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Abstract  

     In this paper, the concepts of compactness, almost compactness, and nearly 

compactness for 𝐶̆ech fuzzy soft closure spaces are introduced and discussed. Their 

characterizations in terms of the finite intersection property are established, and 

their hereditary properties are investigated for compactness and almost compactness 

types. The relationships between the three types of compactness are investigated 

and illustrated with examples. The sufficient condition for the equivalence between 

compactness and almost compactness has been provided. In addition, new types of 

fuzzy soft mappings on 𝐶̆ech fuzzy soft closure spaces, namely 𝐶̆ech fuzzy soft 

strongly (respectively 𝐶̆ech fuzzy soft θ, and 𝐶̆ech fuzzy soft almost) continuous 

mapping, are introduced to study the behavior of the presented compactness types 

under fuzzy soft mappings. 

 

Keywords: 𝐶̆ech fuzzy soft closure space, 𝐶̆ech fuzzy soft cover, fuzzy soft 

topological space, 𝐶̆ech fuzzy soft compact space, 𝐶̆ech fuzzy soft continuous 

(strongly continuous) mapping.  

 

 

 التراص في فضاءات الاغلاق الضبابية الناعمة تشيك 
 

 *  درشا ناصر مجي, لينا حسين معيبد

عراق , ال بغداد, جامعة بغداد, الهيثم  -كلية التربية للعلوم الصرفة ابن, قسم الرياضيات  
 

  الخلاصة 
و      تعريف  تم  البحث،  هذا  التراص  مناقشةفي  التراص  مفاهيم  التراص  التقريبي، ،  فضاءات    وشبه  في 

  والخاصية الوراثية   المنتهي،تم دراسة خصائصها من حيث خاصية التقاطع    الاغلاق الضبابية الناعمة تشيك. 
.  بالأمثلةالانواع الثلاثة من التراص وتوضيحها  العلاقات بين    دراسة كما تم    التقريبي، عين التراص والتراص  و للن

تم تقديم أنواع جديدة من    ذلك،بالإضافة إلى  تم توفير الشرط الكافي للتكافؤ بين التراص والتراص التقريبي.  
)الدوال المستمرة    الدوال  من    على التوالي( الضبابية الناعمة تشيك   تقريبا،  والدوال المستمرة   θالمستمرة القوية 

الفضاءات المرصوصة المقدمة تحت تأثير هذه الانواع من الدوال الضبابية    لأنواع اجل دراسة الصورة المباشرة  
 .الناعمة

1. Introduction 

     Many engineering, medical, economic, and environmental challenges are fraught with 

ambiguity. Classical mathematical materials are not sufficient to handle the practical aspects 

of these areas. Zadeh [1] suggested the fuzzy set theory in order to address ambiguity that 
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existing methods cannot handle. This theory represents a significant shift in mathematical 

paradigms. Since its inception, it has helped address several practical concerns and solve real-

world problems. However, this hypothesis has faces difficulties, probably due to insufficient 

parameterization tools, as Molodtsov noted in [2]. Molodtsov established the notion of soft 

set theory, an entirely novel method to simulate uncertainty. Maji et al. [3] described fuzzy 

soft sets as fuzzy extensions of soft sets. In 2011, the concept of topological structure based 

on fuzzy soft sets was introduced by Tanay and Kandemir [4].  

 

     In 1966, 𝐶̆ech [5] presented closure spaces (𝑈, 𝒞), where 𝒞 maps the power set of 𝑈 to 

itself. This mapping is referred to as a 𝐶̆ech closure operator on 𝑈. It is similar to a 

topological closure operator but does not require idempotency. Mashhour and Ghanim [6] 

proposed fuzzy closure spaces in 1985. To achieve this, fuzzy sets were used instead of sets 

in the formulation of 𝐶̆ech closure space. Gowri and Jegadeesan [7] 2014 explored and 

introduced 𝐶̆ech soft closure spaces using the soft set concept. In the same year, Krishnaveni 

and Sekar [8] proposed and studied 𝐶̆ech soft closure spaces. Here, the set of all soft sets over 

𝑈 that go to itself is defined as the soft closure operator. Majeed [9] has recently used fuzzy 

set theory to propose and investigate the concept of 𝐶̆ech fuzzy soft closure space 

(abbreviated Čℱ𝑆𝐶𝑆).  

Compactness is one of the most fundamental and important concepts of greatest importance 

according to topologists, and it seems to be the best-known manner of covering the feature. 

There are many authors have made several contributions to topologies; see, for instance, [10, 

11, 12, 13]. Chang [14] proposed the concept of compactness in fuzzy topology. Mashhour 

and Ghanim [6] described the concept of compactness in fuzzy closure spaces. In soft 

topological space, compactness was first introduced by Zorlutuna et al. [15]. Then Gain et al. 

[16] and Osmanoglu and Tokat [17] introduced the notion of compactness in fuzzy soft 

topology as a generalization of Chang’s fuzzy compactness. Later on, soft topology and fuzzy 

soft topology, compactness has been discussed in [18, 19, 20, 21, 22]. 

 

     This paper aims to define and investigate the notions of compactness, almost compactness, 

and nearly compactness in 𝐶̆ech fuzzy soft closure spaces using 𝐶̆ech fuzzy soft cover. In 

Section 3, we present a concept of 𝐶̆ech fuzzy soft compact space, this is a generalization of 

the concept of fuzzy soft compact space [17], and study the properties of this type, such as its 

characterizations in terms of finite intersection property, hereditary property, and 𝐶̆ech fuzzy 

soft compactness obtained by 𝐶̆ech fuzzy soft strongly continuous mappings. In Section 4, an 

almost 𝐶̆ech fuzzy soft compact space is introduced as a second type of compactness. Some 

results and theorems are connected to this notion are examined, along accompanied by some 

essential examples. The relation between 𝐶̆ech fuzzy soft compact space and almost 𝐶̆ech 

fuzzy soft compact space is discussed. Moreover, a sufficient condition for the equivalence 

between compactness and almost compactness is studied. Finally, the third type of 

compactness, namely nearly 𝐶̆ech fuzzy soft compact space and some of its properties are 

introduced in Section 5. 

 

2. PRELIMINARIES 

     We assume that the reader to be acquainted with the basic concepts in fuzzy set theory. In 

our paper, 𝑈 refers to the original universe, 𝕀 = [0,1], 𝕀0 = (0,1], 𝕀
𝑈 is the family that 

includes all fuzzy sets of 𝑈, and 𝒫 is the set of parameters for 𝑈. The abbreviation ℱ𝑆- stands 

for fuzzy soft, and ℐ, ℒ for index sets. 
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     An ℱ𝑆-set λB over 𝑈 is a mapping from 𝒫 to 𝕀𝑈, where  λB(𝑘) ≠ 0̅ if 𝑘 ∈ 𝐵 ⊆ 𝒫 

and  λB(𝑘) = 0̅ if 𝑘 ∉ 𝐵 ⊆ 𝒫, where 0̅ denotes the empty fuzzy set. The collection of all ℱ𝑆-

sets over the 𝑈 is represented by ℱ𝒮𝒮(𝑈,𝒫) (see [23, 24]). Let λB, 𝜂𝐶 ∈ ℱ𝒮𝒮(𝑈,𝒫), then λB 

is called a ℱ𝑆-subset of 𝜂𝐶 , represented by   λB ⊆ 𝜂𝐶 , if   λB(𝑘) ≤ 𝜂𝐶(𝑘), for all 𝑘 ∈ 𝒫. Also 

λB and 𝜂𝐶  are said to be equal, represented by   λB = 𝜂𝐶  if   λB ⊆ 𝜂𝐶 and 𝜂𝐶 ⊆  λB. The union 

(respectively, intersection) of   λB and 𝜂𝐶 , represented by   λB ∪ 𝜂𝐶  (respectively,   λB ∩ 𝜂𝐶) is 

the ℱ𝑆-set 𝜇(𝐵⋃𝐶)(𝑘) defined by 𝜇(𝐵⋃𝐶)(𝑘) = λB(𝑘) ∨ 𝜂𝐶(𝑘) (respectively, is the ℱ𝑆-set 

𝜇(𝐵⋂𝐶) defined by 𝜇(𝐵⋂𝐶)(𝑘) = λB(𝑘) ∧ 𝜂𝐶(𝑘)), for all 𝑘 ∈ 𝒫. The constant ℱ𝑆-sets taking, 

values 0̅ and 1̅ respectively, at every 𝑘 ∈ 𝒫 are represented by 0̅𝒫 and 1̅𝒫, respectively. Two 

ℱ𝑆-sets λB, 𝜂𝐶 ∈ ℱ𝒮𝒮(𝑈,𝒫) are called disjoint, represented by λB ∩ 𝜂𝐶 = 0̅𝐾, if λB(𝑘) ∧
𝜂𝐶(𝑘) = 0̅ for all 𝑘 ∈ 𝒫 (see [25]). For the ℱ𝑆-set   λB over 𝑈, 1̅𝒫 −  λB will represent the 

complement of   λB, is the ℱ𝑆-set defined as (1̅𝒫 − λB)(𝑘) = 1̅ − λB(𝑘), for each 𝑘 ∈ 𝒫, Its 

clear that 1̅𝒫 − (1̅𝒫 − λB) = λB (see [24]). According to the concept of Atmaca and 

Zorlutuna [26] a ℱ𝑆-set λB ∈ ℱ𝒮𝒮(𝑈,𝒫) is called ℱ𝑆-point, represented by 𝑥𝑡
𝑘, if there exist 

𝑥 ∈ 𝑈 and 𝑘 ∈ 𝒫 such that   λB(𝑘)(𝑥) = 𝑡 ( 0 < 𝑡 ≤ 1) and 0 otherwise for all 𝑦 ∈ 𝑈 − {𝑥}. 
The ℱ𝑆-point 𝑥𝑡

𝑘 is said to belong to the ℱ𝑆-set λB, represented by 𝑥𝑡
𝑘 ∈̃  λB if for the 

element 𝑘 ∈ 𝒫, 𝑡 ≤ λB(𝑘)(𝑥) (see [26]). Two ℱ𝑆-points 𝑥𝑡
𝑘 and 𝑦𝑠

𝑘′ are said to be distinct if 

𝑥 ≠ 𝑦 or 𝑘 ≠ 𝑘′ (see [27]). 

 

Definition 2.1 [28] Let ℱ𝒮𝒮(𝑈, 𝒫), and ℱ𝒮𝒮(𝑌,ℛ), represent two families of ℱ𝑆-sets over 𝑈 

and 𝑌, respectively. Let 𝑣: 𝑈 → 𝑌 and 𝑠: 𝒫 → ℛ be two mappings. Then, 𝑓𝑣𝑠: ℱ𝒮𝒮(𝑈, 𝒫) →
ℱ𝒮𝒮(𝑌,ℛ) is called fuzzy soft mapping (ℱ𝑆-mapping). 

(1) If   λB ∈ ℱ𝒮𝒮(𝑈,𝒫), then the image of   λB under the ℱ𝑆-mapping 𝑓𝑣𝑠 is the ℱ𝑆-set 

over 𝑌 characterized by 𝑓𝑣𝑠( λB), where ∀ 𝑟 ∈ 𝑠(𝒫), ∀𝑦 ∈ 𝑌, 

𝑓𝑣𝑠(  λB)(𝑟)(𝑦) = {
∨𝑣(𝑥)=𝑦 (∨𝑠(𝑘)=𝑟 (  λB(𝑘)))(𝑥)  𝑖𝑓𝑣−1(𝑦) ≠ ∅, 𝑠−1(𝑟) ∩ 𝐵 ≠ ∅ 

0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
       

(2)  If 𝜇𝐴 ∈ ℱ𝒮𝒮(𝑌,ℛ), then the pre-image of 𝜇𝐴 under the ℱ𝑆-mapping 𝑓𝑣𝑠 is the ℱ𝑆-set 

over 𝑈 characterized by 𝑓𝑣𝑠
−1(𝜇𝐴), where ∀𝑘 ∈ 𝑠−1(ℛ), ∀𝑥 ∈ 𝑈, 

𝑓𝑣𝑠
−1(𝜇𝐴)(𝑘)(𝑥) = {

𝜇𝐴(𝑠(𝑘))(𝑣(𝑥))  𝑓𝑜𝑟  𝑠(𝑘) ∈ 𝐴,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
. 

If 𝑣 and 𝑠 are surjective (or injective, respectively), the ℱ𝑆-mapping 𝑓𝑣𝑠 is called surjective 

(or injective), and if 𝑣 and s are constant, it is said to be constant. 

 

Definition 2.2 [4] Let 𝒯 be a collection of ℱ𝑆-sets over 𝑈 that satisfy the following axioms: 

1. 0̅𝒫 , 1̅𝒫 ∈ 𝒯, 

2. If   λB, 𝜇𝐴 ∈ 𝒯, then   λB ∩ 𝜇𝐴 ∈ 𝒯, 

3. If ( λB)𝑖 ∈ 𝒯, then ⋃𝑖∈ℐ( λB)𝑖 ∈ 𝒯. 

Then, 𝒯 is called a ℱ𝑆-topology on 𝑈 and (𝑈, 𝒯, 𝒫) is called a fuzzy soft topological space 

(ℱ𝑆𝑇𝑆, in brief). Every member of 𝒯 is referred to as an open ℱ𝑆-set. A closed ℱ𝑆- set is the 

complement of an open ℱ𝑆- set. 

Example 2.3 Let 𝑈 = {𝒶, 𝒹, ℯ}, 𝒫 = {𝑘1, 𝑘2} be the set of parameters, and let 
( λB)1, ( λB)2, ( λB)3, ( λB)4 ∈ ℱ𝒮𝒮(𝑈, 𝒫), where ( λB)1 = {(𝑘1, 𝒶0.5)}, ( λB)2 =
{(𝑘1, 𝒶0.3 ∨ 𝒹0.6), (𝑘2, 𝒹1 ∨ ℯ1)}, ( λB)3 = {(𝑘1, 𝒶0.3)}, and ( λB)4 = {(𝑘1, 𝒶0.5 ∨
𝒹0.6), (𝑘2, 𝒹1 ∨ ℯ1)}. Then, 𝒯 = {0̅𝒫 , 1̅𝒫 , ( λB)1, ( λB)2, ( λB)3, ( λB)4} be a ℱ𝑆-topology on 𝑈 

and (𝑈, 𝒯, 𝒫) be a ℱ𝑆𝑇𝑆. 

 

Definition 2.4 [17] A family Υ = {(𝜆𝐵)𝑖: 𝑖 ∈ ℐ} is a cover of a ℱ𝑆-set 𝜇𝐴 if 𝜇𝐴 ⊆
 ⋃{(𝜆𝐵)𝑖: 𝑖 ∈ ℐ}. It is called an ℱ𝑆-open cover if every member of Υ is an open ℱ𝑆-set. A 
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subcover of Υ is a subfamily of Υ, which itself is a cover. An ℱ𝑆𝑇𝑆 (𝑈, 𝒯, 𝒫) it's named ℱ𝑆-

compact if each ℱ𝑆-open cover of 1̅𝒫 has a finite subcover. 

 

Definition 2.5 [17] A family Υ of ℱ𝑆-sets has the finite intersection property (FIP, in brief), 

if the intersection of the members of each finite subfamily of Υ is not the null ℱ𝑆-set. 

 

         Now we need as follows the definitions and basic results about Čℱ𝑆𝐶𝑆's 

Definition 2.6 [9] An operator 𝒞:ℱ𝒮𝒮(𝑈,𝒫) → ℱ𝒮𝒮(𝑈,𝒫) is called Čech fuzzy soft closure 

operator (𝐶̌-fsco, in brief) on 𝑈, if the following conditions are hold: 

   (∁1) 𝒞(0̅𝒫) = 0̅𝒫 , 
   (∁2)   λB ⊆ 𝒞( λB), for all   λB ∈ ℱ𝒮𝒮(𝑈, 𝒫), 
   (∁3) 𝒞(  λB ∪ 𝜇𝐴) = 𝒞(  λB) ∪ 𝒞(𝜇𝐴), for all   λB, 𝜇𝐴 ∈ ℱ𝒮𝒮(𝑈,𝒫).  
The triple (𝑈, 𝒞, 𝒫) is called a 𝐶̆ech fuzzy soft closure space (Čℱ𝑆𝐶𝑆, in brief). A ℱ𝑆-set  λB 

is defined as a closed ℱ𝑆-set in (𝑈, 𝒞, 𝒫) if   λB = 𝒞( λB). A ℱ𝑆-set λB is defined as an open 

ℱ𝑆-set if 1̅𝒫 − λB is a closed ℱ𝑆-set.  

 

Definition 2.7 [9] Let (𝑈, 𝒞, 𝒫) be an Čℱ𝑆𝐶𝑆, and let λB ∈ ℱ𝒮𝒮(𝑈,𝒫). The interior of λB, 

represented by 𝐼𝑛𝑡(λB) is defined as 𝐼𝑛𝑡(λB) = 1̅𝒫 − 𝒞(1̅𝒫 − λB). A ℱ𝑆-set λB is said to be 

ℱ𝑆 neighborhood of a ℱ𝑆-point 𝑥𝑡
𝑘, if 𝑥𝑡

𝑘 ∈̃ Int( λB). 
 

Proposition 2.8 [9] Let ℱ𝒮𝒮(𝑈,𝒫) an Čℱ𝑆𝐶𝑆, and let λB, 𝜇𝐴 ∈ ℱ𝒮𝒮(𝑈,𝒫). Then, λB is an 

open ℱ𝑆-set ⇔ 𝐼𝑛𝑡(λB) = λB. 

 

Theorem 2.9 [9] Let (𝑈, 𝒞, 𝒫) an Čℱ𝑆𝐶𝑆 and let 𝒯𝒞 ⊆ ℱ𝒮𝒮(𝑈,𝒫), defined as, 𝒯𝒞 = {1̅𝒫 −
λB: 𝒞(λB) = λB}. Then, 𝒯𝒞 is a ℱ𝑆 topology on 𝑈 and (𝑈, 𝜏𝒞 , 𝒫) is called an associative ℱ𝑆 

topological space (associative ℱ𝑆𝑇𝑆, in brief) of (𝑈, 𝒞, 𝒫). 
 

Theorem 2.10 [9] Let (𝑈, 𝒞, 𝒫) be Čℱ𝑆𝐶𝑆 and (𝑈, 𝜏𝒞 , 𝒫) be an associative ℱ𝑆𝑇𝑆 

of  (𝑈, 𝒞, 𝒫). Then for any ℱ𝑆-set   λB ∈ ℱ𝒮𝒮(𝑈,𝒫), we have 𝜏𝒞-𝑖𝑛𝑡( λB) ⊆ 𝐼𝑛𝑡( λB) ⊆
 λB ⊆ 𝒞( λB) ⊆  𝜏𝒞-𝑐𝑙( λB), where 𝜏𝒞-𝑖𝑛𝑡 (respectively, 𝜏𝒞-𝑐𝑙) stand for ℱ𝑆-interior 

(respectively, ℱ𝑆-closure) for a ℱ𝑆-set λB in the associative ℱ𝑆𝑇𝑆 (𝑈, 𝒯𝒞 , 𝒫). 
 

Theorem 2.11 [9] Let (𝑈, 𝒞, 𝒫) be an Čℱ𝑆𝐶𝑆, 𝑉 ⊆ 𝑈 and let 𝒞𝑉: ℱ𝒮𝒮(𝑉,𝒫) → ℱ𝒮𝒮(𝑉,𝒫) 
defined as follows: 𝒞𝑉( λB) = 𝑉̅𝒫⋂𝒞(𝜆𝐵). Then 𝒞𝑉 is a 𝐶̌-fsco. The triple (𝑉, 𝒞𝑉, 𝒫) is said 

to be Čech fuzzy soft closure subspace (Čℱ𝑆𝐶𝑆-subspace, in brief) of (𝑈, 𝒞, 𝒫), where 𝑉̅𝒫 is a 

ℱ𝑆-set defined as 𝑉̅𝒫(𝑘) = 1̅𝑉 for all 𝑘 ∈ 𝒫. 

 

Definition 2.12 [9] An Čℱ𝑆𝐶𝑆(𝑈, 𝒞, 𝒫) is said to be 𝑇2- Čℱ𝑆𝐶𝑆, if for every two distinct ℱ𝑆-

points 𝑥𝑡
𝑘  and 𝑦𝑠

𝑘′, there exist disjoint open ℱ𝑆-sets λB and 𝜇𝐴 such that 𝑥𝑡
𝑘 ∈̃  λB 

and𝑦𝑠
𝑘′ ∈̃ 𝜇𝐴. 

 

Definition 2.13 [9] Let (𝑈, 𝒞, 𝒫) and (𝑌, 𝒞∗, ℛ) be two Čℱ𝑆𝐶𝑆's. A ℱ𝑆-mapping 

𝑓𝑣𝑠: (𝑈, 𝒞, 𝒫) ⟶ (𝑌, 𝒞∗, ℛ) is said to be Čech fuzzy soft continuous (𝐶̌ℱ𝑆-continuous, in 

brief) mapping, if 𝑓𝑣𝑠(𝒞(λB)) ⊆ 𝒞
∗(𝑓𝑣𝑠(λB)), for every ℱ𝑆-set λB ∈ ℱ𝒮𝒮(𝑈,𝒫). 

 

3- 𝐂̌ech fuzzy soft compact closure spaces 

      This section will provide an introduction to the concept of Čech fuzzy soft compactness, 

the first type of ℱ𝑆-compactness in Čℱ𝑆𝐶𝑆's, and discuss some of its characteristics. 
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Definition 3.1 A collection {(𝜆𝐵)𝑖: 𝑖 ∈ ℐ} of ℱ𝑆-sets is said to be a 𝐶̌ech fuzzy soft cover 

(Čℱ𝑆-cover, in brief) of (𝑈, 𝒞, 𝒫), if 1̅𝒫 = ⋃{𝐼𝑛𝑡((𝜆𝐵)𝑖):  𝑖 ∈ ℐ}. 
 

Definition 3.2 An Čℱ𝑆𝐶𝑆 (𝑈, 𝒞, 𝒫) is said to be Čech fuzzy soft compact (Čℱ𝑆-compact, in 

brief), if every Čℱ𝑆-cover of 1̅𝒫 has a finite Čℱ𝑆-subcover.  

 

In the following, we provide an example to clarify the concept of Čℱ𝑆-compact space. 

 

Example 3.3 Let 𝑈 = {𝒶, 𝒹, ℯ},𝒫 = {𝑘1, 𝑘2} and 𝜇𝐴 ∈ ℱ𝒮𝒮(𝑈,𝒫) such that 𝜇𝐴 =
{(𝑘1, 𝒹0.5), (𝑘2, 𝒹0.5)}. Define Č-fsco 𝒞:ℱ𝒮𝒮(𝑈,𝒫) → ℱ𝒮𝒮(𝑈,𝒫) as follows: 

𝒞( 𝜆𝐵) = {

0̅𝒫                                                       𝑖𝑓  𝜆𝐵 = 0̅𝒫 ,
{(𝑘1, 𝒶0.5 ∨ 𝒹0.5), (𝑘2, 𝒶0.5 ∨ 𝒹0.5)} 𝑖𝑓  𝜆𝐵 ⊆ 𝜇𝐴
1̅𝒫                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

, 

Then, (𝑈, 𝒞, 𝒫) is Čℱ𝑆𝐶𝑆, and for any  𝜆𝐵 in (𝑈, 𝒞, 𝒫), the interior of  𝜆𝐵 is defines as 

follows: 

𝐼𝑛𝑡( 𝜆𝐵) =

{
 
 

 
 0̅𝒫                                                       𝑖𝑓  𝜆𝐵 = 0̅𝒫 ,
{(𝑘1, 𝒶0.5 ∨ 𝒹0.5), (𝑘2, 𝒶0.5 ∨ 𝒹0.5)}     𝑖𝑓  𝜆𝐵 ∈ {Υ1, Υ2, Υ3},

1̅𝒫                                                        𝑖𝑓  𝜆𝐵 = 1̅𝒫 ,

0̅𝒫                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Where Υ1, Υ2, Υ3 are families of ℱ𝑆-sets in (𝑈, 𝒞, 𝒫) defined as follows: 

Υ1 = {(𝑘1, 𝒶1 ∨ 𝒹1−𝑡1), (𝑘2, 𝒶1 ∨ 𝒹1): 0 < 𝑡1 ≤ 0.5}, 

Υ2 = {(𝑘1, 𝒶1 ∨ 𝒹1), (𝑘2, 𝒶1 ∨ 𝒹1−𝑡2): 0 < 𝑡2 ≤ 0.5}, and  

Υ3 = {(𝑘1, 𝒶1 ∨ 𝒹1−𝑡1), (𝑘2, 𝒶1 ∨ 𝒹1−𝑡2): 0 < 𝑡1, 𝑡2 ≤ 0.5}.  

It is clear that, any Čℱ𝑆-cover of 1̅𝒫 must contains 1̅𝒫. So, (𝑈, 𝒞, 𝒫) is Čℱ𝑆-compact space. 

 

Proposition 3.4 Let (𝑈, 𝒞, 𝒫) be a Čℱ𝑆𝐶𝑆. Then, every ℱ𝑆-open cover of 1̅𝒫 is a Čℱ𝑆-cover 

of 1̅𝒫. 

The next proposition's proof follows immediately from Proposition 3.4. 

Proposition 3.5 If (𝑈, 𝒞, 𝒫) is Čℱ𝑆-compact, then (𝑈, 𝜏𝒞 , 𝒫) is ℱ𝑆-compact. 

 

Theorem 3.6 A Čℱ𝑆𝐶𝑆 (𝑈, 𝒞, 𝒫) is Čℱ𝑆-compact if and only if each family 𝒮 of ℱ𝑆-sets of 

𝑈 such that the family 𝒞(𝒮)={𝒞((𝜆𝐵)𝑖): (𝜆𝐵)𝑖 ∈ 𝒮} has the FIP, then 𝒞(𝒮) has a non-null 

ℱ𝑆- intersection. 

Proof: Let 𝒮 = {(𝜆𝐵)𝑖; 𝑖 ∈ ℐ} be a family of ℱ𝑆-sets of 𝑈 such that 𝒞(𝒮)={𝒞((𝜆𝐵)𝑖): (𝜆𝐵)𝑖 ∈
𝒮} has the FIP. Suppose ⋂{𝒞((𝜆𝐵)𝑖): 𝑖 ∈ ℐ} = 0̅𝒫 . Then, ⋃{1̅𝒫 − 𝒞((𝜆𝐵)𝑖): 𝑖 ∈ ℐ} = 1̅𝒫 

which equal to ⋃{𝐼𝑛𝑡(1̅𝒫 − ( 𝜆𝐵)𝑖): 𝑖 ∈ ℐ} = 1̅𝒫. That means {1̅𝒫 − ( 𝜆𝐵)𝑖: 𝑖 ∈ ℐ } is a Čℱ𝑆-

cover of 1̅𝒫. As (𝑈, 𝒞, 𝒫) is Čℱ𝑆-compact, thereafter, a finite subset exists. ℒ ⊂ ℐ such that 

{1̅𝒫 − ( 𝜆𝐵)𝑖: 𝑖 ∈ ℒ } is a Čℱ𝑆-cover of 1̅𝒫. This yields ⋃{𝐼𝑛𝑡(1̅𝒫 − ( 𝜆𝐵)𝑖): 𝑖 ∈ ℒ} = 1̅𝒫. 

Therefore, 1̅𝐾 −⋃{𝐼𝑛𝑡(1̅𝐾 − ( 𝜆𝐵)𝑖): 𝑖 ∈ ℒ} = ⋂{𝒞((𝜆𝐵)𝑖): 𝑖 ∈ ℒ} = 0̅𝒫 which contradicts 

the FIP of 𝒮. Therefore, the prerequisite is satisfied. 

 Conversely, let {( 𝜆𝐵)𝑖: 𝑖 ∈ ℐ } be a Čℱ𝑆-cover of 1̅𝒫. That means ⋃{𝐼𝑛𝑡(( 𝜆𝐵)𝑖): 𝑖 ∈
ℐ} = 1̅𝒫. Then ⋂{1̅𝒫 − 𝐼𝑛𝑡(( 𝜆𝐵)𝑖): 𝑖 ∈ ℐ} = ⋂{𝒞 (1̅𝒫 − ( 𝜆𝐵)𝑖): 𝑖 ∈ ℐ} = 0̅𝒫. Therefore, 

there is a finite subset ℒ ⊂ 𝐼 such that ⋂{𝒞 (1̅𝒫 − ( 𝜆𝐵)𝑖): 𝑖 ∈ ℒ) } = 0̅𝒫. By taking the 

relative complement we have ⋃{𝐼𝑛𝑡(( 𝜆𝐵)𝑖); 𝑖 ∈ ℒ} = 1̅𝒫. Therefore, {( 𝜆𝐵)𝑖; 𝑖 ∈ ℒ } is a 

finite Čℱ𝑆-cover of 1̅𝒫. Hence, (𝑈, 𝒞, 𝒫) is Čℱ𝑆-compact.  

 

Theorem 3.7 A closed Čℱ𝑆-closure subspace of an Čℱ𝑆-compact is Čℱ𝑆-compact. 
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Proof: Let (𝑉, 𝒞𝑉, 𝒫) be a closed Čℱ𝑆-closure subspace of an Čℱ𝑆-compact space (𝑈, 𝒞, 𝒫), 
and let 𝒮={(𝜆𝐵)𝑖 ∶  𝑖 ∈ ℐ} be a collection of ℱ𝑆-subsets of (𝑉, 𝒞𝑉, 𝒫) such that 

𝒞𝑉(𝒮)={𝒞𝑉((𝜆𝐵)𝑖): (𝜆𝐵)𝑖 ∈ 𝒮} has the FIP. Since 𝒞𝑉(( 𝜆𝐵)𝑖) = 𝑉̅𝒫⋂𝒞(( 𝜆𝐵)𝑖) and 

⋂𝑖=1
𝑛 𝒞𝑉(( 𝜆𝐵)𝑖) = ⋂𝑖=1

𝑛 (𝑉̅𝒫⋂𝒞(( 𝜆𝐵)𝑖)) ≠ 0̅𝒫, then {𝒞( 𝑉̅𝒫), 𝒞(( 𝜆𝐵)𝑖): (𝜆𝐵)𝑖 ∈ 𝒮} has the 

FIP in 𝑈. By Čℱ𝑆-compactness of (𝑈, 𝒞, 𝒫) and Theorem 3.6, {𝒞( 𝑉̅𝒫), 𝒞(( 𝜆𝐵)𝑖): (𝜆𝐵)𝑖 ∈ 𝒮} 
has a non-null ℱ𝑆-intersection. Therefore, {𝒞𝑉((𝜆𝐵)𝑖)  ∶  𝑖 ∈ ℐ} has a non-null ℱ𝑆-

intersection. Thus,(𝑉, 𝒞𝑉, 𝒫) is Čℱ𝑆-compact. 

 

 The next example shows that the above theorem's converse is not always true. 

Example 3.8 In Example 3.3, let us take 𝑉̅𝒫 = {(𝑘1, 𝒶1 ∨ 𝒹1), (𝑘2, 𝒶1 ∨ 𝒹1)}. Then 𝑉̅𝒫 is 

Čℱ𝑆-compact. But 𝑉̅𝒫 is not closed ℱ𝑆-set in (𝑈, 𝒞, 𝒫), since 𝒞(𝑉̅𝒫) = 1̅𝒫. 

 

Theorem 3.9 Let 𝑉̅𝒫 be a Čℱ𝑆-compact ℱ𝑆-set in a 𝑇2-ČℱSCS (𝑈, 𝒞, 𝒫). Then 𝑉̅𝒫is a closed 

ℱ𝑆-set in (𝑈, 𝒞, 𝒫). 

Proof: Let 𝑝 = 𝑥𝑡
𝑘 ∈̃ 1̅𝒫 − 𝑉̅𝒫. For each 𝑞̃ = 𝑦𝑠

𝑘′ ∈̃ 𝑉̅𝒫, we have 𝑥 ≠ 𝑦 which implies 𝑥𝑡
𝑘 and 

𝑦𝑠
𝑘′ are distinct ℱ𝑆-points in a 𝑇2-ČℱSCS (𝑈, 𝒞, 𝒫). So, there are disjoint open ℱ𝑆-sets (𝜆𝐵)𝑞̃ 

and (𝜇𝐴)𝑞̃ such that 𝑝 = 𝑥𝑡
𝑘 ∈̃(𝜆𝐵)𝑞̃ and 𝑞̃ = 𝑦𝑠

𝑘′ ∈̃ ( 𝜇𝐴)𝑞̃. Then, {(𝜇𝐴)𝑞̃ ∶ 𝑞̃ ∈̃ 𝑉̅𝒫} is an ℱ𝑆-

open cover of 𝑉̅𝒫. This yields {(𝜇𝐴)𝑞̃ ∶ 𝑞̃ ∈̃ 𝑉̅𝒫} is a Čℱ𝑆-cover of 𝑉̅𝒫. Since 𝑉̅𝒫 is Čℱ𝑆-

compact, then there is a finite Čℱ𝑆-subcover {(𝜇𝐴)𝑞̃1 , (𝜇𝐴)𝑞̃2 , … , (𝜇𝐴)𝑞̃𝑛  }. Then, ⋂𝑖=1
𝑛 (𝜆𝐵)𝑞̃𝑖 

is an open ℱ𝑆-set such that 𝑝 = 𝑥𝑡
𝑘 ∈̃ ⋂𝑖=1

𝑛 (𝜆𝐵)𝑞̃𝑖 ⊆ 1̅𝒫 − 𝑉̅𝒫. Thus, 𝑝 ∈̃ Int(⋂𝑖=1
𝑛 (𝜆𝐵)𝑞̃𝑖) ⊆

𝐼𝑛𝑡(1̅𝒫 − 𝑉̅𝒫). Therefore, 1̅𝒫 − 𝑉̅𝒫 is a nbhd of 𝑝. Hence, for all 𝑥𝑡
𝑘 ∈̃ 1̅𝒫 − 𝑉̅𝒫, we have 

𝑥𝑡
𝑘 ∈̃ 𝐼𝑛𝑡(1̅𝒫 − 𝑉̅𝒫) which means 1̅𝒫 − 𝑉̅𝒫 ⊆ 𝐼𝑛𝑡(1̅𝒫 − 𝑉̅𝒫). On the other hand, 𝐼𝑛𝑡(1̅𝒫 −
𝑉̅𝒫) ⊆ 1̅𝒫 − 𝑉̅𝒫. Then 1̅𝒫 − 𝑉̅𝒫 = 𝐼𝑛𝑡(1̅𝒫 − 𝑉̅𝒫) and this indicates to 𝑉̅𝒫 is a closed ℱ𝑆-set in 

(𝑈, 𝒞, 𝒫). 
In order to study the behavior of Čℱ𝑆-compactness through the ℱ𝑆-mapping we need to 

introduce the notion of Čℱ𝑆-strongly continuous between Čℱ𝑆𝐶𝑆's. 

Definition 3.10 An ℱ𝑆-mapping 𝑓𝑣𝑠:(𝑈, 𝒞, 𝒫) → (𝑌, 𝒞∗, ℛ) is called Čℱ𝑆-strongly 

continuous, if 𝑓𝑣𝑠(𝒞( 𝜆𝐵))⊆ 𝑓𝑣𝑠 (𝜆𝐵) for every ℱ𝑆-set  𝜆𝐵 ∈ ℱ𝒮𝒮(𝑈,𝒫). 
Clearly, Čℱ𝑆-strongly continuous mapping is Čℱ𝑆-continuous but not conversely. 

Theorem 3.11 Let 𝑓𝑣𝑠:(𝑈, 𝒞, 𝒫) → (𝑌, 𝒞∗, ℛ) be Čℱ𝑆-strongly continuous mapping and 

(𝑈, 𝒞, 𝒫) be an Čℱ𝑆-compact, then(𝑌, 𝒞∗, ℛ) is Čℱ𝑆-compact. 

Proof: Let ℱ = {(𝜆𝐹)𝑖: 𝑖 ∈ ℐ } be a collection of ℱ𝑆-sets in 𝑌 such that {𝒞∗((𝜆𝐹)𝑖): 𝑖 ∈ ℐ } 
has the FIP. Then, {𝑓𝑣𝑠

−1(𝒞∗((𝜆𝐹)𝑖)): 𝑖 ∈ ℐ } has the FIP in (𝑈, 𝒞, 𝒫). Since 

𝑓𝑣𝑠
−1(𝒞∗ ((𝜆𝐹)𝑖)) ⊆ 𝒞(𝑓𝑣𝑠

−1(𝒞∗ ((𝜆𝐹)𝑖), then 0̅𝒫 ≠ ⋂𝑖=1
𝑛 𝑓𝑣𝑠

−1(𝒞∗ ((𝜆𝐹)𝑖)) ⊆
⋂𝑖=1
𝑛 𝒞(𝑓𝑣𝑠

−1(𝒞∗ ((𝜆𝐹)𝑖))). Hence, {𝒞(𝑓𝑣𝑠
−1(𝒞∗ ((𝜆𝐹)𝑖))): 𝑖 ∈ ℐ} has the FIP in (𝑈, 𝒞, 𝒫). But 

(𝑈, 𝒞, 𝒫) is Čℱ𝑆-compact. Then ∩ {𝒞(𝑓𝑣𝑠
−1(𝒞∗ ((𝜆𝐹)𝑖))): 𝑖 ∈ ℐ} ≠ 0̅𝒫. That means, there 

exists a ℱ𝑆-point 𝑥𝑡
𝑘 ∈̃ 𝒞(𝑓𝑣𝑠

−1(𝒞∗ ((𝜆𝐹)𝑖))) for all 𝑖 ∈ ℐ. Then 

𝑓𝑣𝑠(𝑥𝑡
𝑘) ∈̃ 𝑓𝑣𝑠(𝒞(𝑓𝑣𝑠

−1(𝒞∗ ((𝜆𝐹)𝑖)))). By the definition of ℱ𝑆-point and 𝑓𝑣𝑠 is Čℱ𝑆-strongly 

continuous mapping we get, 𝑓𝑣𝑠(𝑥𝑡
𝑘) = 𝑣(𝑥)𝑡

𝑠(𝑘)
∈̃ 𝑓𝑣𝑠(𝑓𝑣𝑠

−1(𝒞∗ ((𝜆𝐹)𝑖)) ⊆ 𝒞∗ ((𝜆𝐹)𝑖). Thus, 

there exist a ℱ𝑆-point 𝑣(𝑥)𝑡
𝑠(𝑘)

 belongs to 𝒞∗ ((𝜆𝐹)𝑖) for each 𝑖 ∈ ℐ. Therefore, 

{𝒞∗((𝜆𝐹)𝑖): 𝑖 ∈ ℐ } has non-null fuzzy soft intersection. Hence, (𝑌, 𝒞∗, ℛ) is Čℱ𝑆-compact. 

 

Theorem 3.12 Let (𝑈, 𝒞, 𝒫) be an Čℱ𝑆-compact and (𝑌, 𝒞∗, ℛ) be a 𝑇2-ČℱSCS. Then the 

image of every Čℱ𝑆-closed subspace is Čℱ𝑆-closed subspace in 𝑌 if 𝑓𝑣𝑠:(𝑈, 𝒞, 𝒫) →
(𝑌, 𝒞∗, ℛ) is Čℱ𝑆-strongly continuous. 

Proof: Let 𝑉̅𝒫 be a closed Č𝐹𝑆𝐶-subspace of (𝑈, 𝒞, 𝒫). From Theorem 3.7, 𝑉̅𝒫 is Čℱ𝑆-

compact subspace of (𝑈, 𝒞, 𝒫). Since 𝑓𝑣𝑠 is Čℱ𝑆- strongly continuous, then from Theorem 
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3.11, we have 𝑓𝑣𝑠(𝑉̅𝒫) is Čℱ𝑆-compact. But (𝑌, 𝒞∗, ℛ) is 𝑇2-ČℱSCS, so by Theorem 3.9, 

𝑓𝑣𝑠(𝑉̅𝒫) is Čℱ𝑆-closed subspace in (𝑌, 𝒞∗, ℛ). 
 

4-Almost 𝐂̌ech fuzzy soft compact closure spaces  

 

Definition 4.1 An ČℱSCS (𝑈, 𝒞, 𝒫) is said to be almost Čℱ𝑆-compact, if for every Čℱ𝑆-

cover {( 𝜆𝐵)𝑖 ∶  𝑖 ∈ ℐ} of 1̅𝒫, there is a finite set ℒ ⊂ ℐ such that {𝒞(( 𝜆𝐵)𝑖): 𝑖 ∈ ℒ} is ℱ𝑆-

cover of 1̅𝒫. 

Proposition 4.2 Every Čℱ𝑆-compact is an almost Čℱ𝑆-compact.  

Proof: This follows from Definition 4.1 and Theorem 2.10. 

 

The following example illustrates that the converse is not true in general. 

Example 4.3 Let 𝑈 = [0,1], 𝒫 = {𝑘}, Define Č-fsco 𝒞:ℱ𝒮𝒮(𝑈,𝒫) → ℱ𝒮𝒮(𝑈, 𝒫) as follows: 

𝒞( 𝜆𝐵) =

{
 

 
0̅𝒫          𝑖𝑓  𝜆𝐵 = 0̅𝒫 ,

(𝜆𝐵
∗ )1  𝑖𝑓  𝜆𝐵 ⊆( 𝜆𝐵)1,

(𝜆𝐵
∗ )𝑖     𝑖𝑓  𝜆𝐵 ⊆ ( 𝜆𝐵)𝑖,

1̅𝒫          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Where, ( 𝜆𝐵)1 = {(𝑘, 𝑥1): 𝑥 ∈ (0,
1

2
]}, (𝜆𝐵

∗ )1 = {(𝑘, 𝑥1): 𝑥 ∈ (0,1)}  

( 𝜆𝐵)𝑖 = {(𝑘, 𝑥1
𝑖

) : 𝑥 ∈ (0,
1

2𝑖
]}, (𝜆𝐵

∗ )𝑖 = {(𝑘, 𝑥1
𝑖

) : 𝑥 ∈ (0,
1

𝑖
]}, 𝑖 = 2,3,4, …. . 

It is clear that for any  𝜆𝐵 ∈ ℱ𝒮𝒮(𝑈,𝒫) the 𝐼𝑛𝑡( 𝜆𝐵) is defined as following: 

𝐼𝑛𝑡( 𝜆𝐵) =

{
 
 

 
 0̅𝒫          𝑖𝑓  𝜆𝐵 = 0̅𝒫 ,

1̅𝒫 − (𝜆𝐵
∗ )1  𝑖𝑓  𝜆𝐵 ⊆1̅𝒫 − ( 𝜆𝐵)1,

1̅𝒫 − (𝜆𝐵
∗ )𝑖     𝑖𝑓  𝜆𝐵 ⊆ 1̅𝒫 − ( 𝜆𝐵)𝑖,

0̅𝒫          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Then, for any Čℱ𝑆-cover of 1̅𝒫 this cover must contain the family {1̅𝒫 − ( 𝜆𝐵)𝑖: 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖} 
and since 𝒞(1̅𝒫 − ( 𝜆𝐵)𝑖) = 1̅𝒫 for any 𝑖. Then, (𝑈, 𝒞, 𝒫) is an almost Čℱ𝑆-compact. But it is 

not (𝑈, 𝒞, 𝒫) is Čℱ𝑆-compact because there exists {1̅𝒫 − ( 𝜆𝐵)𝑖: 𝑖 =  1,2,3, … } is a Čℱ𝑆-

cover of 1̅𝒫 but it has no finite Čℱ𝑆-cover. 

 To investigate the property of almost ℱ𝑆-compactness between Čℱ𝑆𝐶𝑆 and the 

corresponding ℱ𝑆𝑇𝑆, we need to introduce the following definition: 

 

Definition 4.4 An ℱ𝑆𝑇𝑆 (𝑈, 𝒯, 𝒫) is said to be an almost ℱ𝑆-compact if each ℱ𝑆-open cover 

of 1̅𝒫 has a finite subcollection that covers 1̅𝒫 by its closure. 

 

Proposition 4.5 If (𝑈, 𝒞, 𝒫) is an almost Čℱ𝑆-compact, then (𝑈, 𝜏𝒞 , 𝒫) is an almost ℱ𝑆-

compact. 

Proof: The proof obtained directly from Proposition 3.4 and Theorem 2.10. 

 

To give the characterizations of almost ℱ𝑆-compact in terms of the finite intersection 

property, we first need the following definition: 

Definition 4.6 A family Υ = {(𝜆𝐵)𝑖: 𝑖 ∈ ℐ} of ℱ𝑆-sets over 𝑈 is said to have the first type of 

FIP if ⋂𝑖=1
𝑛 𝐼𝑛𝑡((𝜆𝐵)𝑖) ≠ 0̅𝒫. If Υ satisfies the first type of FIP, then Υ satisfies the FIP. 

 

Theorem 4.7 An Čℱ𝑆𝐶𝑆 (𝑈, 𝒞, 𝒫) is an almost Čℱ𝑆-compact if and only if each family Υ =
{(𝜆𝐵)𝑖: 𝑖 ∈ ℐ} of ℱ𝑆-sets of (𝑈, 𝒞, 𝒫) satisfying the first type of FIP, then the family 

{𝒞((𝜆𝐵)𝑖): 𝑖 ∈ ℐ} has a non-null ℱ𝑆-intersection. 

Proof: The proof is analogous to Theorem 3.6. 
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To obtain the reverse direction of Proposition 4.2, it is important first to provide the 

following definition: 

Definition 4.8 An Čℱ𝑆𝐶𝑆 (𝑈, 𝒞, 𝒫) is said to be Čℱ𝑆-regular if for each ℱ𝑆-point 𝑥𝑡
𝑘 and a 

ℱ𝑆-set  𝜆𝐵 in X such that 𝑥𝑡
𝑘  ∈̃ 𝐼𝑛𝑡( 𝜆𝐵), there is a ℱ𝑆-set  𝜇𝐴 in X such that 

𝑥𝑡
𝑘  ∈̃ 𝐼𝑛𝑡( 𝜇𝐴) ⊆ 𝒞( 𝜇𝐴) ⊆ 𝐼𝑛𝑡( 𝜆𝐵). 

 

Theorem 4.9 In an Čℱ𝑆-regular space, Čℱ𝑆-compactness and almost Čℱ𝑆-compactness are 

equivalent. 

Proof: Since every Čℱ𝑆-compact is an almost Čℱ𝑆-compact, it is required only to prove that 

any almost Čℱ𝑆-compact in an Čℱ𝑆-regular space is Čℱ𝑆-compact. Let (𝑈, 𝒞, 𝒫)be an almost 

Čℱ𝑆-compact Čℱ𝑆-regular space and let 𝒮 be a Čℱ𝑆-cover of 1̅𝒫. Then, for every ℱ𝑆-point 

𝑥𝑡
𝑘 = 𝑝 in (𝑈, 𝒞, 𝒫), there is  𝜆𝐵𝑝̃ ∈ 𝒮 such that 𝑝 ⊆ 𝐼𝑛𝑡( 𝜆𝐵). By Čℱ𝑆-regular, there is a ℱ𝑆-

set  𝜇𝐴𝑝̃ in 𝑈 such that 𝑥𝑡
𝑘 ∈̃ 𝐼𝑛𝑡( 𝜇𝐴𝑝̃) ⊆ 𝒞( 𝜇𝐴𝑝̃) ⊆ 𝐼𝑛𝑡( 𝜆𝐵𝑝̃). Thus,{𝜇𝐴𝑝̃:  𝑝 ∈ 𝑆𝑃(𝑈, 𝒫)} 

is a Čℱ𝑆-cover of 1̅𝒫. Since (𝑈, 𝒞, 𝒫)be an almost Čℱ𝑆-compact, there is a finite number of 

ℱ𝑆-points 𝑝1, 𝑝2,𝑝̃3, … , 𝑝𝑛 in 𝑈 such that{𝒞( 𝜇𝐴𝑝̃𝑖
) , 𝑖 = 1, … , 𝑛} is a ℱ𝑆-cover of 1̅𝒫. It 

follows that { 𝜆𝐵𝑝̃𝑖
, 𝑖 = 1, … , 𝑛  } is a finite Čℱ𝑆-cover of 𝒮. Hence, (𝑈, 𝒞, 𝒫) is Čℱ𝑆-

compact. 

 

Definition 4.10 An Čℱ𝑆-closure subspace (𝑉, 𝒞𝑉 , 𝐾) of a Čℱ𝑆𝐶𝑆 (𝑈, 𝒞, 𝒫) is called a clopen 

Čℱ𝑆-subspace, if it is closed and open ℱ𝑆-set in (𝑈, 𝒞, 𝒫), i.e., 𝒞( 𝑉̅𝒫) = 𝑉̅𝒫 and 𝐼𝑛𝑡(𝑉̅𝒫) =
𝑉̅𝒫. 

The next example explains Definition 4.10. 

 

Example 4.11 Let 𝑈 = {𝒶, 𝒹, ℯ}, 𝒫 = {𝑘1, 𝑘2} and 𝑉 = {𝒶, ℯ} ⊆ 𝑈. Define Č-fsco 

𝒞:ℱ𝒮𝒮(𝑈,𝒫) → ℱ𝒮𝒮(𝑈,𝒫) as follows: 

𝒞( 𝜆𝐵) =

{
 

 
0̅𝒫 𝑖𝑓  𝜆𝐵 = 0̅𝒫 ,

{(𝑘1, 𝒶1 ∨ ℯ1), (𝑘2, 𝒶1 ∨ ℯ1)} 𝑖𝑓  𝜆𝐵 ⊆ {(𝑘1, 𝒶1 ∨ ℯ1), (𝑘2, 𝒶1 ∨ ℯ1)},
{(𝑘1, 𝒹1), (𝑘2, 𝒹1)} 𝑖𝑓  𝜆𝐵 ⊆ {(𝑘1, 𝒹1), (𝑘2, 𝒹1)},

1̅𝒫 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Then, (𝑈, 𝒞, 𝒫) is Čℱ𝑆𝐶𝑆. Let 𝑉̅𝒫 = {(𝑘1, 𝒶1 ∨ ℯ1), (𝑘2, 𝒶1 ∨ ℯ1)}. Then, from Theorem 2.11 

the Čℱ𝑆𝐶𝑆-subspace (𝑉, 𝒞𝑉 , 𝒫) defined as 𝒞𝑉: ℱ𝒮𝒮(𝑉,𝒫) → ℱ𝒮𝒮(𝑉,𝒫) defined as follows: 

𝒞𝑉( λB) = {
0̅𝒫                             𝑖𝑓  𝜆𝐵 = 0̅𝒫 ,          

  𝑉̅𝒫                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
 

Also, note that 𝒞( 𝑉̅𝒫) = 𝑉̅𝒫 and 𝐼𝑛𝑡(𝑉̅𝒫) = 1̅𝒫 − 𝒞(1̅𝒫 − 𝑉̅𝒫) = 1̅𝒫 −
𝒞({(𝑘1, 𝒹1), (𝑘2, 𝒹1)}) = 1̅𝒫 − {(𝑘1, 𝒹1), (𝑘2, 𝒹1)} = 𝑉̅𝒫. It follows, (𝑉, 𝒞𝑉, 𝒫) is a clopen 

Čℱ𝑆-subspace. 

 

Theorem 4.12 A clopen Č𝐹𝑆- closure subspace (𝑉, 𝒞𝑉, 𝒫) of an almost Čℱ𝑆-compact space 

(𝑈, 𝒞, 𝒫) is an almost Čℱ𝑆-compact. 

Proof: Let {(𝜆𝐵)𝑖 ∶  𝑖 ∈ ℐ} be a collection of ℱ𝑆-sets in (𝑉, 𝒞𝑉, 𝒫) such that 
{𝐼𝑛𝑡𝑉(( 𝜆𝐵)𝑖): 𝑖 ∈ ℐ} has the FIP. Since for all 𝑖 ∈ ℐ 
 𝐼𝑛𝑡𝑉(( 𝜆𝐵)𝑖) = 1̅𝒫 − 𝒞𝑉(1̅𝒫 − ( 𝜆𝐵)𝑖) =  1̅𝒫 − {𝑉̅𝒫⋂ 𝒞 (1̅𝒫 − ( 𝜆𝐵)𝑖) } 

                       = {1̅𝒫 − 𝑉̅𝒫} ⋃{1̅𝒫 − 𝒞 (1̅𝒫 − ( 𝜆𝐵)𝑖)}} 

                       = 𝐼𝑛𝑡(1̅𝒫 − 𝑉̅𝒫)⋃𝐼𝑛𝑡(( 𝜆𝐵)𝑖) ⊆ 𝐼𝑛𝑡((1̅𝒫 − 𝑉̅𝒫)⋃( 𝜆𝐵)𝑖). 
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Then, {(1̅𝒫 − 𝑉̅𝒫)⋃( 𝜆𝐵)𝑖: 𝑖 ∈ ℐ} has the FIP in (𝑈, 𝒞, 𝒫). By almost Čℱ𝑆-compactness of 

(𝑈, 𝒞, 𝒫) we get {𝒞((1̅𝒫 − 𝑉̅𝒫)⋃(𝜆𝐵)𝑖): 𝑖 ∈ ℐ } has a non-null fuzzy soft intersection. That 

means ⋂{𝒞((1̅𝒫 − 𝑉̅𝒫)⋃(𝜆𝐵)𝑖): 𝑖 ∈ ℐ } = {𝒞(1̅𝒫 − 𝑉̅𝒫)⋃ 𝒞((𝜆𝐵)𝑖): 𝑖 ∈ ℐ } ≠ 0̅𝒫. Since 

( 𝜆𝐵)𝑖 ⊆ 𝑉̅𝒫, then 𝒞(( 𝜆𝐵)𝑖) ⊆ 𝒞(𝑉̅𝒫) =  𝑉̅𝒫. Therefore, for all 𝑖 ∈ ℐ we have {𝒞(1̅𝒫 −
𝑉̅𝒫)⋃ 𝒞((𝜆𝐵)𝑖)}⋂𝑉̅𝒫 ≠ 0̅𝒫. This implies  {(1̅𝒫 − 𝑉̅𝒫)⋂𝑉̅𝒫}⋃{𝒞((𝜆𝐵)𝑖)⋂𝑉̅𝒫} =
0̅𝒫⋃𝒞𝑉((𝜆𝐵)𝑖) ≠ 0̅𝒫. Hence, (𝑉, 𝒞𝑉, 𝒫) is an almost Čℱ𝑆-compact subspace. 

 

Theorem 4.13 If 𝑉̅𝒫 is an almost Čℱ𝑆-compact set in a 𝑇2- ČℱSCS (𝑈, 𝒞, 𝒫), then 𝑉̅𝒫 is a 

closed ℱ𝑆-set. 

Proof: Similar to proof of Theorem 3.9. 

 

Definition 4.14 An ℱ𝑆-mapping 𝑓𝑣𝑠: (𝑈, 𝒞, 𝒫) → (𝑌, 𝒞∗, ℛ) is said to be Čℱ𝑆-𝜃 continuous, 

if for each ℱ𝑆-point 𝑥𝑡
𝑘 in 𝑈 and for each ℱ𝑆-set  𝜇𝐴 in 𝑌 such that 𝑓𝑣𝑠(𝑥𝑡

𝑘) ∈̃ 𝐼𝑛𝑡∗( 𝜇𝐴), there 

is a ℱ𝑆-set 𝜆𝐵 in 𝑈 such that 𝑥𝑡
𝑘  ∈̃  𝐼𝑛𝑡(𝜆𝐵) and 𝑓𝑣𝑠(𝒞( 𝜆𝐵)) ⊆ 𝒞∗( 𝜇𝐴). 

 

Example 4.15 Let 𝑈 = [0,1] and 𝒫 = {𝑘1, 𝑘2} be the set of parameters on 𝑈. Define Č-fsco 

𝒞∗: ℱ𝒮𝒮(𝑈, 𝒫) → ℱ𝒮𝒮(𝑈,𝒫) as follows: 

𝒞∗( 𝜆𝐵) = {

0̅𝒫                                                       𝑖𝑓  𝜆𝐵 = 0̅𝒫 ,
 𝜈𝐺                                                       𝑖𝑓  𝜆𝐵 ⊆ 𝜈𝐺 ,

1̅𝒫                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Where 𝜈𝐺 = {(𝑘1, 𝜈𝐺(𝑘1)), (𝑘2, 𝜈𝐺(𝑘2)): 𝜈𝐺(𝑘1)(𝑥) = 𝜈𝐺(𝑘2)(𝑥) = 0.3 𝑓𝑜𝑟 𝑥 =

0.5 𝑎𝑛𝑑 0 𝑓𝑜𝑟 𝑥 ≠ 0.5}. Let 𝒞 be any Č-fsco on 𝑈. Then (𝑈, 𝒞, 𝒫) and (𝑈, 𝒞∗, 𝒫) are 

ČℱSCS's. Let 𝑓𝑣𝑠: (𝑈, 𝒞, 𝒫) → (𝑈, 𝒞∗, 𝒫) be the identity ℱ𝑆-mapping, i.e., 𝑣 and 𝑠 are 

identity mappings. Let 𝑥𝑡
𝑘 be any ℱ𝑆-point 𝑥𝑡

𝑘 in 𝑈 and let  𝜇𝐴 be any ℱ𝑆-set in 𝑈 such that 

𝑥𝑡
𝑘 = 𝑓𝑣𝑠(𝑥𝑡

𝑘) ∈̃ 𝐼𝑛𝑡∗( 𝜇𝐴). If  𝜇𝐴 ⊆ 1̅𝒫 − 𝜈𝐺 , then 𝒞∗( 𝜇𝐴) = 1̅𝒫 and the same is true if  𝜇𝐴 =
1̅𝒫. Then 𝑓𝑣𝑠(𝒞( 𝜆𝐵)) ⊆ 𝒞∗( 𝜇𝐴) for any  𝜆𝐵 is a ℱ𝑆-set in 𝑈 such that 𝑥𝑡

𝑘  ∈̃  𝐼𝑛𝑡(𝜆𝐵). 

Hence, 𝑓𝑣𝑠 is a Čℱ𝑆-𝜃 continuous. 

 

Theorem 4.16 An Čℱ𝑆-𝜃 continuous image of an almost Čℱ𝑆-compact is an almost Čℱ𝑆-

compact. 

Proof: Let 𝑓𝑣𝑠:(𝑈, 𝒞, 𝒫) → (𝑌, 𝒞∗, ℛ) be Čℱ𝑆-𝜃 continuous mapping from an almost Čℱ𝑆-

compact space (𝑈, 𝒞, 𝒫) onto an Čℱ𝑆𝐶 (𝑌, 𝒞∗, ℛ). Let 𝒮 be a Čℱ𝑆-cover of 1̅ℛ. Then, for 

each ℱ𝑆-point 𝑥𝑡
𝑘 = 𝑝 in 𝑈, there is a ℱ𝑆-set  𝜇𝐴𝑞̃ ∈ 𝒮 such that 𝑞̃ = 𝑓𝑣𝑠(𝑝̃) ∈̃ 𝐼𝑛𝑡

∗( 𝜇𝐴𝑞̃). 

Since 𝑓𝑣𝑠 is Čℱ𝑆-𝜃 continuous, there is a ℱ𝑆-set  𝜆𝐵𝑝̃ in 𝑈 such that 𝑝 ∈̃ 𝐼𝑛𝑡( 𝜆𝐵𝑝̃) and 

𝑓𝑣𝑠(𝒞 (𝜆𝐵𝑝̃)) ⊆ 𝒞
∗( 𝜇𝐴𝑞̃). Now, {  𝜆𝐵𝑝̃, 𝑝 ∈ 𝑆𝑃(𝑈,𝒫)} is a Čℱ𝑆-cover of 1̅𝒫 and (𝑈, 𝒞, 𝒫) is 

an almost Čℱ𝑆-compact. Then, there is a finite number of ℱ𝑆-points 𝑝1, 𝑝2,𝑝3, . . . , 𝑝𝑛 in 𝑈 

such that{𝒞(𝜆𝐵𝑝̃𝑖
) , 𝑖 = 1,… , 𝑛} is a ℱ𝑆-cover of 1̅𝒫. Hence, {𝒞∗( 𝜇𝐴𝑞̃𝑖

) , 𝑖 = 1,… , 𝑛}, where 

𝑞̃𝑖 = 𝑓𝑣𝑠(𝑝̃𝑖) is a ℱ𝑆-cover of 1̅ℛ. Thus, (𝑌, 𝒞∗, ℛ) is an almost Čℱ𝑆-compact. 

 

5-Nearly 𝐂̌ech fuzzy soft compact closure spaces  

 

Definition 5.1 An ČℱSCS (𝑈, 𝒞, 𝒫) is said to be nearly Čℱ𝑆-compact  if for every Čℱ𝑆-cover 

{(𝜆𝐵)𝑖: 𝑖 ∈ ℐ} of 1̅𝒫, there is a finite set ℒ ⊂ ℐ such that {𝒞((𝜆𝐵)𝑖): 𝑖 ∈ ℒ} is Čℱ𝑆-cover of 

1̅𝒫. 
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 The relationship between nearly Čℱ𝑆-compact spaces and the other two types of 

compactness is described in the following Theorem: 

 

Theorem 5.2 Every Čℱ𝑆-compact is nearly Čℱ𝑆-compact and every nearly Čℱ𝑆-compact is 

almost Čℱ𝑆-Compact. 

Proof: First to prove if (𝑈, 𝒞, 𝒫) is Čℱ𝑆-compact, then it is nearly Čℱ𝑆-compact. Let 

(𝑈, 𝒞, 𝒫) be a Čℱ𝑆-compact. Let {(𝜆𝐵)𝑖: 𝑖 ∈ ℐ} be any Čℱ𝑆-cover of 1̅𝒫. Since (𝑈, 𝒞, 𝒫) is 

Čℱ𝑆-compact, then there exists a finite set ℒ ⊂ ℐ such that {(𝜆𝐵)𝑖: 𝑖 ∈ ℒ} is a Čℱ𝑆-cover of 

1̅𝒫. That means ⋃{𝐼𝑛𝑡((𝜆𝐵)𝑖): 𝑖 ∈ ℒ} = 1̅𝒫. Since (𝜆𝐵)𝑖 ⊆ 𝒞((𝜆𝐵)𝑖), then 𝐼𝑛𝑡((𝜆𝐵)𝑖) ⊆
𝐼𝑛𝑡(𝒞((𝜆𝐵)𝑖)) for all 𝑖 ∈ ℐ. This implies ⋃{𝐼𝑛𝑡((𝜆𝐵)𝑖): 𝑖 ∈ ℒ} ⊆ ⋃{𝐼𝑛𝑡(𝒞((𝜆𝐵)𝑖)): 𝑖 ∈ ℒ}. 

Therefore, {𝒞((𝜆𝐵)𝑖): 𝑖 ∈ ℒ} is Čℱ𝑆-cover of 1̅𝒫. Hence, (𝑈, 𝒞, 𝒫) is nearly Čℱ𝑆-compact. 

 Second, we prove if (𝑈, 𝒞, 𝒫) is nearly Čℱ𝑆-compact, then it is almost Čℱ𝑆-compact. 

Let (𝑈, 𝒞, 𝒫) be nearly Čℱ𝑆-compact. Let {(𝜆𝐵)𝑖: 𝑖 ∈ ℐ} be any Čℱ𝑆-cover of 1̅𝒫. Since 

(𝑈, 𝒞, 𝒫) is nearly Čℱ𝑆-Compact, then there exists a finite set ℒ ⊂ ℐ such that {𝒞((𝜆𝐵)𝑖): 𝑖 ∈
ℒ} is a Čℱ𝑆-cover of 1̅𝒫. That means ⋃{𝐼𝑛𝑡(𝒞((𝜆𝐵)𝑖)): 𝑖 ∈ ℒ} = 1̅𝒫. Since for any 𝑖 ∈ ℐ, 

𝐼𝑛𝑡(𝒞((𝜆𝐵)𝑖)) ⊆ 𝒞((𝜆𝐵)𝑖), then {𝒞((𝜆𝐵)𝑖): 𝑖 ∈ ℒ} is a ℱ𝑆-cover of 1̅𝒫. Hence, (𝑈, 𝒞, 𝒫) is 

almost Čℱ𝑆-compact. 

 

The following example demonstrates that the opposite is not true in general. 

 

Example 5.3 Let 𝑈 = {0,1, 2𝑛,−2𝑛, 2𝑛 + 1: 𝑛 ∈ ℕ}, 𝒫 = {𝑘}, and let ( 𝜆𝐵)𝑛, 𝜌𝐶, 𝜂𝐷 are ℱ𝑆-

sets over 𝑈 defined as: 

(𝜆𝐵)𝑛 = {(𝑘, 𝑥1): 𝑥 ∈ 𝑈 − {2𝑛,−2𝑛, 2𝑛 + 1}}, 𝑛 ∈ ℕ, 𝜌𝐶 = {(𝑘, 𝑥1): 𝑥 ∈ 𝑈 − {0,2𝑛}, 𝑛 ∈
ℕ}, 𝜂𝐷 = {(𝑘, 𝑥1): 𝑥 ∈ 𝑈 − {1,2𝑛 + 1}, 𝑛 ∈ ℕ}. 

Define Č-fsco 𝒞:ℱ𝒮𝒮(𝑈, 𝒫) → ℱ𝒮𝒮(𝑈,𝒫) as follows: 

𝒞( 𝜆𝐵) =

{
  
 

  
 

0̅𝒫          𝑖𝑓  𝜆𝐵 = 0̅𝒫 ,

(𝜆𝐵)𝑛  𝑖𝑓  𝜆𝐵 ⊆(𝜆𝐵)𝑛,
𝜌𝐶      𝑖𝑓  𝜆𝐵 ⊆ 𝜌𝐶 ,
𝜂𝐷     𝑖𝑓  𝜆𝐵 ⊆ 𝜂𝐷 ,

⋃𝑛∈ℕ(𝜆𝐵)𝑛  𝑖𝑓 𝜆𝐵 ⊆ ⋃𝑛∈ℕ(𝜆𝐵)𝑛 

1̅𝒫          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Then, (𝑈, 𝒞, 𝒫) is an almost Čℱ𝑆-compact space since every Čℱ𝑆-cover {( 𝜆𝐵)𝑖: 𝑖 ∈ ℐ} of 1̅𝒫 

must contain 1̅𝒫 − 𝜌𝐶  and 1̅𝒫 − 𝜂𝐷 and this implies there exists a finite subset {1̅𝒫 −
𝜌𝐶 , 1̅𝒫 − 𝜂𝐷} such that 𝒞(1̅𝒫 − 𝜌𝐶)⋃𝒞(1̅𝒫 − 𝜂𝐷) = 𝜂𝐷⋃𝜌𝐶 = 1̅𝒫. But (𝑈, 𝒞, 𝒫) is not nearly 

Čℱ𝑆-compact space since there exists an Čℱ𝑆-cover {1̅𝒫 − (𝜆𝐵)𝑛, 1̅𝒫 − 𝜌𝐶 , 1̅𝒫 − 𝜂𝐷: 𝑛 ∈ ℕ} 
of 1̅𝒫 such that every ℱ𝑆-set in this cover equal the interior of the closure in the original ℱ𝑆-

set. 

 

Remark 5.4 The diagram below summarizes the relationships between several forms of Čℱ𝑆-

compactness, based on previous results findings in sections 3 and 4. 

 

Čℱ𝑆-compact ⟹ nearly Čℱ𝑆-compact ⟹ almost Čℱ𝑆-compact 

 

Definition 5.5 An ℱ𝑆-mapping 𝑓𝑣𝑠: (𝑈, 𝒞, 𝒫) → (𝑌, 𝒞∗, ℛ) is said to be Čℱ𝑆-almost 

continuous if for each ℱ𝑆-point 𝑥𝑡
𝑘 in 𝑈 and each ℱ𝑆-set  𝜇𝐴 in𝑌 with 𝑓𝑣𝑠(𝑥𝑡

𝑘) ∈̃ 𝐼𝑛𝑡∗( 𝜇𝐴) 

there is a ℱ𝑆-set  𝜆𝐵 in 𝑈 such that 𝑥𝑡
𝑘 ∈̃ 𝐼𝑛𝑡( 𝜆𝐵) and 𝑓𝑣𝑠( 𝜆𝐵) ⊆ 𝐼𝑛𝑡

∗(𝒞∗( 𝜇𝐴)). 
Clearly, any Čℱ𝑆-continuous mapping is Čℱ𝑆- almost continuous but not conversely as the 

following example shows. 
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Example 5.6 In Example 4.15, consider 𝒞 be the indiscrete Č-fsco on 𝑈 (i.e., 𝒞( 𝜆𝐵) = 0̅𝒫 

for  𝜆𝐵 = 0̅𝒫 and 𝒞( 𝜆𝐵) = 1̅𝒫 for  𝜆𝐵 ≠ 0̅𝒫). Then, 𝑓𝑣𝑠 is an Čℱ𝑆-almost continuous but does 

not Čℱ𝑆-continuous since there exists a ℱ𝑆-set  𝜆𝐵 in 𝑈,  𝜆𝐵 =
{(𝑘1,  𝜆𝐵(𝑘1)), (𝑘2,  𝜆𝐵(𝑘2)):  𝜆𝐵(𝑘1)(𝑥) =  𝜆𝐵(𝑘2)(𝑥) = 0.2 𝑓𝑜𝑟 𝑥 = 0.5 𝑎𝑛𝑑 1 𝑓𝑜𝑟 𝑥 ≠

0.5} and 𝑓𝑣𝑠(𝒞( 𝜆𝐵)) = 1̅𝒫 ⊄ 𝒞∗(𝑓𝑣𝑠( 𝜆𝐵)) because 𝒞∗(𝑓𝑣𝑠( 𝜆𝐵)) =

{(𝑘1, 𝒞
∗(𝑓𝑣𝑠( 𝜆𝐵))(𝑘1)) , (𝑘2, 𝒞

∗(𝑓𝑣𝑠( 𝜆𝐵))(𝑘2)) : 𝒞
∗(𝑓𝑣𝑠( 𝜆𝐵))(𝑘1)(𝑥) =

𝒞∗(𝑓𝑣𝑠( 𝜆𝐵))(𝑘2)(𝑥) = 0.3 𝑓𝑜𝑟 𝑥 = 0.5 𝑎𝑛𝑑 1 𝑓𝑜𝑟 𝑥 ≠ 0.5}. 

 

Theorem 5.7 An Čℱ𝑆- almost continuous image of Čℱ𝑆-compact is nearly Čℱ𝑆-compact. 

Proof: Let 𝑓𝑣𝑠: (𝑈, 𝒞, 𝒫) → (𝑌, 𝒞∗, ℛ) be Čℱ𝑆-almost continuous mapping from an Č𝐹𝑆-

compact (𝑈, 𝒞, 𝒫) onto an ČℱSCS (𝑌, 𝒞∗, ℛ) and let 𝛿 be a Čℱ𝑆-cover of 1̅ℛ. For each ℱ𝑆-

point 𝑝 = 𝑥𝑡
𝑘 in 𝑈, there is 𝜇𝐴𝑞̃ ∈ 𝛿 such that 𝑞̃ = 𝑓𝑣𝑠(𝑝) ∈̃ 𝐼𝑛𝑡

∗(𝜇𝐴𝑞̃). Since 𝑓𝑣𝑠 is Čℱ𝑆-

almost continuous, then there is a ℱ𝑆-set  𝜆𝐵𝑝̃ in 𝑈 such that 𝑝 ∈̃ 𝐼𝑛𝑡( 𝜆𝐵𝑝̃) and 𝑓𝑣𝑠( 𝜆𝐵𝑝̃) ⊆

𝐼𝑛𝑡∗(𝒞∗( 𝜇𝐴𝑞̃)). Now, { 𝜆𝐵𝑝̃ , 𝑝 ∈ 𝐹𝑆𝑃(𝑈,𝒫)} is a Čℱ𝑆-cover of 1̅𝒫 and (𝑈, 𝒞, 𝒫) is an Čℱ𝑆-

compact. Then, there is a finite number of ℱ𝑆-points 𝑝1, …, 𝑝𝑛 in 𝑈 such that { 𝜆𝐵𝑝̃𝑖
 , 𝑖 =

1, … . . , 𝑛} is a Čℱ𝑆-cover of 1̅𝒫. Consequently, {𝒞∗ ( 𝜇𝐴𝑞̃𝑖
) : 𝑖 = 1,… , 𝑛} where 𝑞̃𝑖 = 𝑓𝑣𝑠(𝑝̃𝑖) 

is Čℱ𝑆-cover of 1̅ℛ. Hence, (𝑌, 𝒞∗, ℛ) is nearly Čℱ𝑆-compact. 

 

6- Conclusion 

     Fuzzy soft sets are of great interest to researchers. Compared to fuzzy soft topological 

spaces, this approach is more general, and there are numerous applications for fuzzy soft sets. 

In this paper, for 𝐶̆ech fuzzy soft closure spaces, the notions of compactness, almost 

compactness, and nearly compactness are presented and investigated. Also, their induced 

fuzzy soft topological spaces have been introduced and studied, as well as the relationships 

between them. Next, there are opportunities to look into concept of Lindelöf spaces in 𝐶̆ech 

fuzzy soft closure spaces and studied the relationships between them.   
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