

ISSN: 0067-2904

Resolution for the two-rowed weyl module inThe cases of $(6,5) /(1,0)$ and $(6,5) /(2,0)$

Annam Ali Abbas*, Haytham R. Hassan
Department of Mathematic, College of Science, Mustansiriyah University, Baghdad, Iraq

Received: 18/6/ 2019
Accepted: 28/ 8/2019

Abstract

The main purpose of this paper is to study the application of weyl module and resolution in the case skew- shapes $(6,5) /(1,0)$ and $(6,5) /(2,0)$ by using contracting homotopy and the place polarization.

Key words: weyl module, skew- shape, graded contracting, homotopy.

تحلل مقاس وايل لصفين في حالة (6،5)/(0،1، و (6،5)/(0،2)

$$
\begin{gathered}
\text { قسم الرياضيات، كلية العوم، الجامعة المستي " هيثم رزوقي حسرية، بغداد ،العراق }
\end{gathered}
$$

الغرض الرئسي من هذا البحث هو دراسة تطبيق وحدة ويل والدقة في انحراف الحالة (6 ، 5) / (1 ،
0) و (6 ، 5) / (2 ، 0) باستخدام هوموتوبي المتعاقد مع وضع الاستقطاب .

1: Introduction

Let R be a commutative ring with identity (1) and \mp be a free k -module. In this work we give resolution of weyl modules in the cases of skew partitions $(6,5) /(1,0)$ and $(6,5) /(2,0)$ which are used by D. A . Buchsbaum in the case partition $(2,2)$, Haytham R. Hassan in the case $(3,3)$ and Niran Sabah Jasim in the case $(8,7)[1,2,3]$.

Let Z_{21} be the free generator of a divided power algebra
$Ð \digamma\left(Z_{21}\right)$ is one generator of the divided element power Z_{21} of degree k of free generator. Z_{21} is $Đ_{P+\kappa} F \otimes Đ_{\mathrm{q}-\kappa} F$ by place polarization of degree κ from place 1 to place 2.
"The graded algebra with identity" $\mathrm{R}=Ð \digamma\left(Z_{21}\right)$ is the graded module that acts of the graded module $\mathcal{N}=\sum Đ_{P+\kappa} F \otimes Đ_{\mathrm{q}-\kappa} F$ i.e. \mathcal{N} is a (graded) left k - module;
$\mathcal{N} \cdot: 0 \longrightarrow \mathcal{N}_{\mathfrak{q}-t} \xrightarrow{\boldsymbol{\partial}_{\mathcal{S}}} \xrightarrow{\boldsymbol{\partial}_{\mathcal{S}}} \mathcal{N}_{1} \xrightarrow{\boldsymbol{\partial}_{\mathcal{N}_{\mathrm{O}}}}$
is the weyl module By definition $\mathcal{N} \bullet$ is the resolution of $\kappa_{\lambda / \mu}(F)$; where $\kappa_{\lambda / \mu}(F)$

$$
\begin{equation*}
\sum_{\kappa_{i} \geq 0} Z_{21}^{\left(\kappa_{1}+t\right)} \quad Z_{21 \chi \ldots \chi}^{\left(\kappa_{2}\right)} Z_{21 \chi}^{\left(\kappa_{1}\right)} Đ_{\mathrm{P}+(\mathrm{t}+|\kappa|)} F \otimes Đ_{\mathfrak{q}-(t+|\kappa|)} F \xrightarrow{d_{1}} \tag{2}
\end{equation*}
$$

[^0]$\sum_{\kappa_{i} \geq 0} Z_{21}^{\left(t+\kappa_{1}\right)} \quad Z_{21}^{\left(\kappa_{2}\right)} \chi \ldots, \chi \quad Z_{21}^{\left(\kappa_{l}-1\right)} Đ_{\mathrm{p}+(\mathrm{t}+|\mathrm{k}|)} \mp \otimes Ð_{\mathfrak{q}-(\mathrm{t}+|\mathrm{k}|)} \xrightarrow{d_{l-1}}$
$\ldots \longrightarrow \sum_{\kappa_{i} \geq 0} Z_{21 \quad \chi}^{(t+\kappa)} Ð_{\mathrm{p}+(\mathrm{t}+|\kappa|)} \mp \otimes Ð_{\mathrm{q}-(\mathrm{t}+\kappa)} \digamma \xrightarrow{d_{0}} Đ_{P} \mp \otimes Đ_{\mathrm{q}}$
Where $|\kappa|=\sum \kappa i$ and d_{l} is the "boundary operator" $\boldsymbol{\partial}_{\chi}$
definition of is \mathcal{S}_{i} see [1] and the
$\mathcal{S}_{0}: Đ_{P} F \otimes Đ_{\mathrm{q}} F \longrightarrow \sum_{\kappa_{i} \geq 0} Z_{21 \quad \chi}^{(t+\kappa)}{ }_{2} Đ_{P+(t+\kappa)} F \otimes Đ_{\mathrm{q}-(t+\kappa)} F$

And for higher dimensions as :
$\mathcal{S}_{l-1}: \sum_{\kappa_{i} \geq 0} Z_{21}^{\left(t+\kappa_{1}\right)} \mathrm{Z}_{21 \chi \ldots . .}^{\left(\kappa_{2}\right)} \mathrm{Z}_{21 \chi}^{\left(\kappa_{l}-1\right)} Đ_{P+(t+|\kappa|)} \mp \otimes Đ_{\mathrm{q}-(t+|\kappa|)} \mp \longrightarrow$
$Z_{21}^{\left(t+\kappa_{1}\right)} \mathrm{Z}_{21}^{\left(\kappa_{2}\right)} \ldots \ldots . \mathrm{Z}_{21 \chi}^{\left(\kappa_{l}-1\right)} \mathrm{Z}_{21}^{\left(\kappa_{l}\right)}{ }_{\chi} Đ_{P+(t+|\kappa|)} \mp \otimes Đ_{\mathfrak{q}-(t+|\kappa|)} \mp$

$$
\begin{array}{lllll}
Z_{21}^{\left(t+\kappa_{1}\right)} & \chi & \mathrm{Z}_{21}^{\left(\kappa_{2}\right)} \chi \ldots . & \mathrm{Z}_{21}^{\left(\kappa_{l}-1\right)}
\end{array}\left(\left.\begin{array}{l}
w \tag{4}\\
w^{\prime}
\end{array}\right|_{2^{(\mathrm{B}-(t+|\kappa|+\mathrm{m})}} ^{(p+t+|\kappa|}\right)
$$

As in $1,4,5$, and 6 that follows, we write the moudules of the resolution as $\mathcal{N} \mathrm{i}$, in which $\mathrm{i}=0,1, \ldots . \mathrm{q}-$ t; with $\mathcal{N}_{0}=Đ_{P} F \otimes Đ_{\mathrm{q}}$ and
$\mathcal{N}_{i}=Z_{21 \chi}^{\left(\kappa_{l}-1\right)} Z_{21 \chi}^{(\kappa 2)} \cdots Z_{21}^{\left(\kappa_{i}\right)} \chi_{P+t+|\kappa|} F \otimes Đ_{\mathfrak{q}-(t+|\kappa|)} F \quad i \geq 1$

2. Definitions

(1) Let R be a commutative ring. A graded R -algebra is a graded R -module $\mathrm{M}=\bigoplus_{i \geq 0} \quad M_{i}$ together with a "multiplication" homogenous $m: M \otimes M \longrightarrow M$ and a unit $\eta: \mathrm{R} \longrightarrow \mathrm{M}$.
(2) The weyl module shape \propto is the image of the map $d_{\alpha}(F)$, and it is denoted by $l_{\alpha}(F)$.
(3) A contracting homotopy:- $\left\{\mathcal{S}_{0}, \mathcal{S}_{1}, \mathcal{S}_{2}, \ldots \ldots\right\}$ is a contracting homotopy if $\mathcal{S}_{i-1} \partial_{\chi}+\partial_{\chi} \mathcal{S}_{i}=$ id .
(4) The divided power algebra $\mathrm{D} F=\sum_{\mathrm{k}_{i} \geq 0} \mathrm{D}_{\mathrm{i}} \mp$ can be defned as the graded commutative a lgebra generated by element $\chi^{\wedge}((\mathrm{i}))$ in degree where $\chi \in \mathrm{F}$ and I is a non negative integer.
3- Application of weyl modules and resolution in the case skew- shape $(6,5) /(1,0)$.
In this section we study the application of weyl module and resolution in the case $(6,5) /(1,0)$ and find the terms of resolution of the skew-shape in the case $(6,5) /(1,0)$ as well as the proof of exactness.
"Let skew- Shape $(6,5) /(1,0)$, in this case we have the following terms of characteristic free resolution"
The characteristic - free resolutions are:

$\mathcal{N}_{0}:=Ð_{5} \mp \otimes Ð_{4} \mp$
$\mathcal{N}_{1}:=Z_{21 \chi}^{(1)} Đ_{6} F \otimes Đ_{3} F \oplus Z_{21 \chi}^{(2)} Đ_{7} F \otimes Ð_{2} F \oplus Z_{21 \chi}^{(3)} Ð_{8} F \otimes Đ_{1} F \oplus$
$\mathcal{N}_{2}:=Z_{21 \chi}^{(2)} Z_{21 \chi} Đ_{9} F \otimes Đ_{1} F \oplus Z_{21 \chi}^{(3)} Z_{21 \chi} Đ_{10} F \otimes Ð_{0} F$
$\mathcal{N}_{3}:=Z_{21 \chi}^{(2)} Z_{21 \chi} Z_{21 \chi} Đ_{10} F \otimes Ð_{0} F$
Then we have
$\mathcal{S}_{0}: \mathcal{N}_{0} \longrightarrow \mathcal{N}_{1}$
$\mathcal{S}_{0}\left(\begin{array}{c}w \\ w^{\prime} \mid 1^{(5)} 2^{(\kappa)} \\ 2^{(5-\kappa)}\end{array}\right)=\left\{\begin{array}{c}Z_{21 \chi}^{(\kappa)}\left(\begin{array}{c}w \\ \left.w^{\prime}| | \begin{array}{l}2^{(5+\kappa)} \\ 2^{(5-\kappa)}\end{array}\right)\end{array} \text { if } \quad \kappa>2\right. \\ o \quad \text { if } \kappa \leq 2\end{array}\right.$
and $\mathcal{S}_{1}: \mathcal{N}_{1} \longrightarrow \mathcal{N}_{2} \quad$ where

and $\mathcal{S}_{2}: \mathcal{N}_{2} \longrightarrow \mathcal{N}_{3}$ where
$\mathcal{S}_{2}\left(\begin{array}{lll}\mathrm{Z}_{21}^{\left(\kappa_{1}+1\right)} & \chi & \mathrm{Z}_{21}^{\left(\kappa_{2}\right)}\end{array} \quad \chi\left(\left.\begin{array}{c}w \\ w^{\prime}\end{array}\right|_{2^{(6+|\kappa|}} ^{1^{(1-|\kappa|-m)}} 2^{(\mathrm{m})}\right)\right)$
$=\left\{\begin{array}{cl}\mathrm{Z}_{21}^{(\kappa+1)}{ }_{\chi} \mathrm{Z}_{21}^{\left(\kappa_{2}\right)} \mathrm{Z}_{21 \chi}^{(\mathrm{m})}\left(\begin{array}{c}w \\ w^{\prime} \mid\end{array} 1_{2^{(1-|\kappa|-\mathrm{m})}}^{(6+|\kappa|+\mathrm{m})}\right) & \text { if } \mathrm{m}=1 \\ 0 & \text { if } \mathrm{m}=0\end{array}\right.$
Since $|\kappa|=\kappa_{1}+\kappa_{2}$
"Now we have the following diagram"

in diagram (5) we can see that

$$
\begin{aligned}
& \mathcal{S}_{0} \partial_{\chi}\left(\begin{array}{ll|l}
Z_{21}^{(\kappa+1)} & \chi
\end{array}\left(\begin{array}{l}
w \\
w^{\prime}
\end{array} 1_{2^{(6+\kappa)}}^{(1-\kappa-\mathrm{m})} 2^{(\mathrm{m})}\right)\right) \\
& =\mathcal{S}_{0}\left(\begin{array}{ll|l}
Z_{21}^{(\kappa+1)} & \chi
\end{array}\left(\begin{array}{l}
w \\
w^{\prime}
\end{array} 1_{2^{(6+\kappa)}}^{(1-\kappa-\mathrm{m})} 2^{(\mathrm{m})}\right)\right) \\
& =\mathcal{S}_{0}\left(\left(\begin{array}{l|l}
w & 1^{(5)} \\
w^{\prime} & 2^{(\kappa+1)} \\
2^{(1-\kappa-m)} & 2^{(m)}
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{k+1+m}{m} S_{0}\left(\left(\begin{array}{c|c}
w \\
w & 1^{(5)} \\
2^{(1-\kappa-m)}
\end{array} 2^{(\kappa+1+m)}\right)\right) \\
& =\binom{\kappa+1+\mathrm{m}}{\mathrm{~m}} Z_{21}^{(\kappa+1+\mathrm{m})}\left(\left(\begin{array}{c}
\left.\left.\left.w^{\prime} \left\lvert\, \begin{array}{l}
1^{(6+\kappa+m)} \\
w^{\prime} \\
2^{(1-\kappa-m}
\end{array}\right.\right)\right), ~\right) ~
\end{array}\right.\right.
\end{aligned}
$$

So that

$$
\begin{aligned}
& \left.\partial_{\chi} S_{1}\left(\begin{array}{ll|l}
Z_{21}^{(\kappa+1)} \chi & \left(\begin{array}{l}
w \\
w^{\prime} \\
1^{(6+\kappa)} \\
2^{(1-\kappa-\mathrm{m})}
\end{array}\right.
\end{array} 2^{(\mathrm{m})}\right)\right) \\
& =\partial_{\chi}\left(\begin{array}{lll}
\mathrm{Z}_{21}^{(\kappa+1)} & \chi & \mathrm{Z}_{21}^{(\mathrm{m})}
\end{array} \quad \chi\left(\begin{array}{c}
w^{\prime} \left\lvert\, \begin{array}{l}
1^{(6+\kappa+m)} \\
w^{\prime}
\end{array} 2^{(1-\kappa-m)}\right.
\end{array}\right)\right) \\
& =-\binom{\kappa+1+m}{m} Z_{21}^{(\kappa+1+m)}\left(\begin{array}{c|c|l}
w & w^{\prime} \\
w^{\prime} & 2^{(6+\kappa+m)} \\
2^{(1-\kappa-m)}
\end{array}\right)+Z_{21}^{(\kappa+1)} \quad\left(\begin{array}{l|l}
w & 1^{(6+\kappa)} \\
w^{\prime} & 2^{(m)} \\
2^{(1-\kappa-m)}
\end{array}\right)
\end{aligned}
$$

It is clear that: $\mathrm{S}_{0} \partial_{\chi}+\partial_{\chi} \mathrm{S}_{1}=\mathrm{id}$.
Now
$\mathrm{S}_{1} \partial_{\chi}\left(\begin{array}{c}\mathrm{Z}_{21}^{\left(\kappa_{1}+1\right)} \\ \chi\end{array} \mathrm{Z}_{21}^{\left(\kappa_{2}\right)} \chi\left(\left.\begin{array}{l}w \\ w^{\prime}\end{array}\right|_{2^{(1-\kappa-\mathrm{m})}} ^{1^{(6+\kappa)}} 2^{(\mathrm{m})}\right)\right)$ where $|\kappa|=\kappa_{1}+\kappa_{2}$
$=\mathcal{S}_{1}\left(-\binom{|\kappa|}{\kappa_{2}} Z_{21}^{|\kappa|+1} \chi \quad\left(\left.\begin{array}{c}w \\ w^{\prime}\end{array}\right|_{2^{(1-\kappa-m)}} ^{1^{(6+\kappa)}} 2^{(\mathrm{m})}\right)+\mathrm{Z}_{21}^{(\kappa+1)} \quad \chi\left(\begin{array}{c|l}w & 1^{(6+\kappa)} 2^{\left(\kappa_{2}\right)} \\ w^{\prime} & 2^{(\mathrm{m})} \\ 2^{(1-\kappa-m)}\end{array}\right)\right)$

$+\left(\begin{array}{c}\binom{\kappa_{2}+m}{m} \mathrm{Z}_{21}^{(\kappa+1)} \quad \chi\end{array} \quad\left(\begin{array}{c|l}w \\ w^{\prime} & \begin{array}{l}1^{\left(6+\kappa_{1}\right)} \\ 2^{(1-|\kappa|-m)}\end{array} 2^{\left(\kappa_{2}+m\right)}\end{array}\right)\right)$
$=-\binom{|\kappa|+m}{\kappa_{m}} \mathrm{Z}_{21}^{(|\kappa|+1)} \quad \chi \quad \mathrm{Z}_{21}^{(\mathrm{m})} \quad \chi \quad\left(\begin{array}{c}w^{\prime} \\ \left.w^{\prime} \left\lvert\, \begin{array}{c}1^{(6+|\kappa|+m} \\ 2^{(1-|\kappa|-m}\end{array}\right.\right)\end{array}\right.$
$+\binom{\kappa_{2}+m}{m} Z_{21}^{\left(\kappa_{1}+1\right)} \chi_{21}^{\left(\kappa_{2}+m\right)} \quad\left(\left.\begin{array}{c}w \\ w^{\prime}\end{array}\right|_{2^{(1-|\kappa|-m}} ^{(6+|\kappa|+m}\right)$
So and

$\partial_{\chi}\left(\begin{array}{ccccc}\mathrm{Z}_{21}^{\left(\kappa_{1}+1\right)} & \chi & \mathrm{Z}_{21}^{\left(\kappa_{2}\right)} & \chi & \mathrm{Z}_{21}^{(\mathrm{m})}\end{array} \quad\left(\begin{array}{c}w^{w} \mid \\ w^{\prime} \mid \\ 1^{(6+|\kappa|+\mathrm{m})} \\ 2^{(1-|\kappa|-\mathrm{m}}\end{array}\right)\right)$
$=\binom{|\kappa|+1}{\kappa_{2}} \mathrm{Z}_{21}^{(|\kappa|+1)} \mathrm{Z}_{21}^{(\mathrm{m})} \quad \chi \quad\left(\begin{array}{c}w \\ w^{\prime}\end{array} \left\lvert\, \begin{array}{c}1^{(6+|\kappa|+m)} \\ 2^{(1-|\kappa|-m}\end{array}\right.\right)$
$\left.=\partial_{\chi}\left(\begin{array}{cccc}\mathrm{Z}_{21}^{\left(\kappa_{1}+1\right)} & \chi & \mathrm{Z}_{21}^{\left(\kappa_{2}\right)} & \chi\end{array} \mathrm{Z}_{21}^{(\mathrm{m})} \quad \chi\left(\begin{array}{c}w^{\prime} \\ w^{\prime}\end{array} 1_{2^{(6+|\kappa|+\mathrm{m})}}^{(1-|\kappa|-\mathrm{m}}\right) ~\right) ~\right) ~$
$=\binom{|\kappa|+1}{\kappa_{2}} \mathrm{Z}_{21}^{(|\kappa|+1)} \quad \chi \quad \mathrm{Z}_{21}^{(\mathrm{m})} \quad \chi\left(\begin{array}{c}\left.\left.w^{\prime} \left\lvert\, \begin{array}{c}1^{(6+|\kappa|+m)} \\ w^{\prime} \mid \\ 2^{(1-|\kappa|-m}\end{array}\right.\right), ~\right) ~\end{array}\right.$

$+\mathrm{Z}_{21}^{\left(\kappa_{1}+1\right)} \mathrm{Z}_{21}^{\left(\kappa_{2}\right)} \chi\left(\begin{array}{l}w \\ w^{\prime} \mid\end{array} 1_{2^{(6+|\kappa|)}}^{2^{(1-|\kappa|-m)}} 2^{(\mathrm{m})}\right)$
S_{0} we have" $\mathrm{S}_{1} \partial_{\chi}+\partial_{\chi} \mathcal{S}_{2}=$ id "
Hence $\left\{\mathcal{S}_{0}, \mathcal{S}_{1}, \mathcal{S}_{2}\right\}$ is a contracting homotopy; which implies that the complex
$0 \longrightarrow \mathcal{N}_{3} \longrightarrow \mathcal{N}_{2} \longrightarrow \mathcal{N}_{1} \xrightarrow[\text { 份 }]{ }$ is exact.
4- Application of weyl modules and resolution in the case skew- shape (6,5)/(2,0).
In this section we study the application of weyl module and resolution in the case $(6,5) /(2,0)$ and find the terms of resolution of skew-shape in the case $(6,5) /(2,0)$ as well as the proof of exactness.

$$
\text { Let skew -shape }(6,5) /(2,0)=(4,5)
$$

In this case we have the following terms of characteristic free resolution

$\mathcal{N}_{0}=Ð_{4} F \otimes Ð_{5} F$
$\mathcal{N}_{1}=Z_{21 \chi}^{(3)} Ð_{7} F \otimes Ð_{2} \digamma \oplus Z_{21 \chi}^{(4)} Ð_{8} F \otimes Ð_{1} F \oplus Z_{21 \chi}^{(5)} Đ_{9} F \otimes Ð_{0} F$
$\mathcal{N}_{2}=Z_{21 \chi}^{(3)} \mathrm{Z}_{21 \chi} \mathrm{Đ}_{8} \mp \otimes \mathrm{Đ}_{1} \digamma \oplus \mathrm{Z}_{21 \chi}^{(4)} \mathrm{Z}_{21 \chi} \mathrm{Đ}_{9} \mp \otimes Ð_{0} \digamma \oplus \mathrm{Z}_{21}^{(2)} \mathrm{Z}_{21}^{(2)} \mathrm{Đ}_{9} \mp \otimes Ð_{0} \digamma$
$\mathcal{N}_{3}=\mathrm{Z}_{21}^{(3)} \mathrm{Z}_{21 \chi} \mathrm{Z}_{21 \chi} \mathrm{Đ}_{9} \mp \otimes \mathrm{Đ}_{0} \mp$
Then we have

And
$\square_{1}: \square_{1} \longrightarrow \square_{2}$
$\square_{1}\left(\begin{array}{ll}\square_{21}^{(\square+2)} & \left(\begin{array}{ll}\square & I^{(6+\square)} \\ \square & 2^{\square}(2-\square-\square)\end{array}\right)\end{array}\right)=\left\{\begin{array}{ll}\square_{21}^{(\square+2)} & \square_{21}^{\square}\end{array}\left(\begin{array}{c}\square \\ \square^{\prime} \\ I^{(6+\square+\square)} \\ 0\end{array}\right.\right.$
And
$\mathrm{S}_{2}: \square_{2} \longrightarrow \square_{3}$ where
$\square_{2}\left(\square_{21}^{\left(\kappa_{1}+2\right)}{ }_{\chi} \square_{21}^{\left(\kappa_{2}\right)}{ }_{\chi} \square_{21}^{(\square)}{ }_{\chi}\left(\begin{array}{l|l}\square & 1^{(6+|\kappa|)} \quad 2 \square \\ \square & 2^{(2-|\kappa|-\square)}\end{array}\right)\right)$
$=\left\{\begin{array}{c}\square_{21}^{\left(\kappa_{1}+2\right)}{ }_{x} \square_{21}^{(\square)}{ }_{x} \square_{21}^{(\square)}{ }_{x}\left(\left(\left.\square_{\square}^{\square}\right|_{\left.2^{(2-|k|} \mid-\square\right)} ^{(6+|x|+\square)}\right)\right) \\ 0 \\ \square \square \square \square\end{array}\right)=1$

$\square_{0} \partial_{\chi}\left(\begin{array}{l|l}\square \square_{21}^{(\kappa+2)}{ }_{x}\left(\begin{array}{ll}\square & 1^{(6+\kappa)} \\ \square^{(2-\kappa-\square)}\end{array}\right)\end{array}\right)$
$=\square_{0}\left(\left(\begin{array}{lll}\square & 1^{(4)} & 2^{(\kappa+2)} \\ \square^{\prime} & 2^{\square} \\ 2^{(2-\kappa-\square)} &)\end{array}\right)\right.$
$\left.=\square_{0}\binom{\kappa+2+\kappa}{\square}\left(\begin{array}{l}\left.\square\right|^{(4)} 2^{\left(2^{(\kappa+2+\kappa-\square)}\right.}\end{array}\right)\right)$
$=\binom{\kappa+2+\square}{\square} \square_{0}\left(\left(\begin{array}{ll}\square \\ \square & l^{(4)} \\ 2^{(2-\square-\square)}\end{array}\right)\right)$
$=\binom{\kappa+2+\square}{\square} \square_{21}^{(\kappa+2+\square)}{ }_{x}\left(\left(\begin{array}{l}\square \\ \square \\ 1_{2}^{(6+\kappa+\square)} \\ 2^{(2-\kappa-\square)}\end{array}\right)\right)$
In diagram (6) we can see that
$\partial_{\chi} \square_{1}\left(\square_{21}^{(\kappa+2)}{ }_{x} \quad\left(\begin{array}{l}\square \\ \square \\ \square_{2}^{(6+\kappa)} \\ 2^{(2-\kappa-\square)}\end{array} 2^{(\square)}\right)\right)$
$\partial_{\chi}\left(\begin{array}{lll}\square_{21}^{(\kappa+2)}{ }_{x} & \square_{21}^{(\square)}{ }_{x} & \left(\square \square_{2^{(2-\kappa-\square)}}^{1^{(6+\kappa+\square)}}\right)\end{array}\right)$
$=-\binom{\square+2+\square}{\square} \square_{21}^{(\square+2+\square)}{ }_{x}\left(\begin{array}{l}\square \\ \square l_{2}^{(6+\square+\square)} \\ 2^{(2-\square-\square)}\end{array}\right)+\square_{21}^{(\square+2)}{ }_{x}\left(\begin{array}{l}\square \\ \square 1_{1}^{(6+\square)} \\ 2^{(2-\square-\square)}\end{array}\right)$
From the preposition in diagram (6) we can see that
$\square_{0} \partial_{\chi}+\partial_{\chi} \square_{1}=\mathrm{id}$
Then

$$
\left.\binom{\kappa+2+\square}{\square} \square_{21}^{(\kappa+2+\square)}\left(\left(\begin{array}{l}
\square \\
\square \\
\square_{2}^{(6+\kappa+\square)} \\
2^{(2-\kappa-\square)}
\end{array}\right)\right)+\square_{21}^{(\kappa+2)} \times\left(\begin{array}{l}
\square \\
\square
\end{array} c_{2^{(6+\kappa)}}^{2^{(2-\kappa-\square)}}\right)^{\square}\right)
$$

$\Rightarrow \square_{21}^{(\kappa+2)}{ }_{x}\left(\begin{array}{l}\square \\ \square\end{array} \frac{1}{1(6+\kappa)} 2^{(2-\kappa-\square)}\right)$
Now
$\square_{1} \partial_{\chi}\left(\square_{21}^{\left(\kappa_{1}+2\right)}{ }_{\chi} \square_{21}^{\left(\kappa_{2}\right)}{ }_{\chi}\left(\begin{array}{l}\square \\ \square^{\prime} 1_{1^{(6+\kappa)}}^{(2-\kappa-\square)}\end{array} 2^{(\square)}\right)\right)$ where $|\kappa|=\kappa_{1}+\kappa_{2}$
$=\square_{1}\left(-\binom{|\kappa|+2}{\kappa_{2}} \square_{21}^{(|\kappa|+2)}{ }_{x}\binom{\square}{\left.\square\right|_{2^{(2-\kappa-\square)}} ^{1^{(6+\kappa)}} 2^{\square}}\right.$
$+\left(\square_{21}^{(\kappa+2)}{ }_{x}\left(\begin{array}{l}\square \\ \square \\ \left.\right|_{2^{(2-\kappa-\square)}} ^{1^{(6+\kappa)}} 2^{\left(\kappa_{2}\right)} \\ 2^{(\square)}\end{array}\right)\right)$
$=\square_{1}\left(-\binom{|\kappa|+2}{\kappa_{2}} \square_{21}^{(|\kappa|+2)}{ }_{x}\left(\begin{array}{l}\square \\ \left.\square\right|_{2^{\prime}} ^{1^{(6+|k|}}{ }^{(2-|k|-\square)}\end{array} 2^{\square}\right)\right.$
$\left.+\binom{\kappa_{2}+\square}{\square} \square_{21}^{(\kappa+2)} \underset{\chi}{(\square}\left(\begin{array}{l}1^{\prime} 1^{\left(6+\kappa_{l}\right)} \\ 2^{(2-|\kappa|-\square)}\end{array} 2^{\left(\kappa_{2}+\square\right.}\right)\right)$
$=-\binom{|\kappa|+\square}{\kappa_{2}} \square_{21}^{(|\kappa|+2)}{ }_{x} \square_{21}^{(\square)}{ }_{x}\left(\begin{array}{l}\square \\ \square \\ 1_{2}^{(6+|\kappa|+\square \mid-\square)}\end{array}\right)+\binom{\kappa_{2}+\square}{\square} \square_{21}^{\left(\kappa_{1}+3\right)}{ }_{x} \square_{21}^{\left(\kappa_{2}+\square\right)}{ }_{x}$
$\left(\square l^{1^{(6+\kappa+\square)}}\left(\begin{array}{l}2^{(2-\kappa-\square)}\end{array}\right)\right.$
and
$\partial_{\chi} \square_{2}\left(\square_{21}^{\left(\kappa_{1}+2\right)}{ }_{x} \square_{21}^{\left(\kappa_{2}\right)}{ }_{\chi}\left(\begin{array}{l}\square \\ \square \\ \square_{1}^{\prime} 1_{2^{(2+|k|}(\underline{k+\mid}-\square)}^{2}\end{array}\right)\right)$
$=\partial_{\chi}\left(\square_{21}^{\left(\kappa_{1}+2\right)}{ }_{x} \square_{21}^{\left(\kappa_{2}\right)}{ }_{x} \square_{21}^{(\square)}{ }_{x}^{(\square)}\left(\begin{array}{l}\square \\ \square_{2}^{\prime} 1_{2^{(2-|k|-\square)}}^{(6+|k|)}\end{array} 2^{\square}\right)\right)$
$=-\binom{\kappa_{2}+\square}{\square} \square_{21}^{\left(\kappa_{1}+2\right)}{ }_{x} \square_{21}^{\left(\mathcal{K}_{2}+\square\right)}{ }_{x}\left(\left.\begin{array}{l}\square \\ \square\end{array}\right|_{2^{(2-|k|-\square)}} ^{(6+|k|+\square)}\right)$

In diagram (6) we can see that $\square_{1} \square_{\square}+\square_{\square} \square_{2}=$
hence

$+\binom{\kappa_{2}+\square}{\square} \square_{21}^{\left(\kappa_{1}+2\right)}{ }_{x} \square_{21}^{\left(\kappa_{2}+\square\right)}{ }_{x}\left(\begin{array}{l}\square \\ \square^{\prime} \\ 1_{2}^{(2-|k|-\square)}\end{array}\right)$
$-\binom{\kappa_{2}+\square}{\square} \square_{21}^{\left(\kappa_{1}+2\right)}{ }_{x} \square_{21}^{\left(\kappa_{2}\right)}{ }_{x}\left(\begin{array}{l}\square \\ \square\end{array} l_{1^{(6+|k|)}}^{2^{(2-|x|-\square)}} 2^{(\square)}\right)$
$+\binom{\left|\kappa_{1}\right|+2}{\kappa_{2}} \square_{21}^{(|\kappa|+2)}{ }_{x} \square_{21}^{(\square)}{ }_{x}\left(\begin{array}{l}\square \\ \square \\ l_{2}^{(6+|k|+\square)} \\ 2^{(2-|x|-\square)}\end{array}\right)$
$=\square_{21}^{\left(\kappa_{1}+2\right)}{ }_{x} \square_{21}^{\left(\kappa_{2}\right)}{ }_{x}\left(\begin{array}{l}\square \\ \square \\ \square^{\prime}{ }^{(2-|\kappa|-\square)}\end{array}\right)$
Now we get $\square_{1} \partial_{\chi}+\partial_{\chi} \square_{2}=$ id
Hence $\left\{\square_{0}, \square_{1}, \square_{2}\right\}$ is a contracting homotopy
0
 is exact

Acknowledgments

The authors thank the Mustansiriyah University / College of Science / Department of Mathematics for supporting this work.

References

1. David A. and Gian C. 1993. Projective Resolution of weyl Modules, Natl. Acad. Sci. USA, 90: 2448-2450
2. Haytham RH. 2006. Applicatin of the characteristic-free resolution of Weyl Module to the Lascoux resolution in the case (3, 3, 3). Ph. D. Italia (Tor-vergate-Roma).
3. Haytham RH, Niran SJ. 2018 Application of Weyl module in the Case of Two Rows. J. Phys. Conf. Ser. 1003 (012051) (1742-6588, 742-6596): 1-15, doi: 10.1088/1742-6596/1003/1/012051.
4. David A. and Brian D. 2003. Homotopies for Resolution of Skew-Hook Shapes, Adv. In Applied Math. 30: 26-43.
5. David. A. and Rota, G.C. 2001 Approaches to resolution of weyl modules. Adv. In applied math. 27: 82-191.
6. David A. 2004. A Characteristic Free Example of Lascaux Resolution, and Letter place Mathods for Intertwining Numbers, European Journal of Gombinatorics, 25: 169-1179.

[^0]: *Email: anaamaban@gmail.com

