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Abstract

In this work we study gamma modules which are implying full stability or
implying by full stability. A gamma module M is fully stable if 6(N) < N for each
gamma submodule N of M and each R-— homomorphism 6 of N into M. Many
properties and characterizations of these classes of gamma modules are considered.
We extend some results from the module to the gamma module theories.
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1- Introduction:
In 1964, Nobusawa introduced the idea of gamma rings as a generalization of the idea of rings [1].
In 1966, Barnes summed up this idea and obtained entirety fundamental properties of gamma rings
[2].
Let R and I" be two additive abelian groups. R is called a I —ring if there is a mapping
RXI'XR—>R,(r,a,1)— rar such that the followings hold:
M +r)ary =rnar;+r, <ry,
(i)r(a+ BIr, = rpar, + nfr,,
(iii) na(ry +1r3) = nar, + rpar; and
(ivy(nar,))Brs=ra(r,fry), forallry,r, s €R,a,f € T.
In 2010, Ameri and Sadeghi extended the idea of modules to gamma modules [3].
Let R be a I" —ring. An additive abelian group M is called a left R- — module, if there exists a
mapping : R X I' X M — M, ram denote the image of ( r, «, m ) such that the followings hold:
(M) ra(my +my) = ram; +ram, ,
(i) (n+r)am = nam +nram,
(ii)r (¢ +ay)m = ra;m + ra, m and
(iVvy nay(rna,m) = (ra,rn)a, m,forallm,m;,m, e M, a,a,;,a, €’ andr,r,1,,€ R.
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An Ry —module M is called unitary if there is 1 € R, @y € I' such that 1agm = m for all m in M.
A previous article provided more details of gamma modules [3].

In 1973, Faith introduced the definition of duo modules. Let M be an R —module, a submodule N
of M is said to be fully invariant if 8(N) < N for each R —endomorphism of M [4]. In the case that
each submodule of M is fully invariant, then M is called duo.

In 1991, Abbas studied the relationship between the fully stable modules and the duo modules; an
R —module M is fully stable if for each submodule N of M, 6(N) € N for each R —homomorphism
6 from N into M [5].

In this paper, we consider the duo property in the category of gamma modules. A left R —module
M is called duo if 6(N) € N for each Ry —submodule N of M and R —endomorphism of M. For an
arbitrary fixed a in T, a subset A of R and a subset L of M, we define:

(L) = {r € R|raL = o} and »§;,(A) = {m € M|Aa m = o}.

We give many properties and characterizations of this class of gamma modules. A left R -module
M is a duo if and only if every a —cyclic Ry —submodule Rax of M is fully invariant where x €
M.We study the relationship between the duo and the multiplication gamma modules, while every
fully stable gamma module is duo and the convers is true in principally quasi-injective gamma
modules. We consider direct summand and sum of duo gamma modules. Finally, we consider some
generalizations of full stability which are related to the duo property.

2. Basics of duo gamma modules

Let M be an Rr —module. An Ry —submodule N of M is called fully invariant if f(N) € N for
each R —endomorphism f of M. In case that each R —submodule of M is fully invariant, then M is
called a duo. Clearly, (0) and M are fully invariant R —submodules, and hence, simple R —modules
are duo. Let M be an R —module, a« € I' an arbitrary fixed element and m € M. Then the set
Ram = {ram|r € R} is an Rr —submodule of M and it is called an a« —cyclic. It is easy to see that an
Rr —module M is a duo if and only if every a —cyclic R —submodule of M is fully invariant, that is
for each x in M and R —endomorphism 6 of M, there exists r € R such that 6(x) = ra x.

In general, R —submodules of duo gamma modules may not be duo. However, every direct
summand of duo gamma modules is a duo, for if K is an R —submodule of a direct summand N of an
Rr —module M and 6 is an R —endomorphism of N, then 8 can be extended in the usual way to an
Ry —endomorphism @ of M, 8(K) = 6(K) C K.

It is clear that any fully stable R —module is a duo, but the converse is not true generally. For
example, the Z, —module Z is a duo, but not fully stable.

In the following, we consider conditions under which every gamma submodule of a duo module is
a duo, as well as the homomorphic image, but first we introduce the following.

An R —module M is said to be I' —poorly injective, if each Rp —endomorphism of an
R —submodule of M can be extended to an R —endomorphism of M.

We call an R —module M an T" —quasi projective if, for any R —module W and Ry —homo
morphisms f, g: M - W with f is surjective, there is an R —endomorphism h of M such that g =
fh. Then we have the following.

Proposition (2.1): Let M be a duo gamma module. Then:

i) If MisT —poorly injective, then every gamma submodule of M is a duo.

i) If M isT" —quasi projective, then every Rr —homomorphic image of M is a duo.

Proof (i): Let K be an R —submodule of M, N an Ry —submodule of K, and 6 an R —endomorphism
of K.T" —poor injectivity of M implies that 6 can be extended to an R —endomorphism 6 of M. Then
O(N) = 6(N) € N.

(ii): Let K be an R —submodule of a duo R —module M, and f be an R —endomorphism of M /K.
For each R —submodule L/K of M/K where L is an Ry —submodule of M containing K. I' —quasi
projectivity of M implies that there is an R —endomorphism g of M such that g(m + K) = f(m) +
K for each m in M. Duo property of M implies that g(L) < L and hence f(L/K) € L/K. This shows
that M /K is a duo.

An Rp —submodule K is called countably a —generated of an R —module M, where « is

an arbitrary fixed element in T, if there a countable subset {Kl-|ieN} of M such that
K = Y;eny Ran;. Then we have the following result:
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Proposition (2.2): Let M be an R —module in which every countably a —generated R —submodule
of M is a duo. Then M is a duo.

Proof: Suppose that m is any element of M,« € I' and f is an R —endomorphism of M. Let N =
Ram + Raf(m) + Raf?(m) + ---. It is clear that N is a countably a —generated R —submodule of
M and f | «- K = K. So, f(m) = ram for some r € R. This implies that M is a duo.

In the following, we show that there are a lot of gamma modules which are not duo. Let S be a
I' —ring. A nonempty subset R of S is called a I" —subring of S, if R is itself a I" —ring.

Proposition (2.3): Let R be a proper I' —subring of a I —ring S. Then the R —module S is not a duo.
Proof: Let t be any element of a I' —ring S such that t € R. Then the mapping f:S — S, defined by
f(a) = taga forall a € S, isan Rr —homomorphism. If S is a duo, then t = tay1 = f(1) € R, which
is a contradiction.

In the following, we give some sources of duo gamma modules.

An R —module M is called a I' —multiplication if, for any R —submodule N of M, there exists a
two-sided I' —ideal I of R such that N =II'M. It is easy to see that N = [N: M]I'M where
[N:M] = {r € R|rI'M = 0} [6].

Proposition (2.4): Every I' —multiplication R —module is a duo.

Proof: If N is an R —submodule of an I' —multiplication R —module M, then N = II'M for some
two-sided I' —ideal I of R, and so for every Rp —endomorphism f of M, f(N) = f(Il’'M) =
ITf(M) < IT'M = N.

The converse of proposition (2.4) is not true generally.

Let M be an Ry —module and a be an arbitrary fixed element of I'. A previous article [7]
introduced the concept of the a« —free gamma module. An R —module P is called an a —projective if
P is an a —direct summand of an a —free R —module for an arbitrary fixed a € I'. This is equivalent
to saying that, for every a —generating set {x;|i € I} of P, there exists a family {¢;|i € I} of P* =
Homg (P, R), such that for each x € P, ¢;(x) # 0 for finitely many i € I and x = };¢; ;(x)a x; .
With regard to these concepts, we have the following theorem.

Theorem (2.5): The followings are equivalent for an a —projective Ry —module M where « is an
arbitrary fixed element in I".

(1) M is a duo.

(2)M isa I’ —multiplication .

Proof: Assume that M is a duo and N is an R —submodule of M. a —projective of M implies that, for
every « —generators {x;|i € I} of M,there exists a family {¢;|i €} of elements
@; € Hom(P,R), such that for every m € M,p;(m) # 0 for finitely many i€/ and m =
Yier @i(m)ax;. Let A be the I' —ideal of R, @ —generated by {¢;|i € I} for x € N and i € I. We show
that N = A'M. If x € N, then x = Y};c; ¢;(m)ax; and hence N € AI'M. For other inclusions, suppose
that x e N and m € M, define 8,:R - M by 6,(r) =ram for all r in R. Then 8,0¢; is an
Ry —endomorphism of M and ¢; (x)am = 08, (p;(x)) € (6,0¢;)(Rax) S Rax S N,

Since M isaduo, then A'M < N andso N = AT'M.

AT —ideal I of a I' —ring R is called a I' —idempotent if I = IT'I, [8]. We call an R —module M
as a I'l —multiplication if for each R —submodule N, there is a I' —idempotent I" —ideal I of R, such
that N = II'M. We define that a I' —ring R is called regular if all its I' —ideals are I' —idempotent.

Then we have the following result:

Corollary (2.6): Let M be an a —projective gamma module over a regular I' —ring R. Then the
following statements are equivalent:

1- M isa 'l —multiplication.

2- M is fully stable.

3- M isaduo.

4- M isa T’ —multiplication.

Proof: (1)=(2) Let N be an Ry —submodule of M and 6: N - M an R —homomorphism. By (1),
there is a I —idempotent I —ideal A of R such that N = A'M. Now, O(N) = 60(AI'M) =
0(ATAI'M) = AT6(AI'M) = ATO(N) € AT'M = N.

(2)=(3) is clear.

(3)=(4) follows from theorem (2.5).
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(4)=(1) is clear.
A gamma module M is called uniserial if, for all gamma submodules K and N of M, either K € N
or N € K [9].
AT —ring R is with a supper identity, if there is 1 € R such that ral = lar =r forall eR, a € T.
And an R —module M is supper unitary if there is 1 € R such that 1am = m for all m in M and
a € I'[7].
Proposition (2.7): Let R be a I"—ring and M a supper unitary R —module. If M is a uniserial
satisfying the a. c. ¢. on @ —cyclic R —submodules, then M is a duo.
Proof: Let m(# 0) € M and f an Ry —endomorphism of M. Suppose that f(m) € Ram. Then
m € Raf(m) and hence m = raf(m) for some r € R. It follows that f™(m) = f™(raf(m)) =
raf™*1(m) for each positive integer n. Consider the a. c:
Ram C Raf(m) € Raf?(m) C -
The hypothesis implies that there is a positive integer n, such that Raft(m) = Raf*1(m), for all
t >n, and there is z € R such that f'*1(m) = zaft(m) = ft(zam). Hence f(m)—zam €
ker(f). If Ram C ker(f*%), then ft(m) =0 and hence m = 0 which is a contradiction. Thus
ker(f%) € Ram and hence f(m) — zam € Ram. f(m) € Ram is a contradiction. Therefore M is a
duo.
It was previously proved [9] that a fully stable Rr —module M satisfies for every pair of
Ry —submodules Ny, N, of M with N; n N, = 0. We have Homg (N, N;) =0 = Homg (N, Np),
but the converse may not be true. However, the converse is true in case that M is fully essential stable
[9].
In the following Lemma we have the following:
Lemma (2.8): Let an Rr —module M = N;@N, be a direct sum of R —submodules N;, N,. Then
Nyis a fully invariant if and only if Homg.(Ny, N;) = 0.
Proof: Denote p;(resp. p,): M — N; (resp. N,) the canonical projection onto N; (resp. N,) and
i;(resp.iy): N; (resp. N,) = M denote the injection mapping of N; (resp. N,) .
Suppose that N; is a fully invariant R —submodule of M and f: N; — N, is an R —homomorphism.
Then f'=i,ofop, is an R —endemorphism of , and hence f'(N;) € N; , so that f(N;) € N; N
N, = 0. It follows that f = 0.
For any R —endemorphism g of M, g(N;) € p,0g0i,(N;) + p,0g0i;(N;) = p;og(N;) € Ny,
because p,0goi; € Homg.(N;,N;) = 0. It follows that N, is a fully invariant R —submodule of M.
Lemma (2.9): Let an R —module M = @;¢;M; be a direct sum of R —submodules M; (i € I) and N
be a fully invariant R —submodule of M. Then N = @;¢;(N N M;).
Proof: Suppose that p;: M — M; is the canonical projection for each i € I, and that j;: M; = M is the
injection, then jop;:M — M, and hence j;op;(N) S N for each jel. It follows that N <
EBiE]jiopi(N) c ®LE](N N Ml) € N so thatN = elE](N n Ml)
Lemma (2.10): Let an R —module M = @;¢;M; be a direct sum of R —submodules M; (i € I), and
it is supper unitary. Then the following statements are equivalent.
1) R =g .(m) + lg.(m) for all m; € My, m; € M; with i # jin[.
2 N = ®,;(N n M;) for every (a —cyclic) R —submodules N of M. Moreover, in this case
Hom(M;, M;) = 0 for all distinct i, j in 1.
Proof: (1)=(2): Let N be any a —cyclic R —submodule of M, and m € N. Then there exists a
positive integer n, distinct elements i; € I(1 < j < n), and elements m; € M;;(1 < j < n), such that
m=my; +m,+--+my,. Forn =1, thenm =m,; € N n M;;, and hence N = @(N N M;) Suppose
that n > 2. By the hypothesis, there exists elements r, s in R, such that
1=r+s,ram; =0and sam, = 0. Then:
sam = sa(m; + my + -+ m,) =samy + sam, + -+ + sam,
=samq + sam, + - +sam,,_; = lam; —ramy + -+ sam,_4
=lam, + sam, + -+ sam,_4
Note that sam; € M;;(2 < j <n—1) and sam € N. By inductiononn,m; € N N M;;.
Similarlym; € NN M;;(2 < j <n).
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(2)=(1): Let i,j be distinct elements of I, let x € M; and let y € M;. If K = Ra(x + y), then K =
®ie; (K N M;) and hence (x +y) € (K N M)@(K N M;). There exists a,b € R, such that x +y =
aa(x +y) + ba(x + y), where aa(x + y) € M; and ba(x +y) € M;. Then x = aa(x + y), so that:
x =aax +aay = x —aax = aay = x(1 —aal) = aay. So that x(1 —aal) =0 and aay = 0.
Thus aal € lg, (), (1 — aal) € lz.(x),1 = (1 —aal) + aal € l§.(x) + [g. ().

Finally, let i, j be distinct elements of /. Let f: M; - M; be any R —homomorphism. Letn € M;.
By (1), R = lg,(n) + lg,.(f(n)) so that 1 = ¢ + d for some ¢,d in R, a in I with can = 0, daf (n) =
0. It follows that f(n) = caf(n) + daf(n) = f(can) + f(dan) = 0, thus f = 0.
The following corollary follows from (2.10)and (2.9).
Corollary (2.11): Let a supper unitary gamma module M = @;;M; be a direct sum of gamma
submodules M; (i € I), a« € I" be an arbitrary fixed element, and N be a fully invariant gamma
submodule of M. Then I _(m;) + 1§ _.(m;) = R for all m; € M;,m; € M; forall i # j in 1.
Theorem (2.12): Let an R —module M = @;;M; be a direct sum of R —submodules M;(i € I).
Then M is a duo R — module if and only if:
(@) M; is a duo gamma module for all i € I and
(b) N = ®;¢;(N n M;) for every R —submodule N of M.
Proof: = follows by Lemma (2.9).
< Suppose that M satisfies the above conditions. Let L be an R —submodule of M and f any
R —endomorphism of M. For i € I let p;: M — M; denotes the canonical projection and let i;: M; —
M denotes the injection. By (a), pje fei;(LNM;) S LnM; for i €. Now (b) gives f(L) =
Ziet f(LOM;) E Xierpio foiy(LNM)) S Y (LNM;) S L. Thus M is a duo.
Corollary (2.13): Let a supper unitary gamma module M = @®;;M; be a direct sum of
Ry —submodules M;(i € I). Then M is a duo gamma module if and only if M;@®M; is a duo gamma
module forall i # j € I.
Proof: = The assumption that any direct summand of a duo gamma module is a duo proves the first
direction.
Conversely, suppose that M;@®M; is a duo gamma module for all i # j in I. Then M; is a duo gamma
module for all i € I. Furthermore, for all i # j in I, R = lg.(m;) + I (m;) for all m; € M;, m; € M;.
By Lemma (2.9), Lemma (2.10) and Theorem (2.12), we get that M is a duo gamma module.
We introduce the following generalization of fully stable gamma modules.
An R —module M is called fully direct-summand stable (for short, fully ds-stable) if every direct
summand of M is stable.
It is clear that a direct summand of a fully ds-stable is fully ds-stable.
Theorem (2.14): Let a gamma module M = @®;¢;M; be a direct sum of R- —submodules  M;(i € I).
Then M is a fully ds-stable if and only if:
(1) M; isafully ds-stable forall i € I,
(2) N = ®;¢;(N n M;) for every direct summand N of M.
Proof: Assume that M is a fully ds-stable R- —module. Then, clearly, M; is a fully ds-stable for all
i € I and hence we get (1). Lemma (2.9) gives (2).
Conversely, suppose that M satisfies the above conditions. Let L be a direct summand of M and
g:L—- M an Ry —homomorphism. By (2), L=@®;(LNnM;) and from this we get
9:®ic;(LNM;) - ®;;M; foreachiinl. Let p;: ®;c;M; = M; denotes the canonical projection and
leti;: L N M; — L denotes the inclusion. Hence, p; o goi;: LN M; - M;, by (1), p;egei;(LNM;) S
LnNnM; for all i € 1. Now (2) gives g(L) = ZiEIg(L n Ml) c ZiEIpi ogo ll(L n Ml) c ZiEI(L n
M;) € L. Thus M is fully ds-stable.

An element r(¥0)€R is called I' —zero divisor if there exists a(#0)€ I' and
s (# 0) € R such that sar = 0 [10]. Let M be an R —module, an element m in M is called a
I’ —torsion if there is a non-zero divisor r in R, and a non-zero element a € I' such that ram = 0.

Denote the set of all I' —torsion elements in M by Tp(M), if Tr(M) = M (resp. 0), then M is
called I —torsion (resp. I' —torsion free).

It is a matter of checking that T,-(M) is an R —submodule of M.
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In example, let R be a I' —ring, M = {(ﬁ;)mlmz € R} and I' = {(g‘) a €R} let r = (0 5

) =0,

take a = ((1)) #0.Thenr a (ﬁ;) = (g) for any (ﬁ;) € M. So, M isa " —torsion.

Lemma (2.15): Let a supper unitary R, —module M = M;@®M; be a direct sum of a non-zero torsion
free R —submodule M; and a non-zero R —submodule M. Then M is not a duo gamma module.
Proof: Let m; and m; be non-zero elements of M; and M;, respectively. Then Iz .(m;) = 0, hence
lg.(m;) + lg.(m;) = lz.(m;) # R. By Lemma (2.10) and Theorem (2.12), M is not a duo gamma
module.

Let M be an R —module. An R —submodule N of M is called a I' —essential if N has a nontrivial
intersection with every nonzero R —submodule of M [10].

Dually, we say that an Ry —submodule N of M is called small if N+ K is a proper
R —submodule of M for each proper R —submodule K of M.

An R —module M is called I' —Hopfian (resp. generalized I' —Hopfian) if every surjective
Ry —endomorphism of M is an isomorphism (resp. has a small kernel).

An R —module M is called I —coHopfian (resp. weakly I —coHopfian) if every injective
R —endomorphism of M is an isomorphism (resp. has an I' —essential image of M).

Proposition (2.16): Every fully stable gamma module is a I' -coHopfian, and hence is a weakly
I' -coHopfian.

Proof: Let M be a fully stable R —module and f:M — M is an Ry —monomorphism, then
M = f(M). Hence, we have M = f(M) so that f is an R —epimorphism. By Corollary (2.4) in a
previous study [9], we have M = f(M).

Proposition (2.17): Every duo gamma module is a generalized I' —Hopfian and a weakly
I' —coHopfian.

Proof: Let f be any surjective R —endomorphism of M. Let K < M such that M = ker(f) + K.
Then M = f(M) = f(ker(f) + K) = f(K) S K. It follows that ker(f) is a small R —submodule of
M. Let g be an injective R —endomorphism of M, let N < M such that N n g(M) = 0. Since N is
fully invariant, we get g(N) =0 and hence N =0. It follows that g(N) is an essential
R —submodule of M.

Duo gamma modules are neither I' —Hopfian nor I' —coHopfian in general.

We have seen in a previous article [9] that Z,- is a fully stable Zs-module where S is an arbitrary
subring of Z. Let sy be an arbitrary fixed element in S. The mapping f: Z,» — Z,», defined by
f(x) = psox for all x in Z,=, is a surjective which is not an isomorphism, and hence Z,~ is a duo
which is not a I' —Hopfian. On the other hand, it is clear that Z is a duo Zs-module. We define
h:Z — Z by h(z) = 2s,z for all z € Z is an injective which is not an isomorphism.
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