real number M such that
foreach %€ X, || T)|| £ M I

Theorem 2.34[13] Let T: SE(X) -SE(Y) be a soft linear operator, where X , ¥ are soft normed linear
spaces. If T is bounded, then T is continuous.
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Theorem 2.35[13] (Decomposition Theorem) Suppose a soft linear operator T: SE(X) — SE(Y),
where X , Y are soft normed spaces, which fulfills the situation (L3). For § € X, and A € A the set
{T (%) (1): & X such that ¥ (1) = &} is a singleton set. Then for each A € A, the mapping Tj : X -
Y defined by T; (§) = T (%) (1), for all £ € X and %€ X such that & (1) = £, is a linear operator.
Theorem 2.36[13] Let T, : X —Y, A € A be a family of crisp linear operators from the vector space
X to the vector space Y, and X ,Y be the corresponding absolute soft vector spaces. Then, there
exists a soft linear operator T : SE(X) —» SE(Y) defined by T (%) (1) = Ty(§) if ¥ (1) =& , A € A. which
satisfies (L3) and T (1) =T, for all 1 € A.
Theorem 2.37[13] Let X and ¥ be soft normed linear spaces which satisfy (N5) and T: SE(X) —»
SE(X) be a soft linear operator satisfying (L3). If T is continuous, then T is bounded.
Theorem 2.38[13] Let X and ¥ be soft normed linear spaces which satisfy (N5) and T: SE(X) —»
SE(Y) be a soft linear operator satisfying (L3). If X is of finite dimension, then T is bounded and hence
continuous.
Definition 2.39[13] Let T be a bounded soft linear operator from SE(X) into SE(Y). Then, the norm of
the operator T denoted by || T||, is a soft real number defined as the following:
Foreach A € A, ||IT||(A) = inf{t € R; |IT(®)|| < t.||%||(A), for each ¥ € X}.
Theorem 2.40[13] Let X, ¥ be soft normed linear spaces which satisfy (N5) and T satisfies (L3). Then
foreach A € A, ||T||(A) = ||Ty |5, where || Ty |l is the norm of the linear operator T,: X - Y.
Theorem 2.41[13] IT(®)|| < |IT||||%]l, for all & € X.
Theorem 2.42[13] Let Xand ¥ be soft normed linear spaces which satisfy (N5) and T: SE(X) — SE(Y)
be a soft linear operator satisfying (L3). Then:

M) ITNAQ) = sup{ITEIIA): IZ|l < 1} = |ITyllx, for each X € A.

(i) NITNA) = sup{ITEA): IX]] = 1} = ITll5, for each A € A.

(i) 1T = sup (T @) 121 () # 0, for all u € 4} = ||yl for each A € A.

1%l

Theorem 2.43[13] Let X and ¥ be soft normed linear spaces which satisfy (N5). Let T: SE(X) -
SE(Y) be a continuous soft linear operator satisfying (L3).Then, T} is continuous on X for each A € A.
Theorem 2.44[14] Let Xand ¥ be soft normed linear spaces which satisfy (N5). Let { T); A € A} be a
family of continuous linear operators such that T5: X — Y for each A. Then, the soft linear operator T:
SE(X ) — SE(Y) defined by (T(%))(A) = T;\(f((?\)),for allA € A, is a continuous soft linear operator
satisfying (L3).

Definition 2.45[14] (Soft linear space of operators) Let X, ¥ be soft normed linear spaces satisfying
(N5). Consider the set W of all continuous soft linear operators S, T,.. etc. which satisfy (L3) each
mapping SE(X ) into SE(Y), then using Theorem 2.43, it follows that for each A € A; S;,Ty, .... etc. are
continuous linear

operators from X to Y. Let W(A) = {T,(= T(2)); T € W}, for all > € A. Also using Theorem 2.43 and
Theorem 2.44, it follows that W (R) is the collection of all continuous linear operators from X to Y. By
the property of crisp linear operators, it follows that W (A) forms a vector space for each A € A with
respect to the usual operations

of addition and scalar multiplication of linear operators. It also follows that W (A) is identical with the
set of all continuous linear operators from X to Y for all A € A. Thus, the absolute soft set generated
by W(A) forms an absolute soft vector space. Hence, W can be interpreted to form an absolute soft
vector space. We shall denote this absolute soft linear (vector) space by L (X, ).

Proposition 2.46[14] Each element of SE(L()?, 17)) can be identified uniquely with a member of W
(i.e., to a continuous soft linear operator T: SE(X) — SE(Y)).

Theorem 2.47[14] Let L (X,¥) be a soft normed linear space, then for f € SE(L(X,Y), we can
identify f to be a
unique T € W and ||f|| is defined by ||f||(7\) = |ITIIA) = sup{|ITE)||(Q): |IX]| £ 1}, for each A € A.
Definition 2.48[13] Suppose that T: SE(X) — SE(Y) is a soft linear operator where X, Y are soft
normed spaces. Then, T is called injective or one-to-one if T(X7)(A) = T(x3)(A) implies (X7)(A) =
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(%2)(A) VA€ A. It is called surjective or onto, if Rang(T) = SE(Y). The operator T is said to be
bijective, if T is both one-to-one and onto.
3. INVERTIBLE LINEAR OPERATOR

Let X,Y be two vector spaces over a same field K, A = @ is a set of parameters, and X , ¥ be the
corresponding absolute soft normed spaces, i.e., X (1) =X, Y () =Y forall1 € A. Let % 7,2 be soft
vectors of a soft normed space.

Theorem 3.1: Let T: SE (X) — SE (¥) be a linear operator satisfying (L3). Then Tj is one-to-one and
onto if and only if T is one to one and onto.

Proof: Suppose that T is one to one, then T (X7)(A) = T(x3)(A) implies (X7)(A) = (x3)(A) VA€ A.
Since T satisfies Lg, so T (X7)(A) = Ty (§) with (X7)(A) =& and T(X3)(A) = T (n) with (x3)(A) =n and
E,neX

Now let Ty (§) = Ta(n). Then, T (X7)(A) = T(Xz)(A). This yields (X7)(A) = (x3)(A). So §=n.Then Ty is
one to one.

Suppose that Tisonto = V § € SE (¥ ), there exists ¥ € SE (X ) such that T (£)( 1) = (5)(A).

Let B € Y = (§)(A) = for some 7 € SE((Y)

B= (F)(A) = T(X)(A) = Ty(&), since B is arbitrary = V B € Y, there exists £ € X such that = T;(£), so
T, is onto.

Conversely, suppose T, is one-to-one and onto and letA € A, £ € X, €Y such that (X3)(A) =§,
(x2)(A) =n.

Let T(x1)(2) = T(xz)(A) = Tp(§) =Ta(n) = &=n(since T, is one-to-one ) = (X;)(2) =(x3)(A), so
T is one-to-one.

Lety € SE(Y)= ()(1) € Y, and let (#)(A) =p . Then there exists £ € X such that Ty(§) =,
since Tj is onto.

SoT(X)(A) =T (&) =B = (¥). So T is onto.

Definition 3.2: Let T: SE(X) — SE(Y) be a soft operator. Then T is said to be invertible, if there exists
a soft operator S€ B(VY,X) suchthat: TS(J) =1y Vy€ ¥ and ST(®)=I; Vxe X, ie.,
TS(H)(A) =F(A) and ST(X)(A)=%(1) VAieE A.WewriteS=T"1

Remark 3.3: Let X , ¥ be two soft normed spaces and T : SE(X) — SE(Y) be soft linear operator. One
can show that if T is invertible then T is one-to-one and onto.

Proposition 3.4: Let T: SE (X) — SE (¥) be a soft linear operator. If T is invertible then T~1is soft
linear operator.

Proof: Suppose that T is invertible, then T~1: SE(Y) —SE(X) is a soft operator in which, for x7, x5
ESE(R), if T(®)=y1 and T(%;)=y; 1.7z € SE(Y), then % = T~(3) , %3 =T (%),

For any soft scalar @, p we have ay; +fy; =aT(X;) +BT(X;) =T (6%; +BX;)  (since T is
linear).

T™Y(@y; + fy;) = T71 T (a%; + f%;) = ax; + fx; = aT~(57) + BT71(5%)

SoT~1 is linear.

Proposition 3.5: Let T € B(X,Y) , S€ B(Y, Z) be invertible operators, were X, Yand Z are soft normed
spaces. Then (ST) is invertible with (ST)"Y(2)(1) =T~1S"Y(2)(1) VZ € Z.

Proof: ST: SE (X) — SE (Z) and (ST)~!: SE(Z) — SE(X)

Since T and S are invertible, hence bijective, then ST is bjective (in fact if ST (x7) = ST (x3) then S
(*7) = S (x3) since T is one-to-one, and this implies X = X since S is one-to-one. If Z € Z, then there
exists § € ¥ such that S (¥) = 2. Since S is onto and there exists ¥ € X such that T (%) = ¥, since T is
onto. i.e.,, S (§) =S (T(X)) = Z. So ST is onto.

TT~1($) = I3(¥) . Consequntly, STT~1(§) = S(¥)

Since S is onto, then there exists Z € Z such that ¥ = s~1(£). Hence (ST)T 1S~ 1(2) = SS~1(2) = 2.
By the same way, we can show that T-1S~1ST(X) = % . i.e., the operator ST is invertible.
(ST(ST)™' =1 and (ST)T1S™! =1.Hence (ST)"! =T"1s71,

Definition 3.6: Let X , ¥ be two soft normed spaces and T: SE(X) — SE(Y) be soft bounded linear
operator. Then T is said to be soft bounded below if there exists a soft real number § such
that 3|2l 2 IT@). ) ]

Theorem 3.7: Let X , Y be two soft normed spaces and T: SE(X) — SE(Y) be soft bounded linear
operator. Then T is invertible if and only if T is bounded below and onto .
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Proof: the “only if”* direction.
Suppose that T is invertible, i.e., T~ exists.

IZID) = 1T~ T @A) <UTHITEN1(A) = IT~HIA) . ITEIIA)
So L 1ZI() < IT@IR)

Ty
[y 12100 < IT@I@
Bu putting - = & = [ElZI(D) < IT@II(R) ~ vAe4

So T is bounded below.
Since T~1 exists, then T is onto.
(if direction) let T be onto and there exist § S 0 such that: [ B||Z]I]](A) < IT(®)|I(A) VXEX,V
AEA.
Suppose that T is not one-to-one, then there exists % € SE (X) such that ¥ # © and T(¥) = © . So
TGOl = 0.
By the bounded below, there exists § S 0 such that : [ B|IZ]I]1(A) < IT®)I(A) =0 VA € A.
But this is a contradiction, since [ B||%][]]J(1) >0 VA € A.
So, T is one-to-one
Let T(%)( 1) = (). Then %(1) =T~1()(A)
[BIT2DIIAD) < ITTHE)NA) = 1711(A).
Hence, ||T~1]|(A) < (%) () VA €A andT 1eB(7,X).

Remark 3.8: Let X , ¥ be two soft Banach spaces and T: SE (X) — SE (¥) be a soft linear operator.
Then T is invertible if and only if T is bijective .

Theorem 3.9: LetX, Y be two soft Banach spaces and T: SE(X) — SE(Y) be soft bounded linear
operator. Then T is invertible if and only if T is bounded below and the range of T is dense in Y.
Proof: The “only if” direction is omitted since it is easy, then we prove the (if direction).

To prove that T is invertible, it is enough to sow that T is onto.

Let & € SE (Y). Since R (T) is dense in Y, there is a sequence {T%;, }in R(T) such that : T%, —» §inY.

T is bounded below, then there exists § S 0 such that: [ BIIZII(A) < || T&)||), VREX,V
AEA.
[BIIKs — Kmlll(D) < ITE — Kmll) = ITR; — TKmlI(A) VAEA ,Vn=123,..

Hence, {X,} is Cauchy sequence in X. Sox, » Xin X.
T(X;) = T(X) by the continuity of T ('since if T is bounded then T is continuous ).
¥ = T(%) € R(T), then R(T) = SE(Y) and T is onto.
So, T is invertible by the previous theorem.
Definition 3.10: Let X be a soft Banach space. The series Y5, % is absolutely convergent in X, if
Y Z () < M(a) forall A € A,
Theorem 3.11: The soft normed space ( X, ||.|| ) is complete if and only if every absolutely
convergent series in X is converge in X .
Proof: Suppose that X is complete to show that the series Y, X, converges for all 1 € A.
We prove that the sequence of partial sums of this series is Cauchy. For m > n we have:
ISn = Smll = IZRes B = Ties £ell(A) = X7 rsr £l (D) < TptnsaI%ell(2) forall A€ Aandn, m
— C0,
So, { S,, } is Cauchy and, hence, converges, since X is complete.
Conversely, we use the method of contra positive to prove this part, i.e., suppose that X is incomplete
to find the absolutely converged series which diverges.
Since X is incomplete, then there exists a Cauchy sequence{ £ }in X which diverges .Every
subsequence of { x,, } diverges.
Let {)Z‘n”] } be a subsequence of {x, } = {i;{] } which diverges. Since X, is Cauchy, then for all

positive integer j, there is a positive integer N; such that || X, — Xl <(27)) foralln,m> N; for
allj .

For nj,, >n; > N;, we have | <Xi=1(27),

im.So,ZﬁJ

Xnj+1 - an an+1 - an
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e, X2, | Tn,, — % () < T2 @A) forall 1€ A Since £2, 27 =1, then T2, |

%n; ||(/1) < 1(2) implies X372, | Xnjyy — %ng|[ =T, then the series 72, (sznjﬂ - f(n].) is absolutely
converged but the partial sum of this series, which is

Zﬁ;l (inm - in].) = Xp,,, — Xn,, is diverged. So, the series 372, (sznjﬂ - in].) is an absolutely
converged series which diverges. Hence X is complete.

Theorem 3.12: Let X , ¥ be two soft normed spaces such that ¥ is a soft Banach space . Let T: SE(X)
— SE(Y) be a soft bounded linear operator and ||T||(1) < 1(1) V A € A. Then (I - T) is invertible
and (1-T) 1=} ,T™

Proof: Because Y is a Banach space, then B(X, Y) is a Banach space (12).

Since ||IT||(A) < 1(1) V A € A, then X5 ,|IT||™(A) convergesto V 1 € A.

But IT*|(2) S ITI"(A) VAeAandVneN= YT ,/IT"||(1) converge toV 1 € A, then
Yim=o T™(A) is converged, by Theorem (3.11).

Let S(A) =YY%, T™(A) VA€A and let Sp(A) =¥k_,T™(A) V1 €A. Then {S,(1)} converges to
S(1) inB(X,Y).

|(1-T)S, — I||) = ||I — T*** —1||(D) = |- T***||(D) < ITI**@A) vAeA |ITI* () —»0as
k— oo

[(1-T) SI(4) = [(1 - T) lim S, J(4) = [1lim (1 -T) S,](2) =1(4) VA1EA.

By a similar way, [S(1- T )](A) , hence |- Tisinvertibleand (I-T) 1 (1)=S(A) =X T™
4. Spectrum of soft linear operator
Definition 4.1: Suppose that X is a soft normed space. Let T: SE(X) — SE(X) be a soft linear
operator. The spectrum of T is denoted by o(T) and defined by o(T)={ e C, T - ul is not
invertible}. The complement of o(T), symbolized by p(T) = C — o(T) in the complex plane C, is said
to be the Resolvent of T. The spectrum ¢ (T') is divided into three separate sets, as follows:
1) The point spectrumay, (T); is the set such that T - ul is not one-to-one. A u € 0,,(T) is called a soft
eigenvalue of T. A soft eigenvalue of a soft linear operator T: SE(X) —SE(X) is a complex number u
such that TX¥ = u X has a solution X # 6, and this X is called a soft eigenvector of T corresponding to
that soft eigenvalue p . For a given eigenvalue y, the set of all X, such that T(%) = uX with zero vector,
is called the p-eigenspace . Each p-eigenspace is a soft subspace of X .

In fact, if £7, X, are two eigenvectors corresponding to the soft eigenvalue pand @, p are two soft
scalars then:
T(@% + Bg) = T(a%) + T(EXR) = aT(%) + BT(%) = Qug + Bus; = (@5 + B)u ie, @+ By is
a soft eigenvector of T .
2) The continuous spectrum a,.(T); is the set such that V(T - ul) = { 0 } and the range of T - ul is
dense in

X, but (T - pI) ~1 is not bounded.
3) The residual spectrum a,.(T); is the set such that N (T - ul) = { 0 },but the range of T - ul is not
dense
inX .

Remark 4.2: If X is a soft Banach space, the second set o,.(T) =¢, since every invertible operator has
a bounded inverse. Furthermore, if X is a finite dimensional soft normed space, then o,(T) = o,-(T).

an+1 -

Definition 4.3: Soft vectors X7, X3, X3,.... are linearly independent, if { X7, x5,........ X, } is linearly
independent for all n € N.

Theorem 4.4: Soft eigenvectors X7, X3, X3..... , corresponding to different eigenvalues iy, Uy, Us,......
of a soft linear operator T on a soft normed space X, constitute a linearly independent set .

Proof : It is sufficient to prove that { X7, x3,...... , X, } of soft eigenvectors, corresponding to different
eigenvalues pq, Usy,...., Uy, is linearly independent for all n € N. Assume that S = {x7, x3,....., X, } iS

linearly dependent and derive a contradiction. Since S is linearly dependent then S(41) =
{x1(4), x3(1),..... x,; (1)} is linearly dependent for all A €A, and X7 (1), x3(4),..... X,,(1) are crisp
vectors in X. Let xj (1) be the first vector in S(4), which is a linear combination of its predecessors
,say
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X)) =a; x;(A)+ a5 x5 (A) + ... +ap_1 Xp—1(A)  then {&x7(A), x5 (A),..... xr—1(A)} is linearly
independent . By applying T-x, | on both sides of the previous equation, we have:
(T-e) %) = X5t @ (T — e DE;(A) = X521 @ (4 — 4)%; (1) Since X5 (4) is an eigenvector
corresponding to g, then the left side is zero . Since the soft vectors on the right side form a linearly
independent set, we must have @,(4; — 4, ) =0, hence & =0 forj=1.2,...k-1, since (4; — ) #
0, but then x3 (1) = @ . This contradicts the fact that X3 (1)# 8. Since xi(A) is a soft eigenvector, so S
={x1, x3,..... X, } is a linearly independent set. The result follows.
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