

ISSN: 0067-2904

Square root of fuzzy QS-ideals on QS-algebras

Samy M. Mostafa¹, Mostafa A. Hassan¹, Fatema F. Kareem^{2*}

¹Department of Mathematics, college of Education, Ain Shams University, Roxy, Cairo

²Department of Mathematics, Ibn-Al-Haitham college of Education, University of Baghdad, Iraq

Received: 10/6/2021

Accepted: 17/11/2024

Published: 30/1/2026

Abstract.

In real-life problems, we use square roots in natural distributions such as (the probability density function), distances and lengths in the Pythagorean theorem, and quadratic formulas in (the height of falling objects), radius of circles, harmonic movements (pendulum and springs), and standard deviation in statistics. We have observed that using fuzzy sets in real-life problems is more convenient than ordinary sets. Therefore, they are important in algebraic structures. As a result, more effort has been made to study square root structures in fuzzy sets.

This paper introduces the notion of square roots fuzzy of QS-ideals on QS-algebras and some important characteristics. Some illustrative examples have been provided which prove that every SRF-BCK-ideal is an SRF QS-ideal. Also, the image and the inverse image of SRF-QS-ideals are discussed. Finally, the product of SRF-QS-ideals on QS-algebra is defined and some important properties have been proved.

Keywords: QS-algebras, QS-ideal, fuzzy QS-ideal, the image of SRF-QS-ideals and the product of SRF-QS-ideals.

الجذر التربيعي للمثاليات الضبابية - QS على الجبريات - QS

سامي محمد مصطفى¹, مصطفى عبد الفتاح حسن¹, فاطمة فيصل كريم^{2*}

¹قسم الرياضيات، كلية التربية ، جامعة عين شمس، روكسي، القاهرة

²قسم الرياضيات، كلية التربية-ابن الهيثم، جامعة بغداد، العراق

الخلاصة

في المسائل الواقعية نستخدم الجذور التربيعية في التوزيعات الطبيعية مثل (دالة الكثافة الاحتمالية)، والمسافات والأطوال في نظرية فيثاغورس، والصيغة التربيعية في (ارتفاع الأجسام الساقطة)، ونصف قطر الدوائر، و الحركة التوافعية البسيطة (البنيولات والزنيركات) والاحرف المعياري في الاحصاء. لقد تبين أن استخدام المجموعات الضبابية أكثر ملائمة في مشاكل الحياة الواقعية من المجموعات العادي، لذلك فهي مهمة في حالة الهياكل الجبرية. ونتيجة لذلك، بذلت جهود كبيرة لدراسة الجذور التربيعية في البني الجبرية الغامضة.

في هذا البحث، نقدم فكرة الجذر التربيعي الضبابي (المشار إليه بواسطة SRF) للمثاليات - QS على جبر - QS وبعض الخصائص المهمة للمثاليات - QS الضبابية للجذر التربيعي. بعض الأمثلة التوضيحية تم تقديمها وكذلك تم اثبات أن كل مثالي - SRF-BCK هو مثالي - QS. كما تمت مناقشة الصورة

*Emai: fatma.f.k@ihcoedu.uobaghdad.edu.iq

والصورة العكسية للمثاليات - SRF-QS. أخيرا، تم تقديم الضرب للمثاليات - QS في الجبر - QS وتم اثبات بعض الخصائص المهمة.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [1]. In 1991, Xi [2] applied the idea of fuzzy sets to BCI, BCK, and MV-algebras. Since its inception, the theory of fuzzy sets, ideal theory, and fuzzification have been developed in many directions and applied to various fields. Yager [3] introduced the Pythagorean fuzzy set, an extension of intuitionistic fuzzy sets. Al-shami et al [4] referred to SR-Fuzzy sets. Salih et al [5] introduced a new type of generalized fuzzy set called CR-fuzzy sets and compared them to Pythagorean and Fermatean fuzzy sets. A novel generalized Pythagorean fuzzy set known as (3, 2)-Fuzzy sets were examined in [6]. Senapati and Yager [7] also developed fundamental operations for Fermatean fuzzy sets. The (m; n)-fuzzy set is a subclass of different fuzzy sets, such as the Fermatean fuzzy set, Pythagorean fuzzy set, n-Pythagorean fuzzy set, (3; 2)-fuzzy set and intuitionistic fuzzy set that were proposed and compared by Jun et al [8]. An innovative function on fuzzy real numbers was introduced by Byun et al. [9]. It is defined on the fuzzy real number set R_n and denotes a novel notion of a fuzzy real number. Bashar and Shirin [10] introduced the square root of continuous fuzzy numbers. Also, Chou [11] studied the square root of a triangular fuzzy number. Saeed and Ibrahim [12] studied square roots and their applications in topology. The idea of regularized square-root was introduced by Chu et al [13] and Stucky and Geer [14]. Then, square roots were introduced into computer programs and approximate solutions by Belloni et al. [15] and Jiang [16].

This work introduces the notion of square root fuzzy (Briefly SRF) of QS-ideals on QS-algebras and some important characteristics of square root fuzzy QS-ideals. The image and the inverse image of SRF-QS-ideals are also discussed. Moreover, the product of SRF-QS-ideals in product QS-algebras is introduced.

2. Preliminaries

Definition 2.1 [17]. A non-empty set \wp with a constant 0 and a binary operation $*$ is called a QS-algebra $(\wp, *, 0)$ if: for all $\alpha, \eta, \lambda \in \wp$

- (1) $(\alpha * \eta) * \lambda = (\alpha * \lambda) * \eta$.
- (2) $\alpha * 0 = \alpha$.
- (3) $\alpha * \alpha = 0$.
- (4) $(\alpha * \lambda) * (\alpha * \eta) = \eta * \lambda$.

Definition 2.2 [17]. A relation \leq on a QS-algebra $(\wp, *, 0)$ is defined as $\alpha \leq \lambda$ if and only if $\alpha * \lambda = 0$, then \wp is a partially ordered set.

Proposition 2.3 [17]. Let $(\wp, *, 0)$ be a QS-algebra. Then the following properties hold:

for all $\alpha, \lambda, \eta \in \wp$

1. $\alpha \leq \lambda \Rightarrow \eta * \alpha \leq \eta * \lambda$.
2. $\alpha \leq \lambda$ and $\eta \leq \lambda$ imply $\alpha \leq \eta$.
3. $\alpha * \lambda \leq \eta \Rightarrow \alpha * \eta \leq \lambda$.
4. $(\alpha * \eta) * (\lambda * \eta) \leq \alpha * \lambda$.
5. $\alpha \leq \lambda \Rightarrow \alpha * \eta \leq \lambda * \eta$.
6. $0 * (0 * (0 * \alpha)) = 0 * \alpha$.

Lemma 2.4 [17]. In a QS-algebra $(\wp, *, 0)$. $0 * (\alpha * \lambda) = \lambda * \alpha$ for all $\alpha, \lambda \in \wp$.

Corollary 2.5 [17]. In a QS-algebra $(\wp, *, 0)$. $0 * (0 * \alpha) = \alpha$ for all $\alpha \in \wp$.

Lemma 2.6 [17]. In a QS-algebra $(\wp, *, 0)$. $\alpha * (0 * \lambda) = \lambda * (0 * \alpha)$ for all $\alpha, \lambda \in \wp$

Proposition 2.7 [17]. In a QS-algebra $(\wp, *, 0)$. The following hold for all $\alpha, \lambda, \eta \in \wp$

1. $\alpha * (\alpha * \lambda) = \lambda$.
2. $\alpha * (\alpha * (\alpha * \lambda)) = \alpha * \lambda$.
3. $(\alpha * (\alpha * \lambda)) * \lambda = 0$.
4. $(\alpha * \eta) * (\lambda * \eta) = \nu * \eta$.
5. $(\alpha * \lambda) * = 0 * \lambda$.
6. $\alpha * 0 = 0 \Rightarrow \alpha = 0$.
7. $0 * (\alpha * \lambda) = (0 * \alpha) * (0 * \lambda)$.
8. $\alpha * \lambda = 0, \lambda * \alpha = 0 \Rightarrow \alpha = \lambda$.

Example 2.8[18]. Let $\wp = \{0, l, m\}$ be a set with an operation $*$ is defined as follows:

Table 1: A QS-algebra

*	0	<i>l</i>	<i>m</i>
0	0	<i>m</i>	<i>l</i>
<i>l</i>	<i>l</i>	0	<i>m</i>
<i>m</i>	<i>m</i>	<i>l</i>	0

Then, $(\wp, *, 0)$ is a QS-algebra.

Definition 2.9 [17]. In a QS-algebra $(\wp, *, 0)$. We denote $\alpha \wedge \lambda = \lambda * (\lambda * \alpha)$, $\forall \alpha, \lambda \in \wp$.

Definition 2.10 [18]. The sub set $\varphi \neq I \subseteq \wp$ is called a sub-algebra of \wp if $\alpha * \lambda \in I$ whenever $\alpha, \lambda \in I$.

Definition 2.11[19]. The sub set $\varphi \neq I \subseteq \wp$ is called a QS-ideal of \wp if: $\forall \alpha, \lambda, \eta \in \wp$

- (I₁) $0 \in I$
- (I₂) $(\alpha * \eta) \in I, \eta * \lambda \in I \Rightarrow \alpha * \lambda \in I$

Definition 2.12[1]. A fuzzy set A of \wp is of the form $A = \{(\alpha, \mu_A(\alpha)), \alpha \in \wp\}$, where $\mu_A(\alpha): \wp \rightarrow [0,1]$ is called the degree of existence of the element α in the set A and $0 \leq \mu_A(\alpha) \leq 1$

Definition 2.13 [19]. Let $(\wp, *, 0)$ be a QS-algebra. A fuzzy set μ in $(\wp, *, 0)$ is called a fuzzy QS-ideal if :

- (FQS₁) $\mu(0) \geq \mu(\alpha)$,
- (FQS₂) $\mu(\alpha * \lambda) \geq \min\{\mu((\alpha * \eta)), \mu(\alpha * \lambda)\}$ for all α, λ and $\eta \in \wp$.

Definition 2.14[20]. An Intuitionistic fuzzy set A of a set \wp is the form $A = \{(\alpha, \mu_A(\alpha), \gamma_A(\alpha)), \alpha \in \wp\}$, where the function $\mu_A(\alpha): \wp \rightarrow [0,1]$ is the degree of membership and $\gamma_A(\alpha): \wp \rightarrow [0,1]$ is the degree of non-membership and $0 \leq \mu_A(\alpha) + \gamma_A(\alpha) \leq 1$, for all $\alpha \in \wp$. An intuitionistic fuzzy set A in \wp can be identified as an order pair (μ_A, γ_A) in $I^\wp \times I^\wp$.

Remark 2.15. Let $\mu_A(\alpha): \wp \rightarrow [0,1]$ and $\gamma_A(\alpha): \wp \rightarrow [0,1]$ be fuzzy sets in \wp . Then, the structure

$A = \{(\alpha, \mu_A(\alpha), \gamma_A(\alpha)), \alpha \in \wp\}$ is called:

- (1) An intuitionistic fuzzy set if: $0 \leq \mu_A(\alpha) + \gamma_A(\alpha) \leq 1$, (see [20].)
- (2) A Pythagorean fuzzy set if: $0 \leq \mu_A^2(\alpha) + \gamma_A^2(\alpha) \leq 1$, (see [3].)
- (3) An n-Pythagorean fuzzy set if: $0 \leq \mu_A^n(\alpha) + \gamma_A^n(\alpha) \leq 1$, (see [3].)
- (4) A Fermatean fuzzy set if: $0 \leq \mu_A^3(\alpha) + \gamma_A^3(\alpha) \leq 1$, (see [7])
- (5) (3; 2)-fuzzy set if: $0 \leq \mu_A^3(\alpha) + \gamma_A^2(\alpha) \leq 1$, (see [8], [6])
- (6) (n; m)-fuzzy set if: $0 \leq \mu_A^n(\alpha) + \gamma_A^m(\alpha) \leq 1$, (see [8])
- (7) SR-Fuzzy set if: $0 \leq \mu_A^2(\alpha) + \sqrt{\gamma_A(\alpha)} \leq 1$, (see [8]).

3. SRF-QS-(sub-algebra) ideals on QS-algebras

Definition 3.1. Let \wp be a non-empty set. Then a pair $Y = \sqrt{\mathcal{L}(\alpha)} = (\sqrt{\mathcal{L}(\alpha)}^{(+)}, \sqrt{\mathcal{L}(\alpha)}^{(-)} : \alpha \in \wp)$ is named a square root fuzzy set (briefly, SRFS) of \wp , if $\sqrt{\mathcal{L}}^{(+)} : \wp \rightarrow [0,1]$ and $\sqrt{\mathcal{L}}^{(-)} : \wp \rightarrow [-1,0]$ are mappings, such that $0 \leq \sqrt{\mathcal{L}}^{(+)} \leq 1$, $-1 \leq \sqrt{\mathcal{L}}^{(-)} \leq 0$.

Example 3.2. Define $Y = \{\sqrt{\mathcal{L}(\alpha)} = (\sqrt{\mathcal{L}(\alpha)}^{(+)}, \sqrt{\mathcal{L}(\alpha)}^{(-)} : \alpha \in \wp)\}$ in example 2.8 as follows:

$$\mathcal{L}(0) = \{0.06\}, \mathcal{L}(l) = \{0.05\}, \mathcal{L}(m) = \{0.04\}, \quad \text{since} \quad \sqrt{0.06} = (0.2449489742783178, -0.2449489742783178)$$

$$\sqrt{0.05} = (0.223606797749979, -0.223606797749979)$$

$$\sqrt{0.04} = (0.2, -0.2).$$

It is easy to check that $\sqrt{\mathcal{L}(\alpha)} = (\sqrt{\mathcal{L}(\alpha)}^{(+)}, \sqrt{\mathcal{L}(\alpha)}^{(-)} : \alpha \in \wp)$ is a SRF-set.

Definition 3.3. Let $\sqrt{\mathcal{L}(\alpha)} = (\sqrt{\mathcal{L}(\alpha)}^{(+)}, \sqrt{\mathcal{L}(\alpha)}^{(-)} : \alpha \in \wp)$ and $\sqrt{\Psi(\alpha)} = (\sqrt{\Psi(\alpha)}^{(+)}, \sqrt{\Psi(\alpha)}^{(-)} : \alpha \in \wp)$ be two SRF- sets of \wp , then we say:

$$\mathcal{L} \subseteq \Psi \text{ if and only if } \sqrt{\mathcal{L}(\alpha)}^{(+)} \leq \sqrt{\Psi(\alpha)}^{(+)}, \sqrt{\mathcal{L}(\alpha)}^{(-)} \geq \sqrt{\Psi(\alpha)}^{(-)}.$$

Remark 3.4.

1. Define $\sqrt{\mathcal{L}(\alpha)} = \sqrt{0.2}$ and $\sqrt{\Psi(\alpha)} = \sqrt{0.3}$ be two SRF-sets of \wp , then $\sqrt{\mathcal{L}} \leq \sqrt{\Psi}$, since

$$\sqrt{\mathcal{L}}^{(+)} = 0.4472135954999579 < \sqrt{\Psi}^{(+)} = 0.5477225575051661,$$

$$\sqrt{\mathcal{L}}^{(-)} = 0.4472135954999579 > \sqrt{\Psi}^{(-)} = -0.5477225575051661.$$

2. $\sqrt{\mathcal{L}} = \sqrt{\Psi}$ if and only if $\sqrt{\mathcal{L}}^{\mp} = \sqrt{\Psi}^{\mp}$.

3. The complement of the fuzzy square root set is denoted by

$(\sqrt{\mathcal{L}(\alpha)})^c = (\alpha \in \wp; (\sqrt{\mathcal{L}(\alpha)}^{(+)})^c, (\sqrt{\mathcal{L}(\alpha)}^{(-)})^c)$ and it is a square root fuzzy set in \wp defined by: $(\sqrt{\mathcal{L}(\alpha)})^c = ((\sqrt{\mathcal{L}(\alpha)}^{(-)})^c, (\sqrt{\mathcal{L}(\alpha)}^{(+)})^c; \alpha \in \wp) = (-1 - \sqrt{\mathcal{L}(\alpha)}^{(-)}, 1 - \sqrt{\mathcal{L}(\alpha)}^{(+)})$.

For example. Define $\sqrt{\mathcal{L}(\alpha)} = \sqrt{0.2}$, then

$$\sqrt{\mathcal{L}(\alpha)}^c = (-1 - \sqrt{\mathcal{L}(\alpha)}^{(-)}, 1 - \sqrt{\mathcal{L}(\alpha)}^{(+)}) = (-1 + 0.4472135954999579, 1 - 0.4472135954999579) \approx (-0.55278640450011, 0.5527864045001).$$

4. The intersection of two square root fuzzy sets $\sqrt{\mathcal{L}(\alpha)}$ and $\sqrt{\Psi(\alpha)}$ denoted by

$\sqrt{\mathcal{L}(\alpha)} \cap \sqrt{\Psi(\alpha)}$, is a square root fuzzy set in \wp defined as: for each $\alpha \in \wp$,

$$(\sqrt{\mathcal{L}(\alpha)} \cap \sqrt{\Psi(\alpha)}) = \{ \sqrt{\mathcal{L}(\alpha)}^{(+)} \wedge \sqrt{\Psi(\alpha)}^{(+)}, \sqrt{\mathcal{L}(\alpha)}^{(-)} \vee \sqrt{\Psi(\alpha)}^{(-)} \}.$$

For example. Define $\sqrt{\mathcal{L}(\alpha)} = \sqrt{0.2}$ and $\sqrt{\Psi(\alpha)} = \sqrt{0.3}$ be two SRF- sets of \wp , then

$$(\sqrt{\mathcal{L}(\alpha)} \cap \sqrt{\Psi(\alpha)}) = \{ \sqrt{\mathcal{L}(\alpha)}^{(+)} \wedge \sqrt{\Psi(\alpha)}^{(+)}, \sqrt{\mathcal{L}(\alpha)}^{(-)} \vee \sqrt{\Psi(\alpha)}^{(-)} \} =$$

$$\{0.4472135954999579, -0.4472135954999579\}.$$

5. The union of two square root fuzzy sets $\sqrt{\mathcal{L}(\alpha)}$ and $\sqrt{\Psi(\alpha)}$ denoted by

$\sqrt{\mathcal{L}(\alpha)} \cup \sqrt{\Psi(\alpha)}$ is a square root fuzzy set in \wp defined as: for all $\alpha \in \wp$,

$$(\sqrt{\mathcal{L}(\alpha)} \cup \sqrt{\Psi(\alpha)}) = \{ \sqrt{\mathcal{L}(\alpha)}^{(+)} \vee \sqrt{\Psi(\alpha)}^{(+)}, \sqrt{\mathcal{L}(\alpha)}^{(-)} \wedge \sqrt{\Psi(\alpha)}^{(-)} \}.$$

6. Results. Let $\sqrt{\mathcal{L}}, \sqrt{\Psi}, \sqrt{\Omega}$ be square root fuzzy sets in a set \wp . Then

$$(1) (\sqrt{\mathcal{L}} \cap \sqrt{\mathcal{L}}) = \sqrt{\mathcal{L}}, (\sqrt{\mathcal{L}} \cup \sqrt{\mathcal{L}}) = \sqrt{\mathcal{L}}.$$

$$(2) (\sqrt{\mathcal{L}} \cap \sqrt{\Psi}) = \sqrt{\Psi} \cap \sqrt{\mathcal{L}}, (\sqrt{\mathcal{L}} \cup \sqrt{\Psi}) = \sqrt{\Psi} \cup \sqrt{\mathcal{L}}.$$

$$(3) (\sqrt{\mathcal{L}} \cap \sqrt{\Psi}) \cap \sqrt{\Omega} = \sqrt{\mathcal{L}} \cap (\sqrt{\Psi} \cap \sqrt{\Omega}), (\sqrt{\mathcal{L}} \cup \sqrt{\Psi}) \cup \sqrt{\Omega} = \sqrt{\mathcal{L}} \cup (\sqrt{\Psi} \cup \sqrt{\Omega}).$$

Definition 3.5. Let $\wp \neq \varphi$ be a QS-algebra, and then a SRF-set $\sqrt{\mathcal{L}(\alpha)}$ over a set \wp is called SRF-QS-sub algebras if the following are satisfies

$$(SRF-S_1) \sqrt{\mathcal{L}(\alpha * \eta)}^{(+)} \geq \min\{\sqrt{\mathcal{L}(\alpha)}^{(+)}, \sqrt{\mathcal{L}(\eta)}^{(+)}\} \text{ and}$$

$$(SRF-S_2) \sqrt{\mathcal{L}(\alpha * \eta)}^{(-)} \leq \max\{\sqrt{\mathcal{L}(\alpha)}^{(-)}, \sqrt{\mathcal{L}(\eta)}^{(-)}\}, \text{ where}$$

$$\sqrt{\mathcal{L}(\alpha)}^{(+)}: \wp \rightarrow [0,1], \sqrt{\mathcal{L}(\alpha)}^{(-)}: \wp \rightarrow [-1,0] \text{ such that } 0 \leq \sqrt{\mathcal{L}(\alpha)}^{(+)} \leq 1, \\ -1 \leq \sqrt{\mathcal{L}(\alpha)}^{(-)} \leq 0.$$

Example 3.6. Define $\sqrt{\mathcal{L}}$ in example 2.9 as follows:

$$\mathcal{L}(0) = \{0.06\}, \mathcal{L}(l) = \{0.05\}, \mathcal{L}(m) = \{0.04\}, \text{ then } \sqrt{\mathcal{L}} \text{ is SRF-QS-sub algebras.}$$

Definition 3.7. Let $\wp \neq \varphi$ be QS-algebras, then the SRF set $\sqrt{\mathcal{L}}$ over a set \wp is called SRF-BCK-ideal if: for all $\alpha, \lambda \in \wp$, where BCK-ideal is an ideal of BCK-algebra.

$$(SRF-bck (a)) \sqrt{\mathcal{L}(0)}^{(+)} \geq \sqrt{\mathcal{L}(\alpha)}^{(+)}, \sqrt{\mathcal{L}(0)}^{(-)} \leq \sqrt{\mathcal{L}(\alpha)}^{(-)},$$

$$(SRF-bck (b)) \sqrt{\mathcal{L}(\alpha)}^{(+)} \geq \min\{\sqrt{\mathcal{L}(\alpha * \lambda)}^{(+)}, \sqrt{\mathcal{L}(\lambda)}^{(+)}\},$$

$$\sqrt{\mathcal{L}(\alpha)}^{(-)} \leq \max\{\sqrt{\mathcal{L}(\alpha * \lambda)}^{(-)}, \sqrt{\mathcal{L}(\lambda)}^{(-)}\}, \text{ such that, } 0 \leq \sqrt{\mathcal{L}(\alpha)}^{(+)} \leq 1, \\ -1 \leq \sqrt{\mathcal{L}(\alpha)}^{(-)} \leq 0.$$

Definition 3.8. Let $\wp \neq \varphi$ be QS - algebras, then the SRF-fuzzy set $\sqrt{\mathcal{L}}$ over a set \wp is called SRF-QS-ideal if: for all $\alpha, \lambda, \eta \in \wp$

$$(SRF-QSI_0): \sqrt{\mathcal{L}(0)}^{(+)} \geq \sqrt{\mathcal{L}(\alpha)}^{(+)}, \sqrt{\mathcal{L}(0)}^{(-)} \leq \sqrt{\mathcal{L}(\alpha)}^{(-)},$$

$$(SRF-QS I_1): \sqrt{\mathcal{L}(\alpha * \lambda)}^{(+)} \geq \min\{\sqrt{\mathcal{L}(\alpha * \eta)}^{(+)}, \sqrt{\mathcal{L}(\eta * \lambda)}^{(+)}\},$$

$$\sqrt{\mathcal{L}(\alpha * \lambda)}^{(-)} \leq \max\{\sqrt{\mathcal{L}(\alpha * \eta)}^{(-)}, \sqrt{\mathcal{L}(\eta * \lambda)}^{(-)}\}, \text{ such that, } 0 \leq \sqrt{\mathcal{L}(\alpha)}^{(+)} \leq 1, \\ -1 \leq \sqrt{\mathcal{L}(\alpha)}^{(-)} \leq 0.$$

Example 3.9. Let $\wp = \{0, h, p, u\}$ be a set and $*$ defined in table 2:

Table 2: SRF-QS-ideal

*	0	h	p	u
0	0	<i>h</i>	<i>p</i>	<i>u</i>
h	<i>h</i>	0	<i>u</i>	<i>p</i>
p	<i>p</i>	<i>u</i>	0	<i>h</i>
u	<i>u</i>	<i>p</i>	<i>h</i>	0

Then $(\wp, * 0)$ is a QS-algebra. Define $\sqrt{\mathcal{L}}$ as follows:

$$\mathcal{L}(0) = \{0.04\}, \mathcal{L}(h) = \{0.03\}, \mathcal{L}(p) = \{0.02\}, \mathcal{L}(u) = \{0.01\}.$$

We can prove that $\sqrt{\mathcal{L}}$ is SRF-QS-ideal on QS-algebra \wp .

Lemma 3.10. If $\sqrt{\mathcal{L}}$ is SRF -QS-sub algebra on QS- algebra \wp , then

$$\sqrt{\mathcal{L}(0)}^{(+)} \geq \sqrt{\mathcal{L}(\alpha)}^{(+)} \text{ and } \sqrt{\mathcal{L}(0)}^{(-)} \leq \sqrt{\mathcal{L}(\alpha)}^{(-)}$$

Proof. In (Definition 3.5) put $= \eta$,

$$(SRF-S_1) \sqrt{\mathcal{L}(\alpha * \alpha)}^{(+)} = \sqrt{\mathcal{L}(0)}^{(+)} \geq \min\{\sqrt{\mathcal{L}(\alpha)}^{(+)}, \sqrt{\mathcal{L}(\alpha)}^{(+)}\} = \sqrt{\mathcal{L}(\alpha)}^{(+)}, \text{ and}$$

$$(\text{SRF-S}_2) \sqrt{\mathcal{L}(\alpha * \alpha)}^- = \sqrt{\mathcal{L}(0)}^{(-)} \leq \max \{ \sqrt{\mathcal{L}(\alpha)}^{(-)}, \sqrt{\mathcal{L}(\alpha)}^{(-)} \} = \sqrt{\mathcal{L}(\alpha)}^{(-)}.$$

Lemma 3.11. Let $\sqrt{\mathcal{L}}$ be SRF-QS-ideal of \wp . If $\alpha \leq \eta$ in \wp , then

$$\sqrt{\mathcal{L}(\alpha)}^{(+)} \geq \sqrt{\mathcal{L}(\eta)}^{(+)} \text{ and } \sqrt{\mathcal{L}(\alpha)}^{(-)} \leq \sqrt{\mathcal{L}(\eta)}^{(-)}, \forall \alpha, \eta \in \wp.$$

Proof. Let $\alpha, \lambda \in \wp$ be such that $\alpha \leq \eta$, then $\alpha * \eta = 0$. Put $\lambda = 0$, we have from (SRF-QSI₀):

$$\sqrt{\mathcal{L}(\alpha)}^{(+)} \geq \sqrt{\mathcal{L}(\eta)}^{(+)} , \sqrt{\mathcal{L}(\alpha)}^{(-)} \leq \sqrt{\mathcal{L}(\eta)}^{(-)}, \text{ and}$$

$$(\text{SRF-QS I}_1): \sqrt{\mathcal{L}(\alpha * 0)}^{(+)} = \sqrt{\mathcal{L}(\alpha)}^{(+)} \geq \min \{ \sqrt{\mathcal{L}(0)}^{(+)}, \sqrt{\mathcal{L}(\alpha)}^{(+)} \} = \sqrt{\mathcal{L}(\alpha)}^{(+)} ,$$

$$\sqrt{\mathcal{L}(\alpha * 0)}^{(-)} = \sqrt{\mathcal{L}(\alpha)}^{(-)} \leq \max \{ \sqrt{\mathcal{L}(0)}^{(-)}, \sqrt{\mathcal{L}(\alpha)}^{(-)} \} = \sqrt{\mathcal{L}(\alpha)}^{(-)} .$$

Lemma 3.12. Let $\sqrt{\mathcal{L}}$ be SRF-QS-ideal of \wp , if $\alpha * \lambda \leq \eta$, then $\sqrt{\mathcal{L}(\alpha)}^{(+)} \geq \min \{ \sqrt{\mathcal{L}(\lambda)}^{(+)}, \sqrt{\mathcal{L}(\eta)}^{(+)} \}, \sqrt{\mathcal{L}(\alpha)}^{(-)} \leq \max \{ \sqrt{\mathcal{L}(\lambda)}^{(-)}, \sqrt{\mathcal{L}(\eta)}^{(-)} \}.$

Proof. Assume that $\alpha * \lambda \leq \eta$ then $\alpha * \eta \leq \lambda$ holds in \wp . By (Lemma 3. 11), we have

$$\sqrt{\mathcal{L}(\alpha * \eta)}^{(+)} \geq \sqrt{\mathcal{L}(\lambda)}^{(+)} \text{ and } \sqrt{\mathcal{L}(\alpha * \eta)}^{(-)} \leq \sqrt{\mathcal{L}(\lambda)}^{(-)} .$$

Thus, put $\lambda = 0$ in (definition 3.7.) and using lemma 3.10, then we get from

$$(\text{SRF-QSI}_0) : \sqrt{\mathcal{L}(0)}^{(+)} \geq \sqrt{\mathcal{L}(\alpha)}^{(+)} \text{ and } \sqrt{\mathcal{L}(0)}^{(-)} \leq \sqrt{\mathcal{L}(\alpha)}^{(-)}$$

(SRF-QS I₁):

$$\sqrt{\mathcal{L}(\alpha * 0)}^{(+)} = \sqrt{\mathcal{L}(\alpha)}^{(+)} \geq \min \{ \sqrt{\mathcal{L}(\alpha * \eta)}^{(+)}, \sqrt{\mathcal{L}(\eta * 0)}^{(+)} \} \geq$$

$$\min \{ \sqrt{\mathcal{L}(\lambda)}^{(+)}, \sqrt{\mathcal{L}(\eta)}^{(+)} \}, \sqrt{\mathcal{L}(\alpha * 0)}^{(+)} = \sqrt{\mathcal{L}(\alpha)}^{(+)} \geq$$

$$\min \{ \sqrt{\mathcal{L}(\alpha * \eta)}^{(+)}, \sqrt{\mathcal{L}(\eta * 0)}^{(+)} \} \geq \min \{ \sqrt{\mathcal{L}(\lambda)}^{(+)}, \sqrt{\mathcal{L}(\eta)}^{(+)} \}.$$

Theorem 3.13. In BCK- algebra, every SRF-BCK-ideal of \wp is an SRF QS- ideal of \wp .

Proof. Let $\sqrt{\mathcal{L}}$ be SRF-BCK-ideal of \wp and $\alpha, \lambda, \eta \in \wp$, then $\sqrt{\mathcal{L}(0)}^{(+)} \geq \sqrt{\mathcal{L}(\alpha)}^{(+)} \text{ and } \sqrt{\mathcal{L}(0)}^{(-)} \leq \sqrt{\mathcal{L}(\alpha)}^{(-)}$, it is (SRF-bck (a))

$$(\text{SRF-bck (b)}) \sqrt{\mathcal{L}(\alpha)}^{(+)} \geq \min \{ \sqrt{\mathcal{L}(\alpha * \lambda)}^{(+)}, \sqrt{\mathcal{L}(\lambda)}^{(+)} \},$$

$\sqrt{\mathcal{L}(\alpha)}^{(-)} \leq \max \{ \sqrt{\mathcal{L}(\alpha * \lambda)}^{(-)}, \sqrt{\mathcal{L}(\lambda)}^{(-)} \}.$ Now, put $\alpha * \lambda$ instate of α and $\eta * \lambda$ instate of λ in (SRF-bck) (a) and (SRF-bck)(b) we have (SRF-bck (b))

$$\sqrt{\mathcal{L}(\alpha * \lambda)}^{(+)} \geq \min \{ \sqrt{\mathcal{L} \left(\frac{(\alpha * \lambda) * (\eta * \lambda) \leq \alpha * \eta \text{ by proposition 2.3(4)}}{(\alpha * \lambda) * (\eta * \lambda)} \right)}^{(+)} ,$$

$$\sqrt{\mathcal{L}(\eta * \lambda)}^{(+)} \geq \{ \sqrt{\mathcal{L} \left(\frac{(\alpha * \eta) \text{ we can prove that}}{(\alpha * \eta)} \right)}^{(+)} , \sqrt{\mathcal{L}(\eta * \lambda)}^{(+)} \}.$$

Similarly, we can prove that

$$\sqrt{\mathcal{L}(\eta * \lambda)}^{(+)} \geq \{ \sqrt{\mathcal{L} \left(\frac{(\alpha * \eta) \text{ we can prove that}}{(\alpha * \eta)} \right)}^{(+)} , \sqrt{\mathcal{L}(\eta * \lambda)}^{(+)} \}, \text{ then } \sqrt{\mathcal{L}} \text{ is SRF-QS-ideal of } \wp.$$

Theorem 3.14. If $\sqrt{\mathcal{L}}$ is SRF- QS-ideal of \wp , then the set

$$\wp = \{ (v, \sqrt{\mathcal{L}(0)}^{(+)} = \sqrt{\mathcal{L}(v)}^{(+)}, \sqrt{\mathcal{L}(0)}^{(-)} = \sqrt{\mathcal{L}(v)}^{(-)}; v \in \wp \} \text{ is a QS-ideal of } \wp.$$

Proof. Let $v * \eta, \eta * \lambda \in \wp$. Then

$$\sqrt{\mathcal{L}(v * \eta)}^{(+)} = \sqrt{\mathcal{L}(0)}^{(+)} = \sqrt{\mathcal{L}(\eta * \lambda)}^{(+)} \text{ and } \sqrt{\mathcal{L}(v * \eta)}^{(-)} = \sqrt{\mathcal{L}(0)}^{(-)} = \sqrt{\mathcal{L}(\eta * \lambda)}^{(-)}, \text{ we have (SRF-QS I}_1\text{):}$$

$$\begin{aligned}
\sqrt{\mathcal{L}(v * \lambda)}^{(+)} &\geq \min \left\{ \sqrt{\mathcal{L}(v * \eta)}^{(+)}, \sqrt{\mathcal{L}(\eta * \lambda)}^{(+)} \right\} \\
&= \min \left\{ \sqrt{\mathcal{L}(0)}^{(+)}, \sqrt{\mathcal{L}(0)}^{(+)} \right\} = \sqrt{\mathcal{L}(0)}^{(+)} \text{, and} \\
\sqrt{\mathcal{L}(v * \lambda)}^{(-)} &\leq \max \left\{ \sqrt{\mathcal{L}(v * \eta)}^{(-)}, \sqrt{\mathcal{L}(\eta * \lambda)}^{(-)} \right\} \\
&= \max \left\{ \sqrt{\mathcal{L}(0)}^{(-)}, \sqrt{\mathcal{L}(0)}^{(-)} \right\} = \sqrt{\mathcal{L}(0)}^{(-)}.
\end{aligned}$$

By combining above with definition 3.7, we get

$$\begin{aligned}
\sqrt{\mathcal{L}(0)}^{(+)} &\geq \sqrt{\mathcal{L}(v)}^{(+)} \text{ and } \sqrt{\mathcal{L}(0)}^{(-)} \leq \sqrt{\mathcal{L}(v)}^{(-)}. \text{ So } \sqrt{\mathcal{L}(v * \eta)}^{(+)} = \sqrt{\mathcal{L}(0)}^{(+)} \text{ and} \\
\sqrt{\mathcal{L}(v * \eta)}^{(-)} &= \sqrt{\mathcal{L}(0)}^{(-)}, \text{ then } v * \eta \in \wp. \text{ Hence, } \wp \text{ is a QS-ideal of } \wp.
\end{aligned}$$

Proposition 3.15. Let $(M_i)_{i \in \Lambda} = \{(v, (\sqrt{\mathcal{L}(v)})_{M_i}; v \in \wp\}$ be a family of SRF-QS-ideals of \wp , then $\bigcap M_i, i \in \Lambda$ is SRF-QS-ideal of a QS-algebra \wp .

Proof. Let $(M_i)_{i \in \Lambda}$ be a family of SRF-QS-ideals of a QS-algebras, then for any $v, \lambda, \eta \in \wp$ we get

$$\begin{aligned}
(\cap (\sqrt{\mathcal{L}(0)}^{(+)})_{M_i}) &= \inf \left((\sqrt{\mathcal{L}(0)}^{(+)})_{M_i} \right) \geq \inf \left((\sqrt{\mathcal{L}(v)}^{(+)})_{M_i} \right) = (\cap (\sqrt{\mathcal{L}(v)}^{(+)})_{M_i}) \\
(\cup (\sqrt{\mathcal{L}(0)}^{(-)})_{M_i}) &= \sup \left((\sqrt{\mathcal{L}(0)}^{(-)})_{M_i} \right) \leq \sup \left((\sqrt{\mathcal{L}(v)}^{(-)})_{M_i} \right) = (\cup (\sqrt{\mathcal{L}(v)}^{(-)})_{M_i}).
\end{aligned}$$

Now, we have

$$\begin{aligned}
(\cap (\sqrt{\mathcal{L}(v * \lambda)}^{(+)})_{M_i}) &= \inf \left((\sqrt{\mathcal{L}(v * \lambda)}^{(+)})_{M_i} \right) \geq \\
&\inf \left\{ \min \left\{ (\sqrt{\mathcal{L}(v * \eta)}^{(+)})_{M_i}, (\sqrt{\mathcal{L}(\eta * \lambda)}^{(+)})_{M_i} \right\} \right\} = \\
&\min \left\{ \inf \left\{ (\sqrt{\mathcal{L}(v * \eta)}^{(+)})_{M_i}, (\sqrt{\mathcal{L}(\eta * \lambda)}^{(+)})_{M_i} \right\} \right\} = \\
&\min \left\{ (\cap (\sqrt{\mathcal{L}(v * \eta)}^{(+)})_{M_i}, (\cap (\sqrt{\mathcal{L}(\eta * \lambda)}^{(+)})_{M_i}) \right\}. \text{ And} \\
(\cup (\sqrt{\mathcal{L}(v * \lambda)}^{(-)})_{M_i}) &= \sup \left((\sqrt{\mathcal{L}(v * \lambda)}^{(-)})_{M_i} \right) \leq \\
&\sup \left\{ \max \left\{ (\sqrt{\mathcal{L}(v * \eta)}^{(-)})_{M_i}, (\sqrt{\mathcal{L}(\eta * \lambda)}^{(-)})_{M_i} \right\} \right\} = \\
&\max \left\{ \sup \left\{ (\sqrt{\mathcal{L}(v * \eta)}^{(-)})_{M_i}, (\sqrt{\mathcal{L}(\eta * \lambda)}^{(-)})_{M_i} \right\} \right\} \\
&= \max \left\{ \cup (\sqrt{\mathcal{L}(v * \eta)}^{(-)})_{M_i}, (\cup (\sqrt{\mathcal{L}(\eta * \lambda)}^{(-)})_{M_i}) \right\}. \text{ Hence, } \bigcap M_i, i \in \Lambda \text{ is SRF QS-ideal.}
\end{aligned}$$

4. The image (the inverse image) of SRF QS-ideal

Definition 4.1. Let $(\wp, *, 0)$ and $(\mathcal{H}, \hat{*}, \hat{0})$ be QS-algebras. A mapping $f: \wp \rightarrow \mathcal{H}$ is said to be a QS-homomorphism if $f(v * \lambda) = f(v) \hat{*} f(\lambda)$, for all $v, \lambda \in \wp$.

For example: using the set $\wp = \{0, h, p, u\}$ in the Example 3.9 and define a set $\mathcal{H} = \{0', a', b', c'\}$ in the following table in table 3:

Table 3: A QS-algebra

$*$	$\mathbf{0}'$	a'	b'	c'
$\mathbf{0}'$	$0'$	a'	b'	c'
a'	a'	$0'$	c'	b'
b'	b'	c'	$0'$	a'
c'	c'	b'	a'	$0'$

A mapping $f: \wp \rightarrow \mathcal{H}$ is defined as follows $f(v) = v'$, then f is a QS-homomorphism since $f(h * p) = f(h) = c' = f(h) * f(p) = a' * b'$ and so on.

Definition 4.2. Let \wp, \mathcal{H} be two QS-algebras and ω be a fuzzy subset of \wp , and β be a fuzzy subset of \mathcal{H} and $f: \wp \rightarrow \mathcal{H}$ a QS-homomorphism. The image of \mathcal{L} under f is defined by

$$f(\mathcal{L})(\lambda) = \begin{cases} \sup_{v \in f^{-1}(\lambda)} \mathcal{L}(v) & \text{if } f^{-1}(\lambda) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

The inverse image of β under f is defined by:

$$f^{-1}(\beta)(v) = \beta(f(v)), \text{ for all } v \in \wp.$$

Definition 4.3. Let $f: \wp \rightarrow \mathcal{H}$ be a homomorphism of QS-algebras for any SRF-QS-ideal

$$\sqrt{\mathcal{L}} = \{\sqrt{\mathcal{L}(v)} = (\sqrt{\mathcal{L}(v)}^{(-)}, \sqrt{\mathcal{L}(v)}^{(+)}) : v \in \wp\} \text{ of } \mathcal{H}. \text{ Define a new SRFQS-ideal}$$

$$\sqrt{\mathcal{L}}^f = \{v, (\sqrt{\mathcal{L}(v)}^{(-)})^f, (\sqrt{\mathcal{L}(v)}^{(+)})^f : v \in \wp\} \text{ in } \wp \text{ by}$$

$$(\sqrt{\mathcal{L}(v)}^{(\pm)})^f = \sqrt{\mathcal{L}(f(v))}^{(\pm)}, \text{ for all } v \in \wp.$$

Theorem 4.4. Let $f: \wp \rightarrow \mathcal{H}$ be a QS-homomorphism. If

$$\sqrt{\mathcal{L}} = \{\sqrt{\mathcal{L}(v)} = (\sqrt{\mathcal{L}(v)}^{(-)}, \sqrt{\mathcal{L}(v)}^{(+)}) : v \in \wp\} \text{ is SRF-QS-ideal of } \mathcal{H}, \text{ then}$$

$$\sqrt{\mathcal{L}}^f = \{v, (\sqrt{\mathcal{L}(v)}^{(-)})^f, (\sqrt{\mathcal{L}(v)}^{(+)})^f : v \in \wp\} \text{ is SRF-QS-ideal of } \wp.$$

Proof. Notes that: (1) $(\sqrt{\mathcal{L}(v)}^{(+)})^f = \sqrt{\mathcal{L}(f(v))}^{(+)} \leq \sqrt{\mathcal{L}(f(0))}^{(+)} = (\sqrt{\mathcal{L}(0)}^{(+)})^f$
 $(\sqrt{\mathcal{L}(v * \lambda)}^{(+)})^f = \sqrt{\mathcal{L}(f(v * \lambda))}^{(+)} \geq \min \{\sqrt{\mathcal{L}(f(v) * f(\eta))}^{(+)}, \sqrt{\mathcal{L}(f(\eta) * f(\lambda))}^{(+)}\}$
 $= \min \{\sqrt{\mathcal{L}(f(v * \eta))}^{(+)}, \sqrt{\mathcal{L}(f(\eta * \lambda))}^{(+)}\}$
 $= \min \{(\sqrt{\mathcal{L}(v * \eta)}^{(+)})^f, (\sqrt{\mathcal{L}(\eta * \lambda)}^{(+)})^f\} \text{ and}$
 $(\sqrt{\mathcal{L}(v * \lambda)}^{(-)})^f = \sqrt{\mathcal{L}(f(v * \lambda))}^{(-)} \leq$
 $\max \{\sqrt{\mathcal{L}(f(v) * f(\eta))}^{(-)}, \sqrt{\mathcal{L}(f(\eta) * f(\lambda))}^{(-)}\} = \max \{\sqrt{\mathcal{L}(f(v * \eta))}^{(-)}, \sqrt{\mathcal{L}(f(\eta * \lambda))}^{(-)}\}$
 $= \max \{(\sqrt{\mathcal{L}(v * \eta)}^{(-)})^f, (\sqrt{\mathcal{L}(\eta * \lambda)}^{(-)})^f\}. \text{ Hence } \sqrt{\mathcal{L}}^f \text{ is SRF-QS-ideal.}$

Theorem 4.5. Let $f: \wp \rightarrow \mathcal{H}$ be an epimorphism of QS-algebras.

If $\sqrt{\mathcal{L}}^f = \{v, (\sqrt{\mathcal{L}(v)}^{(-)})^f, (\sqrt{\mathcal{L}(v)}^{(+)})^f : v \in \wp\}$ is SRF-QS-ideal of \wp , then

$$\sqrt{\mathcal{L}} = \{\sqrt{\mathcal{L}(v)} = (\sqrt{\mathcal{L}(v)}^{(-)}, \sqrt{\mathcal{L}(v)}^{(+)}) : v \in \wp\} \text{ is SRF-QS-ideal of } \mathcal{H}.$$

Proof. For any $h \in \mathcal{H}$, there exists $v \in \wp$ such that $f(v) = h$. Then

$$\sqrt{\mathcal{L}(h)}^{(+)} = \sqrt{\mathcal{L}(f(v))}^{(+)} = (\sqrt{\mathcal{L}(v)}^{(+)})^f \leq (\sqrt{\mathcal{L}(0)}^{(+)})^f = \sqrt{\mathcal{L}(f(0))}^{(+)} = (\sqrt{\mathcal{L}(0)}^{(+)})^f,$$

$$\sqrt{\mathcal{L}(h)}^{(-)} = \sqrt{\mathcal{L}(f(v))}^{(-)} = (\sqrt{\mathcal{L}(v)}^{(-)})^f \geq (\sqrt{\mathcal{L}(0)}^{(-)})^f = \sqrt{\mathcal{L}(f(0))}^{(-)} = (\sqrt{\mathcal{L}(0)}^{(-)})^f.$$

Let $h, w, u \in \mathcal{H}$, then $f(v) = h, f(\lambda) = w, f(\eta) = u$, for some $v, \lambda, \eta \in \wp$.

It follows that

$$\begin{aligned}
\sqrt{\mathcal{L}(h * w)}^{(+)} &= \sqrt{\mathcal{L}(f(v) * f(\lambda))}^{(+)} = (\sqrt{\mathcal{L}(v * \lambda)}^{(+)})^f \geq \\
\min \left\{ (\sqrt{\mathcal{L}(v * \eta)}^{(+)})^f, (\sqrt{\mathcal{L}(\eta * \lambda)}^{(+)})^f \right\} &= \min \left\{ \sqrt{\mathcal{L}(f(v * \eta))}^{(+)}, \sqrt{\mathcal{L}(f(\eta * \lambda))}^{(+)} \right\} = \\
\min \left\{ \sqrt{\mathcal{L}(f(v) * f(\eta))}^{(+)}, \sqrt{\mathcal{L}(f(\eta) * f(\lambda))}^{(+)}) \right\} &= \min \left\{ \sqrt{\mathcal{L}(h * u)}^{(+)}, \sqrt{\mathcal{L}(u * w)}^{(+)}) \right\}, \text{ and} \\
\sqrt{\mathcal{L}(h * w)}^{(-)} &= \sqrt{\mathcal{L}(f(v) * f(\lambda))}^{(-)} = (\sqrt{\mathcal{L}(v * \lambda)}^{(-)})^f \leq \\
\max \left\{ (\sqrt{\mathcal{L}(v * \eta)}^{(-)})^f, (\sqrt{\mathcal{L}(\eta * \lambda)}^{(-)})^f \right\} &= \max \left\{ \sqrt{\mathcal{L}(f(v * \eta))}^{(-)}, \sqrt{\mathcal{L}(f(\eta * \lambda))}^{(-)} \right\} = \\
\max \left\{ \sqrt{\mathcal{L}(f(v) * f(\eta))}^{(-)}, \sqrt{\mathcal{L}(f(\eta) * f(\lambda))}^{(-)} \right\} &= \max \left\{ \sqrt{\mathcal{L}(h * u)}^{(-)}, \sqrt{\mathcal{L}(u * w)}^{(-)} \right\} .
\end{aligned}$$

Hence $\sqrt{\mathcal{L}}$ is SRF-QS-ideal of \mathcal{H} .

Definition 4.6. Let $\sqrt{\mathcal{L}_1} = \{\sqrt{\mathcal{L}_1(v)} = (\sqrt{\mathcal{L}_1(v)}^{(-)}, \sqrt{\mathcal{L}_1(v)}^{(+)}) : v \in \wp\}$ and $\sqrt{\mathcal{L}_2} = \{\sqrt{\mathcal{L}_2(v)} = (\sqrt{\mathcal{L}_2(v)}^{(-)}, \sqrt{\mathcal{L}_2(v)}^{(+)}) : v \in \wp\}$ be two SRF-fuzzy sets of \wp , the product $\sqrt{\mathcal{L}_1} \times \sqrt{\mathcal{L}_2}$ is defined by $\sqrt{\mathcal{L}_1 \times \mathcal{L}_2(v, \lambda)}^{(+)} = \min \left\{ \sqrt{\mathcal{L}_1(v)}^{(+)}, \sqrt{\mathcal{L}_2(\lambda)}^{(+)}) \right\}$ and $\sqrt{\mathcal{L}_1 \times \mathcal{L}_2(v, \lambda)}^{(-)} = \max \left\{ \sqrt{\mathcal{L}_1(v)}^{(-)}, \sqrt{\mathcal{L}_2(\lambda)}^{(-)} \right\}$, for all $v, \lambda \in \wp$.

Remark 4.7. Let \wp and \mathcal{H} be two QS-algebras, we define $*$ on $\wp \times \mathcal{H}$ by the following: $\forall (v, \lambda), (\rho, \tau) \in \wp \times \mathcal{H}, (v, \lambda) * (\rho, \tau) = (v * \rho, \lambda * \tau)$. Clearly $(\wp \times \mathcal{H}, *, (0, 0))$ is a QS-algebra.

Proposition 4.8. If $\sqrt{\mathcal{L}_1} = \{\sqrt{\mathcal{L}_1(v)} = (\sqrt{\mathcal{L}_1(v)}^{(-)}, \sqrt{\mathcal{L}_1(v)}^{(+)}) : v \in \wp\}$ and $\sqrt{\mathcal{L}_2} = \{\sqrt{\mathcal{L}_2(v)} = (\sqrt{\mathcal{L}_2(v)}^{(-)}, \sqrt{\mathcal{L}_2(v)}^{(+)}) : v \in \wp\}$ be two SRF QS-ideals of \wp , then $\sqrt{\mathcal{L}_1} \times \sqrt{\mathcal{L}_2}$ is SRF-QS-ideal of $\wp \times \mathcal{H}$.

Proof. $\sqrt{\mathcal{L}_1 \times \mathcal{L}_2(0, 0)}^{(+)} = \min \left\{ \sqrt{\mathcal{L}_1(0)}^{(+)}, \sqrt{\mathcal{L}_2(0)}^{(+)}) \right\} \geq \min \left\{ \sqrt{\mathcal{L}_1(v)}^{(+)}, \sqrt{\mathcal{L}_2(\lambda)}^{(+)}) \right\} = \sqrt{\mathcal{L}_1 \times \mathcal{L}_2(0, 0)(v, \eta)}^{(+)}$.

For all $v, \lambda \in \wp$. let $(v_1, v_2), (\lambda_1, \lambda_2), (\eta_1, \eta_2) \in \wp \times \wp$, then

$$\begin{aligned}
\min \left\{ \sqrt{(\mathcal{L}_1 \times \mathcal{L}_2)(v_1, v_2) * (\eta_1, \eta_2)}^{(+)}, \sqrt{(\mathcal{L}_1 \times \mathcal{L}_2)(\eta_1, \eta_2) * (\lambda_1, \lambda_2)}^{(+)}) \right\} &= \\
\min \left\{ \sqrt{(\mathcal{L}_1 \times \mathcal{L}_2)(v_1 * \eta_1, v_2 * \eta_2)}^{(+)}, \sqrt{(\mathcal{L}_1 \times \mathcal{L}_2)(\eta_1 * \lambda_1, \eta_2 * \lambda_2)}^{(+)}) \right\} &= \\
= \min \left\{ \min \left\{ \sqrt{\mathcal{L}_1(v_1 * \eta_1)}^{(+)}, \sqrt{\mathcal{L}_2(v_2 * \eta_2)}^{(+)}) \right\}, \min \left\{ \sqrt{\mathcal{L}_1(\eta_1 * \lambda_1)}^{(+)}, \sqrt{\mathcal{L}_2(\eta_2 * \lambda_2)}^{(+)}) \right\} \right\} &= \\
= \min \left\{ \min \left\{ \sqrt{\mathcal{L}_1(v_1 * \eta_1)}^{(+)}, \sqrt{\mathcal{L}_1(\eta_1 * \lambda_1)}^{(+)}) \right\}, \min \left\{ \sqrt{\mathcal{L}_2(v_2 * \eta_2)}^{(+)}, \sqrt{\mathcal{L}_2(\eta_2 * \lambda_2)}^{(+)}) \right\} \right\} &\leq \\
\min \left\{ \sqrt{\mathcal{L}_1(v_1 * \lambda_1)}^{(+)}, \sqrt{\mathcal{L}_2(v_2 * \lambda_2)}^{(+)}) \right\} &= \sqrt{(\mathcal{L}_1 \times \mathcal{L}_2)(v_1 * \lambda_1, v_2 * \lambda_2)}^{(+)} . \text{ Also,} \\
\max \left\{ \sqrt{(\mathcal{L}_1 \times \mathcal{L}_2)(v_1, v_2) * (\eta_1, \eta_2)}^{(-)}, \sqrt{(\mathcal{L}_1 \times \mathcal{L}_2)(\eta_1, \eta_2) * (\lambda_1, \lambda_2)}^{(-}) \right\} &= \\
\max \left\{ \sqrt{(\mathcal{L}_1 \times \mathcal{L}_2)(v_1 * \eta_1, v_2 * \eta_2)}^{(-)}, \sqrt{(\mathcal{L}_1 \times \mathcal{L}_2)(\eta_1 * \lambda_1, \eta_2 * \lambda_2)}^{(-}) \right\} &= \\
\max \left\{ \max \left\{ \sqrt{\mathcal{L}_1(v_1 * \eta_1)}^{(-)}, \sqrt{\mathcal{L}_2(v_2 * \eta_2)}^{(-}) \right\}, \max \left\{ \sqrt{\mathcal{L}_1(\eta_1 * \lambda_1)}^{(-)}, \sqrt{\mathcal{L}_2(\eta_2 * \lambda_2)}^{(-}) \right\} \right\} &
\end{aligned}$$

$$\begin{aligned}
&= \\
&\max\{\max\{\sqrt{\mathcal{L}_1(v_1 * \eta_1)}^{(-)}, \sqrt{\mathcal{L}_1(\eta_1 * \lambda_1)}^{(-)}\}, \max\{\sqrt{\mathcal{L}_2(v_2 * \eta_2)}^{(-)}, \sqrt{\mathcal{L}_2(\eta_2 * \lambda_2)}^{(-)}\}\} \geq \\
&\max\left\{\sqrt{\mathcal{L}_1(v_1 * \lambda_1)}^{(-)}, \sqrt{\mathcal{L}_2(v_2 * \lambda_2)}^{(-)}\right\} = \sqrt{(\mathcal{L}_1 \times \mathcal{L}_2)(v_1 * \lambda_1, v_2 * \lambda_2)}^{(-)}.
\end{aligned}$$

5. Disclosure and conflict of interest

The authors declare that they have no conflicts of interest.

Conclusions

In this work, we have study the notion of a square root fuzzy set of QS -ideals on QS -algebra and investigated its properties. Furthermore, we have study the homomorphic image and the inverse image of square root fuzzy-QS-ideals of a QS-algebra under homomorphism of QS -algebras. The main purpose of our future work is to study the Cartesian product of square root fuzzy-QS-ideals in Cartesian product QS-algebras, the topological space for square root fuzzy-QS-ideals of QS-algebra and we apply the concept of linear Diophantine square root fuzzy sets in QS-algebras. Finally, we study the novel correlation coefficient between two fuzzy ideals square root, for more applications need to be discussed in our further study.

References

- [1] L. A. Zadeh, "Fuzzy sets," *Information and Control*, vol. 8, no.3, pp. 338-353, 1965.
- [2] O. G. Xi, "Fuzzy BCK-algebras," *Mathematica Japonica*, vol. 36, no. 5, pp. 935-942, 1991.
- [3] R. R. Yager, "Pythagorean membership grades in multicriteria decision making," *IEEE Transactions on fuzzy systems*, vol.22, no. 4, pp. 958-965, 2013.
- [4] T.M. Al-Shami, H. Z. Ibrahim , A.A. Azzam and A. I. EL-Maghribi, "SR-Fuzzy Sets and Their Weighted Aggregated Operators in Application to Decision-Making," *Journal of Function Spaces*, vol. 2022, PP. 1-14, 2022.
- [5] Y. A. Salih and H. Z. Ibrahim," CR-fuzzy sets and their applications," *The Journal of Mathematics and Computer Science*, vol. 28, no. 2, pp. 171-181, 2022.
- [6] S. S. Ahn, H. S. Kim, S. Z. Song and Y. B. Jun, "The (2, 3)-fuzzy set and its application in BCK-algebras and BCI-algebras," *Journal of Mathematics and Computer Science*, vol. 27, pp. 118-130, 2022.
- [7] T. Senapati and R. R. Yager, "Fermatean fuzzy sets," *Journal of Ambient Intelligence and Humanized Computing*, vol. 11, pp. 663-674, 2020.
- [8] Y. B. Jun and K. Hur," The (m; n)-fuzzy set and its application in BCK-algebras," *Annals of Fuzzy Mathematics and Informatics*, vol. 24, no. 1, pp. 17-29, 2022.
- [9] T. Byun, E. Lee and J. H. Yoon," Delta root: a new definition of a square root of fuzzy numbers," *Soft computing*, vol. 26, no. 9, pp. 4163-4169, 2022.
- [10] M. A. Bashar and S. Shirin," Squares and squareroots of continuous fuzzy numbers," *Dhaka University Journal of Science*, vol. 53, no. 2, pp. 131-140, 2005.
- [11] C. C. Chou, "The square roots of triangular fuzzy variable," *ICIC Express Letters*, vol. 3, no. 2, pp.207–212, 2009.
- [12] M. M. Saeed and H. Z. Ibrahim, " n, mth Power Root Fuzzy Set and Its Applications to Topology and Decision-Making," *IEEE Access*, vol. 10, pp. 97677-97691, 2022.
- [13] H. T. Chu, K. C. Toh and Y. Zhang, "On Regularized Square-root Regression Problems: Distributionally Robust Interpretation and Fast Computations," *Journal of Machine Learning Research*, vol. 23, no. 308, pp.1-39, 2022.
- [14] Benjamin Stucky and Sara van de Geer," Sharp Oracle Inequalities for Square Root Regularization," *Journal of Machine Learning Research*, vol. 18, no. 67, pp.1-29, 2017.
- [15] A. Belloni, V. Chernozhukov, and L. Wang," Square-root lasso: pivotal recovery of sparse signals via conic programming" *Biometrika*, vol. 98, no.4, pp. 791-806, 2011.
- [16] H. Jiang, "Sparse estimation based on square root nonconvex optimization in high-dimensional data," *Neurocomputing*, vol.282, pp. 122-135, 2018.

- [17] S.S. Ahn and H.S. Kim, "On QS-algebras," *Journal of the Chungcheong Mathematical Society*, vol. 12, no. 1, pp. 34-35, 1999.
- [18] M. Kondo, "On the class of QS-algebras," *International Journal of Mathematics and Mathematical Sciences*, vol. 2004, pp. 2629-2639, 2004.
- [19] A. T. Hameed, A. A. Alfatlawi and A. K. Alkurdi, "Fuzzy QS-ideals of QS-algebra," *International Journal of Algebra*, vol.11, no.1, pp. 43-52, 2017.
- [20] K. Atanassov, "Intuitionistic fuzzy sets," *Fuzzy Sets and Systems*, vol. 20, no.1, pp. 87-96, 1986.