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Abstract

In this paper, the concepts of compactness, almost compactness, and nearly
compactness for Cech fuzzy soft closure spaces are introduced and discussed. Their
characterizations in terms of the finite intersection property are established, and
their hereditary properties are investigated for compactness and almost compactness
types. The relationships between the three types of compactness are investigated
and illustrated with examples. The sufficient condition for the equivalence between
compactness and almost compactness has been provided. In addition, new types of
fuzzy soft mappings on Cech fuzzy soft closure spaces, namely Cech fuzzy soft
strongly (respectively Cech fuzzy soft 8, and Cech fuzzy soft almost) continuous
mapping, are introduced to study the behavior of the presented compactness types
under fuzzy soft mappings.

Keywords: Cech fuzzy soft closure space, Cech fuzzy soft cover, fuzzy soft
topological space, Cech fuzzy soft compact space, Cech fuzzy soft continuous
(strongly continuous) mapping.
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1. Introduction
Many engineering, medical, economic, and environmental challenges are fraught with

ambiguity. Classical mathematical materials are not sufficient to handle the practical aspects
of these areas. Zadeh [1] suggested the fuzzy set theory in order to address ambiguity that
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existing methods cannot handle. This theory represents a significant shift in mathematical
paradigms. Since its inception, it has helped address several practical concerns and solve real-
world problems. However, this hypothesis has faces difficulties, probably due to insufficient
parameterization tools, as Molodtsov noted in [2]. Molodtsov established the notion of soft
set theory, an entirely novel method to simulate uncertainty. Maji et al. [3] described fuzzy
soft sets as fuzzy extensions of soft sets. In 2011, the concept of topological structure based
on fuzzy soft sets was introduced by Tanay and Kandemir [4].

In 1966, Cech [5] presented closure spaces (U, C), where C maps the power set of U to

itself. This mapping is referred to as a Cech closure operator on U. It is similar to a
topological closure operator but does not require idempotency. Mashhour and Ghanim [6]
proposed fuzzy closure spaces in 1985. To achieve this, fuzzy sets were used instead of sets
in the formulation of Cech closure space. Gowri and Jegadeesan [7] 2014 explored and
introduced Cech soft closure spaces using the soft set concept. In the same year, Krishnaveni
and Sekar [8] proposed and studied Cech soft closure spaces. Here, the set of all soft sets over
U that go to itself is defined as the soft closure operator. Majeed [9] has recently used fuzzy
set theory to propose and investigate the concept of Cech fuzzy soft closure space
(abbreviated CFSCS).
Compactness is one of the most fundamental and important concepts of greatest importance
according to topologists, and it seems to be the best-known manner of covering the feature.
There are many authors have made several contributions to topologies; see, for instance, [ 10,
11, 12, 13]. Chang [14] proposed the concept of compactness in fuzzy topology. Mashhour
and Ghanim [6] described the concept of compactness in fuzzy closure spaces. In soft
topological space, compactness was first introduced by Zorlutuna et al. [15]. Then Gain et al.
[16] and Osmanoglu and Tokat [17] introduced the notion of compactness in fuzzy soft
topology as a generalization of Chang’s fuzzy compactness. Later on, soft topology and fuzzy
soft topology, compactness has been discussed in [18, 19, 20, 21, 22].

This paper aims to define and investigate the notions of compactness, almost compactness,
and nearly compactness in Cech fuzzy soft closure spaces using Cech fuzzy soft cover. In
Section 3, we present a concept of Cech fuzzy soft compact space, this is a generalization of
the concept of fuzzy soft compact space [17], and study the properties of this type, such as its
characterizations in terms of finite intersection property, hereditary property, and Cech fuzzy
soft compactness obtained by Cech fuzzy soft strongly continuous mappings. In Section 4, an
almost Cech fuzzy soft compact space is introduced as a second type of compactness. Some
results and theorems are connected to this notion are examined, along accompanied by some
essential examples. The relation between Cech fuzzy soft compact space and almost Cech
fuzzy soft compact space is discussed. Moreover, a sufficient condition for the equivalence
between compactness and almost compactness is studied. Finally, the third type of
compactness, namely nearly Cech fuzzy soft compact space and some of its properties are
introduced in Section 5.

2. PRELIMINARIES

We assume that the reader to be acquainted with the basic concepts in fuzzy set theory. In
our paper, U refers to the original universe, I = [0,1], I, = (0,1], IV is the family that
includes all fuzzy sets of U, and P is the set of parameters for U. The abbreviation FS- stands
for fuzzy soft, and J, £ for index sets.
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An FS-set Ag over U is a mapping from P to 1Y, where Ag(k) # 0 if k€ BS P
and Ag(k) = 0if k € B € P, where 0 denotes the empty fuzzy set. The collection of all FS-
sets over the U is represented by FSS (U, P) (see [23, 24]). Let Ag,n¢c € FSS(U,P), then A
is called a FS-subset of 1., represented by Ag S n¢, if Ag(k) < nq(k), for all k € P. Also
Ag and 1. are said to be equal, represented by Ag =1, if Ag € 1. and n; S Ag. The union
(respectively, intersection) of Ag and 7., represented by Ag U 1, (respectively, Ag N 1nc) is
the FS-set ppyc)(k) defined by pyc)(k) = Ag(k) v nc(k) (respectively, is the FS-set
Unc) defined by pgncy(k) = Ag(k) Anc(k)), for all k € P. The constant FS-sets taking,
values 0 and 1 respectively, at every k € P are represented by 0, and 15, respectively. Two
FS-sets Ag, ¢ € FSS(U,P) are called disjoint, represented by Ag N 1. = O, if Ag(k) A
nc(k) = 0 for all k € P (see [25]). For the FS-set Ag over U, 1, — Ag will represent the
complement of Ag, is the FS-set defined as (1 — Ag) (k) = 1 — Ag(k), for each k € P, Its
clear that 1, — (1p —Ag) = Ag (see [24]). According to the concept of Atmaca and
Zorlutuna [26] a FS-set Ag € FSS(U,P) is called FS-point, represented by xF, if there exist
x € U and k € P such that Ag(k)(x) =t (0 <t < 1) and 0 otherwise for all y € U — {x}.
The FS-point xf is said to belong to the FS-set Ag, represented by x¥ € Ag if for the

element k € P,t < Ag(k)(x) (see [26]). Two FS-points x¥ and yskl are said to be distinct if
x #york # k' (see[27]).

Definition 2.1 [28] Let F§S(U, P), and FSS (Y, R), represent two families of FS-sets over U
and Y, respectively. Let v:U — Y and s: P - R be two mappings. Then, f,;: FSS(U,P) -
FSS(Y,R) is called fuzzy soft mapping (FS-mapping).

(1) If Ag € FSS(U,P), then the image of Ag under the FS-mapping f, is the FS-set
over Y characterized by f,s(Ag), where Vr € s(P),Vy €Y,

£ Ap) () (y) = {Vv(x)=y (Vst=r ( Ak () ifv'(y) #B,s'(r)NB # @
0 otherwise.
(2) Ifuy € FSS(Y,R), then the pre-image of u, under the FS-mapping f, is the FS-set

over U characterized by f,5'(us), where Vk € s™1(R),vx € U,
fost () (k) (x) = {MA(S(k))(v(x)) for s(k) € A,.

0 otherwise.
If v and s are surjective (or injective, respectively), the FS-mapping f,s is called surjective

(or injective), and if v and s are constant, it is said to be constant.

Definition 2.2 [4] Let 7 be a collection of FS-sets over U that satisfy the following axioms:
1. 0p,1p €T,

2. If Ag,ug €T, then AgNuy €T,

3. If(AB)l ET,then UiE.’]()\B)L’ eT.

Then, T is called a FS-topology on U and (U,T,P) is called a fuzzy soft topological space
(FSTS, in brief). Every member of T is referred to as an open FS-set. A closed FS- set is the
complement of an open FS- set.

Example 23 Let U ={a,d,e}, P ={k k,} be the set of parameters, and Ilet
(281, (A)2, ()3, (Ag)s € FSS(U,P),  where  (Ap)y ={(ky, ap5)}, ()2 =
{(ky,a03V doe), (kydi Vel _ SAB)3 = {(ky, a03)}, and (Ag)s = {(ky, a5V
doe), (ka,d1 V e1)}. Then, T = {05, 15, (Ag)1, (AB)2, (AB)3, (Ag)4} be a FS-topology on U
and (U,T,P) be a FSTS.

Definition 2.4 [17] A family Y = {(45);:i €7} is a cover of a FS-set u, if py €
U{(4g);: i € 7}. It is called an FS-open cover if every member of Y is an open FS-set. A
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subcover of Y is a subfamily of Y, which itself is a cover. An FSTS (U, T, P) it's named FS-
compact if each FS-open cover of 15 has a finite subcover.

Definition 2.5 [17] A family Y of FS-sets has the finite intersection property (FIP, in brief),
if the intersection of the members of each finite subfamily of Y is not the null FS-set.

Now we need as follows the definitions and basic results about CFSCS's

Definition 2.6 [9] An operator C: FSS(U,P) — FSS(U,P) is called Cech fuzzy soft closure
operator (C-fsco, in brief) on U, if the following conditions are hold:

(C1) €(0p) = 0,

(C2) Ag € C(Ap), forall Ag € FSS(U,P),

(C3) C( Ag U uy) =C( Ag) UC(uy), forall Ag,uy € FSS(U,P).
The triple (U, C, P) is called a Cech fuzzy soft closure space (CFSCS, in brief). A FS-set Ag
is defined as a closed FS-set in (U,C,P) if Ag = C(Ag). A FS-set Ag is defined as an open
FS-setif 1p — Ag is a closed FS-set.

Definition 2.7 [9] Let (U,C,P) be an CFSCS, and let Ag € FSS(U,P). The interior of Ag,
represented by Int(Ag) is defined as Int(Ag) = 1p — C(1p — Ag). A FS-set Ag is said to be
FS neighborhood of a FS-point x¥, if x¥ € Int( Ag).

Proposition 2.8 [9] Let FSS(U,P) an CFSCS, and let Ag, yuy € FSS(U,P). Then, Ag is an
open FS-set & Int(Ag) = Ag.

Theorem 2.9 [9] Let (U,C,P) an CFSCS and let T, € FSS(U,P), defined as, T = {15 —
Ag: C(Ag) = Ag}. Then, T; is a FS topology on U and (U, te, P) is called an associative FS
topological space (associative FSTS, in brief) of (U, C, P).

Theorem 2.10 [9] Let (U,C,P) be CFSCS and (U,1e,P) be an associative FSTS
of (U,C,P). Then for any FS-set Ag € FSS(U,P), we have te-int(Ag) € Int(Ag) S
Ag € C(AR) € te-cl(Ag), where te-int (respectively, tTe-cl) stand for FS-interior
(respectively, FS-closure) for a FS-set Ag in the associative FSTS (U, Tz, P).

Theorem 2.11 [9] Let (U, G, P) be an CFSCS, V € U and let Cy: FSS(V,P) —» FSS(V,P)
defined as follows: Cy(Ag) = VpNC(Ag). Then Cy is a C-fsco. The triple (V, Gy, P) is said
to be Cech fuzzy soft closure subspace (CFSCS-subspace, in brief) of (U, C, P), where Vp is a
FS-set defined as Vp(k) = 1, forall k € P.

Definition 2.12 [9] An CFSCS(U, C, P) is said to be T,- CFSCS, if for every two distinct FS-
points x¥ and y¥', there exist disjoint open FS-sets Az and u, such that x¥ & Ag
andyX’ € p,.

Definition 2.13 [9] Let (U,C,P) and (Y,C*,R) be two CFSCS's. A FS-mapping
fos: (U,C,P) — (Y,C*,R) is said to be Cech fuzzy soft continuous (CFS-continuous, in
brief) mapping, if f,;(C(Ag)) S C*(f,s(Ag)), for every FS-set Az € FSS(U,P).

3- Cech fuzzy soft compact closure spaces

This section will provide an introduction to the concept of Cech fuzzy soft compactness,
the first type of FS-compactness in CFSCS's, and discuss some of its characteristics.
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Definition 3.1 A collection {(15);: i € 7} of FS-sets is said to be a Cech fuzzy soft cover
(CFS-cover, in brief) of (U, C,P), if 1, = U{Int((A5);): i € 7}.

Definition 3.2 An CFSCS (U, C,P) is said to be Cech fuzzy soft compact (CFS-compact, in
brief), if every CFS-cover of 15 has a finite CFS-subcover.

In the following, we provide an example to clarify the concept of CFS-compact space.

Example 3.3 Let U={a,d,e},P ={ky,k,} and u, € FSS(U,P) such that u, =
{(k1,dos), (ka,do5)}. Define C-fsco C: FSS(U,P) —» FSS(U,P) as follows:

0p if Az =0y,
C(Ap) = {(ky,aosVdys), (ky,aosVdos)} if Ap S g,
1p otherwise.

Then, (U,C,P) is CFSCS, and for any Ag in (U,C,P), the interior of A is defines as
follows:

{ 673 lf AB = 673,
/ _ J {(ky,a05V dos), (ky,aps V dos)} if Ap € {¥1,Y5, Y3},
nt(Ap) = 0 B e
1? lf AB = 1]),
l 0p otherwise.

Where Y;,Y,;, Y5 are families of FS-sets in (U, C, P) defined as follows:

Yl = {(li aq \ dl—tl)' (kz, aq \ dl): 0< tl < 05},

Yz = {(kll aq \Y dl)l (kz, aq \ dl—tz): 0< tz < 05}, and

Ys ={(ky,a,vdi,) (ks ay v_dl_tz): 0<tyt; < 0.5}.

It is clear that, any CFS-cover of 1, must contains 1p. So, (U, C,P) is CFS-compact space.

Proposition 3.4 Let (U, C,P) be a CFSCS. Then, every FS-open cover of 15 is a CFS-cover
of i:p .

The next proposition's proof follows immediately from Proposition 3.4.

Proposition 3.5 If (U, C, P) is CFS-compact, then (U, ¢, P) is FS-compact.

Theorem 3.6 A CFSCS (U,C,P) is CFS-compact if and only if each family S of FS-sets of
U such that the family C(8$)={C((2p);): (A5); € S} has the FIP, then C(S) has a non-null
FS- intersection.

Proof: Let § = {(Ag);; i € 7} be a family of FS-sets of U such that C(S$)={C((15);): (15); €
S} has the FIP. Suppose N{C((1p);):i € I} =05 . Then, U{lp — C((Ap))):i €T} =15
which equal to U{Int(1 — (A3);):i € 7} = 1. That means {1, — (Ag);:i € 7} is a CFS-
cover of 1. As (U, C,P) is CFS-compact, thereafter, a finite subset exists. £ < J such that
{1p — (Ag);:i € L} is a CFS-cover of 1p. This yields U{Int(1p — (Ag);):i € L} = 15.
Therefore, 1x — U{Int(1x — (Ag))):i € L} = N{C((A5);):i € L} = 0p which contradicts
the FIP of S. Therefore, the prerequisite is satisfied.

Conversely, let {( 15);:i € 7} be a CFS-cover of 1p. That means U{Int(( A5);):i €
J}=1p. Then N{1p —Int((Ap))):i €T} =N{C (1p — (Ag);):i € I} = 0p. Therefore,
there is a finite subset £ c I such that N{C (1 — (Ag);):i € L) } = 0». By taking the
relative complement we have U{Int((Ap););i € L} = 1p. Therefore, {(Ag);;i €L} is a
finite CFS-cover of 1. Hence, (U, C,P) is CFS-compact.

Theorem 3.7 A closed CFS-closure subspace of an CFS-compact is CFS-compact.
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Proof: Let (V,Cy,P) be a closed CFS-closure subspace of an CFS-compact space (U, C, P),
and let S={(Ag);: i €T} be a collection of FS-subsets of (V,Cy,,P) such that
Cy(S)={C,((Ap))): (Ap); €S} has the FIP. Since C,((4p);) =VpNC((Ag);) and
NZ1Cv((A8)) = NiZ (V2NC((Ap)i)) # Op, then {C(V3),C((Ap)1): (Ap); € §} has the
FIP in U. By CFS-compactness of (U, C,P) and Theorem 3.6, {C(Vp),C((15);): (Ag); € S}
has a non-null FS-intersection. Therefore, {Cy((Ag);) : i €I} has a non-null FS-
intersection. Thus,(V, Cy, P) is CFS-compact.

The next example shows that the above theorem's converse is not always true.
Example 3.8 In Example 3.3, let us take Vp = {(ky,a, V dq),(ky,a, VvV d,)}. Then Vp is
CFS-compact. But Vp is not closed FS-set in (U, C, P), since C(Vp) = 15.

Theorem 3.9 Let V; be a CFS-compact FS-set in a T,-CFSCS (U, C,P). Then Vpis a closed
FS-setin (U,C,P).

Proof: Let = x¥ € 1, — Vp. For each § = yX' & Vp, we have x # y which implies x¥ and
ySk’ are distinct FS-points in a TZ—CTSCS (U,C,P). So, there are disjoint open FS-sets (Ag)
and (us)z such that p = xf €(1p); and § = yk & (1a)g. Then, {(ua)g : G € Vp} is an FS-
open cover of Vp. This yields {(,uA)q 1§ € V?} is a CFS-cover of Vp. Since Vp is CFS-
compact, then there is a finite CFS-subcover {(,uA)gh, Ua)dyr - (Ma)g, } Then, N;=; (Ap)g;
is an open FS-set such that § = xf € NjL;(Ap)g, € 1p — V. Thus, § € Int(Nj=;(Ap)g,) S
Int(1p — V). Therefore, 1p — Vp is a nbhd of p. Hence, for all xF € 1, — Vp, we have
xf € Int(1p — Vp) which means 1p — Vp € Int(1p — V). On the other hand, Int(1, —
Vp) € 1p — Vp. Then 1 — Vp = Int(1p — Vp) and this indicates to Vp is a closed FS-set in
(u,c,?).

In order to study the behavior of CFS-compactness through the FS-mapping we need to
introduce the notion of CFS-strongly continuous between CFSCS's.

Definition 3.10 An FS-mapping f,s:(U,C,P) —» (Y,C*,R) is called CFS-strongly
continuous, if f,s(C( 1)< f,s (Ag) for every FS-set 1z € FSS(U,P).

Clearly, CFS-strongly continuous mapping is CFS-continuous but not conversely.

Theorem 3.11 Let f,.:(U,C,P) — (Y,C*,R) be CFS-strongly continuous mapping and
(U, G, P) be an CFS-compact, then(Y, C*, R) is CFS-compact.

Proof: Let F = {(Az);:i € 7 } be a collection of FS-sets in Y such that {C*((Af);):i € T}
has the FIP. Then, {f;s(C*((Af);)):i€3J} has the FIP in (U,C,P). Since
fos (€ (A1) € C(fis' (€™ (AR, then 0p # N1 fis'(C* ((AR)D) €
N1 C(fst (C* ((A)1))). Hence, {C(fys1(C* ((AF)1))):i € T} has the FIP in (U,C,P). But
(U,C,P) is CFS-compact. Then N {C(f;s'(C* ((Ar);))):i € I} # 0p. That means, there
exists a FS-point xk € (st (€ ((Ap)D)) for all i €. Then
fos(XE) € £ s(C(fist(C* ((Ar);)))). By the definition of FS-point and f,, is CFS-strongly
continuous mapping we get, f,,s(xf) = v(x)i(k) € fus(fust(C* (X)) € C* ((AF);). Thus,
there exist a FS-point v(x)i(k) belongs to C* ((Ag);) for each i€ J. Therefore,
{€*((Ar)):1 € 7} has non-null fuzzy soft intersection. Hence, (Y, C*, R) is CFS-compact.

Theorem 3.12 Let (U, C,P) be an CFS-compact and (Y,C*,R) be a T,-CFSCS. Then the
image of every CFS-closed subspace is CFS-closed subspace in Y if f,:(U,C,P) -
(Y,C*,R) is CFS-strongly continuous.

Proof: Let V» be a closed CFSC-subspace of (U,C,P). From Theorem 3.7, Vp is CFS-
compact subspace of (U,C,P). Since f, is CFS- strongly continuous, then from Theorem
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3.11, we have f,s(Vp) is CFS-compact. But (Y,C*,R) is T,-CFSCS, so by Theorem 3.9,
f,s(Vp) is CFS-closed subspace in (Y,C*, R).

4-Almost Cech fuzzy soft compact closure spaces

Definition 4.1 An CF SCS (U,C,P) is said to be almost CFS-compact, if for every CFS-
cover {(4p);: [ € J} of 1p, there is a finite set £ C J such that {C((4)):i € L} is FS-
cover of 1.

Proposition 4.2 Every CFS-compact is an almost CFS-compact.
Proof: This follows from Definition 4.1 and Theorem 2.10.

The following example illustrates that the converse is not true in general.
Example 4.3 Let U = [0,1], ? = {k}, Define C-fsco C: FSS(U,P) — FSS(U,P) as follows:
6:}) lf /13 = ﬁfp,
(A1 if Ap S(Ap)1,
C(Ag) = . :
(1) i(AB)i if A5 € (Aa)i
1p otherwise.
1 .
Where, (15)1 = {(k,x1):x € (0'5]}3 (Ap)1 = {(k,x1):x € (0,1)}

(Ag)i = {(k, x%) :x € (0, Zii]}, Ap); = {(k, x%) :x € (0, %]}, i=234,...
It is clear that for any Ag € FSS(U,P) the Int( Ap) is defined as following:

650 if Ap = G;D:
1p = (Ap)1 if Ap €1p — (g1,
1p — (A); if g S 1p —(Ap)s,

0p otherwise.
Then, for any CFS-cover of 15 this cover must contain the family {1, — ( A3);: for some i}
and since C(1p — (Ap);) = 1 for any i. Then, (U, C,P) is an almost CFS-compact. But it is
not (U,C,P) is CFS-compact because there exists {1p — (Ap);:i = 1,2,3,...} is a CFS-
cover of 15 but it has no finite CFS-cover.

To investigate the property of almost FS-compactness between CFSCS and the
corresponding FSTS, we need to introduce the following definition:

Int(Ag) =

Definition 4.4 An FSTS (U,T,P) is said to be an almost FS-compact if each FS-open cover
of 15 has a finite subcollection that covers 15 by its closure.

Proposition 4.5 If (U,C,P) is an almost CFS-compact, then (U, 7, P) is an almost FS-
compact.
Proof: The proof obtained directly from Proposition 3.4 and Theorem 2.10.

To give the characterizations of almost FS-compact in terms of the finite intersection
property, we first need the following definition:

Definition 4.6 A family Y = {(45);: i € 7} of FS-sets over U is said to have the first type of
FIP if N, Int((Ap);) # 0p. If Y satisfies the first type of FIP, then Y satisfies the FIP.

Theorem 4.7 An CFSCS (U, C,P) is an almost CFS-compact if and only if each family Y =
{(Ag);: 1 € T} of FS-sets of (U,C,P) satisfying the first type of FIP, then the family
{C((Ap)i): i € 7} has a non-null FS-intersection.

Proof: The proof is analogous to Theorem 3.6.

270



Maibed and Majeed Iraqgi Journal of Science, 2026, Vol. 67, No. 1, pp: 264-275

To obtain the reverse direction of Proposition 4.2, it is important first to provide the
following definition:

Definition 4.8 An CFSCS (U, C,P) is said to be CFS-regular if for each FS-point xf and a
FS-set Ag in X such that x¥ € Int(Ag), there is a FS-set u, in X such that
xF € Int(uy) € C(up) S Int(Ap).

Theorem 4.9 In an CFS-regular space, CFS-compactness and almost CFS-compactness are
equivalent.

Proof: Since every CFS-compact is an almost CFS-compact, it is required only to prove that
any almost CFS-compact in an CFS-regular space is CFS-compact. Let (U, C, P)be an almost
CFS-compact CFS-regular space and let S be a CFS-cover of 1p. Then, for every FS-point
xf = pin (U,C,P), there is Ap; € S such that p © Int( Ag). By CFS-regular, there is a FS-

set f1,; in U such that xf € Int(pa;) € C(Hay) € Int(Ag,). Thus (s p € SPU,P)}
is a CFS-cover of La. Since (U, C,P)be an almost CFS -compact, there is a finite number of

FS-points Py, P2 P3, ..., Ppin U such that{C(uAﬁ_),i = 1,...,n} is a FS-cover of 1p. It
l
follows that {ABﬁ_,i =1,..,n } is a finite CFS-cover of S. Hence, (U,C,P) is CFS-

compact.

Definition 4.10 An CFS-closure subspace (V,Cy,K) of a CFScS (U,C,P) is called a clopen
CFS-subspace, if it is closed and open FS-set in (U,C,P), i.e., C(Vp) = Vp and Int(Vp) =
Vp.

The next example explains Definition 4.10.

Example 4.11 Let U ={a,d,e}, P ={k,k,} and V ={a,e} SU. Define C-fsco
C:FSS(U,P) » FSS(U,P) as follows:

0p if Ap =0y,
{(ky, a1 Ve, (kyay Ve if Ag S {(ky,aiVey), (kya,Vel,

{(kl: dl)' (kZ' dl)} lf ){B c {(klﬂ dl)' (kZl dl)}r

1, otherwise.
Then, (U,C,P) is CFSCS. Let Vp = {(ky,a, V €1), (ky, a1 V e;)}. Then, from Theorem 2.11
the CFSCS-subspace (V, Cy, P) defined as Cy: FSS(V,P) = FSS(V,P) defined as follows:

0p if 15 =0p,
Cv(Xe) = { Vp otherwise

Also, note that C(Vp) =Vp and Int(Vp) =1 —C(1p —Vp) = 15 —
C({(ky,dy), (ky,d)}) = 1p — {(kq,d4), (ky, d1)} = Vp. Tt follows, (V,Cy,P) is a clopen
CFS-subspace.

C(Ap) =

Theorem 4.12 A clopen CFS- closure subspace (V, Cy, P) of an almost CFS-compact space
(U,C,P) is an almost CFs -compact.

Proof: Let {(Ag);: i €J} be a collection of FS-sets in (V,Cy,P) such that
{Int,((A5);): i € 7} has the FIP. Since forall i € J

Inty((Ag)1) = 1p = Cy(Ip — (1)) = 1p — {VaN C (1p — (Ap)1) }
= {T? - V?} U{I? -C (T? - (/13)1')}}
= Int(1p — Vp)UInt((p);) € Int((1p — Vp)U(4p);).

271



Maibed and Majeed Iraqgi Journal of Science, 2026, Vol. 67, No. 1, pp: 264-275

Then, {(1p — Vp)U(Ag);:i € 7} has the FIP in (U,C,P). By almost CFS-compactness of
(U,¢,P) we get {C((1p — Vp)U(Ap);):i €7} has a non-null fuzzy soft intersection. That
means  N{C((Ap — Vp)U@p);):i €T} ={C(1p — Vp)U C((A);):i €T} # 0p.  Since
(Ag); € Vp, then C((Ag);) € C(Vp) = Vp. Therefore, for all i €J we have {C(1p —
Vp)U C((45)1)3NV5p # 0. This implies ~ {(1p = Vp)NVp}U{C((Ap))NV5} =
0pUCy((Ap):) # 05. Hence, (V, Cy, P) is an almost CFS-compact subspace.

Theorem 4.13 If V5 is an almost CFS-compact set in a T,- CFSCS (U, C,P), then Vp is a
closed FS-set.
Proof: Similar to proof of Theorem 3.9.

Definition 4.14 An FS-mapping f,,s: (U,C,P) = (Y,C*, R) is said to be CFS-6 continuous,
if for each FS-point x¥ in U and for each FS-set p, in Y such that f,;(xX) € Int*(u,), there
is a FS-set Az in U such that xf € Int(Ap) and £,s(C( 1)) S C*( ua).

Example 4.15 Let U = [0,1] and P = {ky, k,} be the set of parameters on U. Define C-fsco
C*:FSS(U,P) » FSS(U,P) as follows:

0p if Ap = G;D:
C*(Ag) =14 Ve if Ag S v,
1 otherwise.
Where Ve = {(kl,vG(kl)), (kz,vG(kz)):vG(kl)(x) =vs(ky)(x) =0.3 forx =

0.5and 0 for x # 0.5}. Let C be any C-fsco on U. Then (U,C,P) and u,c*,P) are
CFSCS's. Let f,s:(U,C,P) - (U,C*,P) be the identity FS-mapping, i.e., v and s are
identity mappings. Let xf be any FS-point x¥ in U and let u, be any FS-set in U such that
xF = fos(xF) € Int*(uy). If uy € 1p — vg, then C*(p,) = 15 and the same is true if p, =
15. Then f,s(C(A5)) € C*(u,) for any Ag is a FS-set in U such that x¥ € Int(1p).
Hence, f, is a CFS-0 continuous.

Theorem 4.16 An CFS-6 continuous image of an almost CFS-compact is an almost CFS-
compact.

Proof: Let f,.:(U,C,P) = (Y,C*,R) be CFS-6 continuous mapping from an almost CFS-
compact space (U,C,P) onto an CFSC (Y,C*, R). Let S be a CFS-cover of 1. Then, for
each FS-point xF = p in U, there is a FS-set Hag € S such that § = fos(D) € Int*(pag)-

Since f, is CFS-0 continuous, there is a FS-set /131-5 in U such that p € Int( /135) and
fus(€ (Ag,)) € € (ttay). Now, { A, § € SP(U,P)} is a CFS-cover of Tp and (U, C, P) is
an almost CFS-compact. Then, there is a finite number of FS-points py, P, P3,...,Pp In U
such that{C’(/’lBﬁi) ,i=1, ...,n} is a FS-cover of i?. Hence, {C*( ,qui) ,i=1, ...,n}, where
G; = f,s(P;) is a FS-cover of 1. Thus, (Y, C*, R) is an almost CFS-compact.

5-Nearly Cech fuzzy soft compact closure spaces
Definition 5.1 An CFSCS (U, C, P) is said to be nearly CFS-compact if for every CFS-cover

{(Ap);:1 € 7} of 15, there is a finite set £ < 7 such that {€((Ap);):i € L} is CFS-cover of
1p.
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The relationship between nearly CFS-compact spaces and the other two types of
compactness is described in the following Theorem:

Theorem 5.2 Every CFS-compact is nearly CFS-compact and every nearly CFS-compact is
almost CFS-Compact.
Proof: First to prove if (U,C,P) is CFS-compact, then it is nearly CFS-compact. Let
(U,C,P) be a CFS-compact. Let {(15);:i € 7} be any CFS-cover of 15. Since (U, C,P) is
CFS-compact, then there exists a finite set £ © 7 such that {(13);:i € L} is a CFS-cover of
15. That means U{Int((4g);):i € L} = 1p. Since (1g); € C((1p);), then Int((Ap);) €
Int(C((Ag);)) for all i € 7. This implies U{Int((1p);):i € L} S U{Int(C’((/lB)i)): i €L}
Therefore, {C((15);):i € L} is CFS-cover of 1p. Hence, (U, C, P) is nearly CFS-compact.
Second, we prove if (U, G, P) is nearly CFS-compact, then it is almost CFS-compact.
Let (U,C,P) be nearly CFS-compact. Let {(1p);:i € 7} be any CFS-cover of 1p. Since
(U, C,P) is nearly CFS-Compact, then there exists a finite set L c 7 such that {C((A5);): i €
L} is a CFS-cover of 1. That means U{Int(C((15);)):i € L} = 1. Since for any i € 7,
Int(C((15);)) € C€((Ap);), then {C((Ap),):i € L} is a FS-cover of 1. Hence, (U,C,P) is
almost CFS-compact.

The following example demonstrates that the opposite is not true in general.

Example 5.3 Let U = {0,1,2n,—2n,2n + 1:n € N}, P = {k}, and let (Ag),, p¢c, Np are FS-
sets over U defined as:

Ag)n ={(k,x1):x €U —-{2n,-2n,2n+1}}, neN, p;={(k,x):x €U —{0,2n},n €
N} np = {(k,x1):x €U —{1,2n + 1},n € N}.

Define C-fsco C: FSS (U, P) — FSS(U,P) as follows:

( 63) lf AB == 67),
(/13)11 if AB g(AB)nr
C(/lg) = Pc Lf AB < pe

Mp if Ag Snp,
UneN(AB)n if AB < UnEN(/lB)n
\ 1y otherwise.
Then, (U, C, P) is an almost CFS-compact space since every CFS-cover {( A3);:i € 7} of 15
must contain 1, — p; and 1p —7p and this implies there exists a finite subset {1, —
pc, 1p —1p} such that C(1p — pc)UC(1p — np) = npUpe = 1p. But (U, G, P) is not nearly
CFS-compact space since there exists an CFS-cover {1p — (A)n, 1p — pc, 1p — np:n € N}
of 15 such that every FS-set in this cover equal the interior of the closure in the original FS-
set.

Remark 5.4 The diagram below summarizes the relationships between several forms of CFS-
compactness, based on previous results findings in sections 3 and 4.

CFS-compact = nearly CFS-compact = almost CFS-compact

Definition 5.5 An FS-mapping f,s: (U,C,P) — (Y,C*,R) is said to be CFS-almost
continuous if for each FS-point x¥ in U and each FS-set p, inY with f,q(xF) € Int*(uu)
there is a FS-set Ag in U such that xf € Int(Ag) and f,s( 1) S Int*(C*( ua)).

Clearly, any CFS-continuous mapping is CFS- almost continuous but not conversely as the
following example shows.
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Example 5.6 In Example 4.15, consider C be the indiscrete C-fsco on U (i.e., C(Az) = 05
for Az = 0p and C( Ag) = 1p for Az # 0p). Then, f,s is an CFS-almost continuous but does

not CFS-continuous since there exists a FS-set Az in U, Az=
{(kll AB(kl))' (kZ, AB(kZ)): AB(kl)Ex) ES AB(kz)(X) == 02 fOT X = 05 and 1 fOT X F
0.5} and fos(C(25)) = 1p ¢ C*(f,5(A5)) because c*(frs(2p)) =

{(kn " (A5 (28)) Uer) ), (Fea C* (fus (8)) (k2D ) € (s (1)) Uer) () =
C’*(ﬁ,s(/’lB))(kz)(x) =03 forx=05and 1 forx # 0.5}.

Theorem 5.7 An CFS- almost continuous image of CFS-compact is nearly CFS-compact.

Proof: Let f,i: (U,C,P) — (Y,C*,R) be CFS-almost continuous mapping from an CFS-
compact (U, C,P) onto an CFSCS (Y,C*,R) and let § be a CFS-cover of 15. For each FS-
point p = x¥ in U, there is Ha, € 8 such that § = f,s(P) € Int*(ua,)- Since fys is CFs-
almost continuous, then there is a FS-set ABﬁ in U such that p € Int( lBﬁ) and f,s( /135) c

Int*(C*( qu)). Now, {/1373 ,D € FSP(U,:P)} is a CFS-cover of 15 and (U, C,P) is an CFS-
compact. Then, there is a finite number of FS-points Py, ..., P, in U such that {/13 5. =
l

1, .....,n} is a CFS-cover of 1p. Consequently, {C* (,LlAq,) :i =1, ...,n} where §; = f,s(D;)
is CFS-cover of 1. Hence, (Y, C*, R) is nearly CFS-compact.

6- Conclusion

Fuzzy soft sets are of great interest to researchers. Compared to fuzzy soft topological
spaces, this approach is more general, and there are numerous applications for fuzzy soft sets.
In this paper, for Cech fuzzy soft closure spaces, the notions of compactness, almost
compactness, and nearly compactness are presented and investigated. Also, their induced
fuzzy soft topological spaces have been introduced and studied, as well as the relationships
between them. Next, there are opportunities to look into concept of Lindeldf spaces in Cech
fuzzy soft closure spaces and studied the relationships between them.
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