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Abstract 
      In this paper we investigate the numerical solution of an important class of 
mixed linear integral equations, called Volterra-Fredholm integral equations which 
are used in technology, mechanics and mathematical physics. 
The basic concepts are: First, approximates the unknown function by a tensor 
product (Algebraic or Chebyshev)-surface and substituting it in the Volterra-
Fredholm integral equations. Second, apply least-square technique for minimizing 
the error terms on the given domain. Third, obtain a system of linear algebra 
equations which we solve for control points. 
An algorithm is illustrated by several numerical examples with comparison tables 
and written computer programs in MatLab (V 7.1) for the given algorithm. 

 
 
 
 

  فريدهولم التكاملية من النوع الثاني - الحل العددي لمعادلة فولتيرا
  بأَستخدام تقنية المربعات الصغرى 

  
  شازاد شوقي أحمد
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  الخلاصة

 -ت الخطية التي تدعى فولتيراالهدف في هذا البحث أَيجاد الحل العددي لصنف مهم من مزيج للمعادلا     

  .الميكانيكية و الفيزياء الرياضية‘ فريدهولم التكاملية ، التي تستخدم في المجالات التكنولوجية 

جبريـاً أو  ( (Tensor Product)تقريب الدالة بواسطة الضرب التنسري ‘ أولاً : الخطوات الاساسية هي

تطبيـق تقنيـة المربعـات    ‘ ثانياً . فريدهولم التكاملية -سطوحياً و تعويضها في معادلة فولتيرا-)جبنشيف

و ثالثاً الحصول علي نظام للمعادلات الجبرية الخطية . الصغرى لتصغيير مربع الخطأ في المجال المعطاة 

  ). نقاط السيطرة (و التي نحلها لايجاد قيم الثوابت 

من الامثله العددية مع جداول المقارنة و  وأخيراً أعطينا خوارزمية كفوئه و قمنا بتوضيحها بواسطة العديد

ــتخدام   ــوبية باسـ ــرامج الحاسـ ــا البـ ــلاه ) MatLab V 7.1(كتبنـ ــة أعـ .للخوارزميـ
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Introduction 
    In this paper we consider linear two-
dimensional Volterra-Fredholm (V-F) integral 
equation of second kind:              

 

            
Where  is the given function in domain 

 ( - a compact subset of 
Euclidean space  or compact manifold) and  
is unknown function in  . The given kernel  
is defined in domain    

. It will be assumed that the 
functions  and  are 
bounded and continuous. On virtue this property 
the prove of existence and uniqueness of 
solution for equation (1) in space   are 
given in [1]. 

The consider integral equation in mixed 
type plays a very important role in mechanics 
and technology, with special attention paid to 
large sense of power engineering. Some initial-
boundary problems for a number of partial 
differential equations in physics can be reduced 
to consider integral equation [1]. 
 Numerical results for double integral 
equation had been treated by many authors and 
different methods are used by: H.Brunner 
(Collocation method), Lechoslaw Hacia 
(Galerkin method), Valise Carutasu (Spline 
functions) and (Taylor’s expansion method)  
 
using by Shazad Shawki Ahmed, [2, 1, 3, and 
4]. 

In this paper we propose a new 
procedure for solving the mixed integral 
equation of type (V-F), using algebraic and 
orthogonal (Chebyshev) polynomials with the 
aid of least-squares techniques for two variables. 

 
Preliminaries [5, 6] 
 The Chebyshev polynomial of the first 
kind and -th degree  for interval  
are even and odd functioning of  defined by the 
relation: 

 
Or by series expansion as: 

 

 
                                     
 

 
Where the bracket    denotes the largest 
integer not greater than the number it embraces. 
The Chebyshev polynomials  are an 
important set of orthogonal functions over the 
interval  with weighting function    

 , that is 
 

           
Although the  are defined only on the 

interval , a simple change of variable 
allows the expansion to be used to represent a 
function between two arbitrary limits, :           

             
 

 To shift the number  in the interval 
 into corresponding number  in the 

interval  . Therefore use equation (2) to 
find   . 
          At last, in this section, we defined also the 
algebraic polynomial of -th degree for interval 

 by the relation: 
 
    
    
 
The Method 
     The approximate solution of equation (1) 
proposed in the form: 

                  
with basis functions , [7]. In practice, we 
take , where 

 and  is a 
linearly independent in ,   is a linearly 
independent in .   
 Then we seek an approximate solution 
in the formula: 

 
                                                                
This equation shows a mathematical description 
of the tensor product -surface, where the 
control points  are undermined constants 
coefficients, which control the shape of the -
surface. 
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The solution  of the mixed integral equation 
(1) will be approximated by an element  as 
in equation (4) submitted it, to obtain: 
 

 

 
 
 

Where  is the error involved which depends 
on  and on the way that control points 
are chosen. Define: 
 

 

                 
 
Thus equation (5) becomes: 
 

    
                                                                
The main point here is how to find the 
coefficients  ’s of the approximate solution 
(4) such that error is minimized. 
 The general least-squares techniques 
insist on minimizing the norm of the error 
function  on the domain . The least-
squares technique used to minimized  is 
equivalent to that used to minimized   , 
using the definition of  norm, [5], to get:  
 

 

 
 
In order to find this minimum, we compute the 
partial derivative of   with respect to all 
control points  and setting each of these 
derivatives to zero, i.e. 
 

        
                

 
 At last putting the resulting equations as a 
system of algebraic linear equations: 
 

             
       
 
with: 
 

  
 

 

     
 

Writing the resulting equations (7) in 
matrix from yields: 
            
where  and  are constant matrices with 
dimensions  and  respectively. The 
vector  is an  block-column vector whose 
rows are the unknown control points   for  

 and , such that: 
 

with   and  for each 
. On the other hand,  (as a 

component) where . 
Furthermore: 
                   
where 

                 
 
For more detail see Appendix (A). The system 
of equations (8) can be partitioned as follows: 
 

  

                                          



Ahmed                                                              Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512 
 

 

 
where,  for all ,  
             
             
and  
 

   
                                                              
 Note that, the diagonal blocks in matrix 

 are square of order  and non-singular. 
The block Jacobi-iterative method [8] for the 
solution of the system (9) is given by: 

 
                                                             
Consequently, in the -th of the total  
phases of the -th iteration of the block Jacobi-
iterative method, equation (11) for  is 
solved. These sub-systems can be solved using 
Gauss-elimination procedure [8]. 
 

Finally, we will attempt to solve the 
system of linear algebraic equations in (7) for 
control points ’s by above technique, 
substituting these values in (4) to get the 
approximation solution  of equation 
(1) . Then the resulting method error 

  satisfies, [2]: 
                 
          
                                
 
 Because the calculation of error given in 
above, is not easy so we use the norm of matrix 
to study the quantitatively of the error in this 
approximation method, and we use the relative 
error which is   , [5].The 
method presented above was implemented in the 
MatLab (V 7.1), (see Appendix B). 
 
The Algorithm [LS (V-F) M]  
Step 1: Input the number of terms  for   
            approximation the function . 
Step 2: For all   and    

a. Evaluate    , apply equation 
(7b). 

b. Compute      and      for  each 
  

using equa on (7a). 

Step 3: Construct the block-matrices  and  ,  
            which are represented in system (9). 
Step 4: Solving the system (9) for control points  
              and  ,  
            using block Jacobi-iterative as in (11)  
            with Gauss- elimination method. 
Step 5: Substituting all ’s into equation (4) to  
           obtain the approximate solution   
             of .   
 By using the basic functions 

 developed in section (3) we are 
going to apply the least-square mixed to the 
following cases: 

(1) Algebraic polynomials. 
(2) Orthogonal (Chebyshev) polynomials. 

 
1. Algebraic Polynomials 

In this section the solution of mixed 
type (V-F) integral equations will be found 
using algebraic polynomial (3) accompanied 
with least-squares techniques. 
 Here, the unknown function  in 
equation (1) is approximated by the form: 

     
                        
Doing the same stages described in section (3), 
obtain the system (7) with their descriptions. 
Here, change each  and  in (7b) by  

 and  respectively. At last, 
applying the algorithm [LS (V-F) M] to 
founding all control points ’s to get the 
approximate solutions for mixed integral 
equation (1).  
  
2. Chebyshev Polynomials 
 Here, the unknown function  in 
equation (1) is approximated by a tensor-product 
Chebyshev polynomial expansion, that is, a 
polynomial of the form: 
 

 

          
 
with  and  

 are the Chebyshev  polynomials 
of the first kind with -th degree . 
 Note that the primes on the 
summation signs mean that the zeroth row and 
column of the matrix of coefficients are each 
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multiplied by , and hence that  is multiplied 

by  [4]. 
 Substituting  into equation (1) 
and applying the same steps described in section 
(3), we conclude the following system: 

               
 

where   and   are as the same in equation 
(7a),  , with  

 
 

 

                
 
 At last, applying the algorithm [LS (V-
F) M] to founding all control points  ’s with 
above properties of  to get the approximate 
solutions for mixed integral equation (1).  
 
Numerical Experiment 
 For numerical verification of the above 
method we consider the following examples: 
 

Example (1): 
 Consider the following Volterra-
Fredholm integral equation: 
 

 
                 

                
                 
 

Let us assume that  is 
approximated by: 

• Algebraic polynomial: 

    
                                                            
 

• Chebyshev polynomial: 

 

             
                                        
 
 
To process (V-F) integral equation (13) we 
apply the algorithm [LS (V-F) M], here we take   

 , so we obtain: 

    
 

 
and    
      
 

 
 

Next, we substitute these values in 
equation (8) to construct the block-matrices in 
linear system (9). Table (1) presents the control 

points   ‘s for Algebraic (14) and Chebyshev 
(15) polynomials.  

 
 

Table (1) 
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         ijβ   
Method    

00β  01β  10β  11β  20β  21β  

Algebraic    
Chebyshev    
 
Putting these values in approximation (14) and 
(15) respectively, we obtain: 
 

 
                          
                          
and 

 
                               
                               
 
where the exact solution is . We 
could all these manipulations in such the 
program; see Appendix (B), which can find the 
relative error for it with running time (R.T.). In 
this example the error for algebraic and 
Chebyshev approximations are:  

  and   
with running time:  and 

  respectively.     
 
Example (2): 
 Consider the following mixed (V-F) 
integral equation: 
 
 
 
 

 
 

                               
whose exact solution is    

 
 

Assume that the approximate solution is in the 
forms: 

• Algebraic polynomial: 

                    
                           
 

• Chebyshev polynomial: 

    
                          
 
Take , then apply 
algorithm [LS (V-F) M] to find the approximate 
solution (16 and 17) of consider problem by 
running the program (in appendix B). So, table 
(2) present the control points  ’s of equations 
(16 and 17)  for each  , respectively.   

 
Table (2) 

        Method 
ijβ  Algebraic Polynomial Chebyshev Polynomial 

00β    

01β    

02β    

03β    

10β    

11β   
12β   
13β    

 
 
 
 

 
Thus, we obtain the following approximate 
formulas: 
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and 

 

                           

                           

                           

                           
                           
                           
                           
 

 

Table (3), as well, exhibits the convergence of 
the approximated solutions. It presents the 
comparison between the exact solutions  
and approximate solutions   which 
depends on relative error and running time with 
different values of . The error values  

 are also included by 
applying the formula (6). 

 
 
 
 
 
 
 
 
 
 
 
 

Table (3) 
  

Algebraic 

Error    
 

 

    
  

R.T./sec   

Chebyshev 

Error    
 

 

    
 

 

R.T./sec  
 
Conclusion 
     Algebraic and orthogonal polynomials with 
aid of least-squares technique are introduced to 
find the numerical solutions of linear Volterra-
Fredholm integral equations. The approximate 
results are easily obtained by a few 
computations. Several examples are included for 
illustration. In practice, we conclude that: 
• This method  can  be  used  even where 

there  is  no  information  about  the  exact 
solution  (from  the  evaluation  of  error 
function   in equa on (6)).   

• Numerical computations of this method, 
compared to the numerical schemes are 
simple and inexpensive. 

• The solution is given by a function. 
 
 

• We have shown that increasing the 
number of the basis functions one obtains 
better results. 

• The choice algebraic polynomial is 
unwise since for large  it usually 
leads to ill-conditioning and we favors the 
choice Chebyshev polynomial, see last 
column in table (3).  

• The disadvantage of the new methods is 
their dependence on a number of basis 
functions which make the square 
matrix  in equation (8) with dimension 

very 
large, which need large memory of 
computer with too much time to compute it. 
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Appendix (A): 

 For instance, in equation (7) thus: 
 

 
  Appendix (B): 
  In this appendix we introduce a program in 
MatLab (V 7.1) for the method which is given in 
section-3 (i.e., algorithm [LS (V-F) M]):   
clc 
clear 
format long g 
syms x t y s  
% [a1,b1];[a2,b2] is the boundary points of 
integrals  
a1=0 ;  b1=1 ;  a2=0 ;  b2=1 ; 
% (n,m) is the number of terms in power 
function or Chebyshev expansion 
n=2 ;   m=1 ;  
% To apply power function take (H=1) and 
(H=2) for Chebyshev expansion 
H=input('input 1: for using power function;   
or   2: for Chebyshev expansion :  '); 
% tic & toc is using for determine the time 
in program 
tic  
q=(n+1)*(m+1); 

A=zeros(q); 
B=zeros(q,1);T2=zeros(n+1,m+1);Tp=sym(zeros(
n+1,m+1,q));Q=zeros(q,1); 
[Ker,Gg]=NG(x,t,y,s); 
[xt,ys]=IJXY(x,t,y,s,n,m,a1,b1,a2,b2,H);  
p=ys*Ker; 
T2=xt-int(int(p,y,a1,b1),s,a2,t);  
BB=int(int(T2*Gg,x,a1,b1),t,a2,b2);  
B(:)=double(BB');  
L=1; 
for i=0:n 
    for j=0:m 
        TP(:,:,L)=T2(i+1,j+1)*T2 ;
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A=int(int(TP(:,:,L),x,a1,b1),t,a2,b2); 
QQ=double(AA'); 
        Q(:)=QQ ; A(L,:)=Q ; 
        L=L+1; 
    end 
end 
switch H 
    case 1 
        A(:,:)=A(:,:); 
    case 2 
        A(:,1)=(1/4)*A(:,1); 
        A(:,2:m+1)=(1/2)*A(:,2:m+1); 
        for i=m+2:m+1:q  
A(:,i)=(1/2)*A(:,i); end 
    otherwise 
end 
%vpa(A,10),vpa(B,10) 
cq=zeros(q,1); 
c1=inv(A)*B;  cq=vpa(c1,10); cq' 
switch H 
    case 1 
        cq(:,1)=cq(:,1); 
    case 2 
        cq(1,1)=(1/4)*cq(1,1); 
        cq(2:m+1,1)=(1/2)*cq(2:m+1,1); 
        for i=m+2:m+1:q  
cq(i,1)=(1/2)*cq(i,1); end 
    otherwise 
end 
Ls=1;f1=0;Lc=1;fc=0; 
for i=0:n 
    for j=0:m 
        f1=f1+cq(Ls,1)*xt(i+1,j+1); 
        fc=fc+cq(Lc,1)*T2(i+1,j+1); 
        Ls=Ls+1;Lc=Lc+1; 
    end 
end 
toc 
 
%  The following steps using to find error's 
for u and g by matrix-norm(2)      
fv=vpa(f1,10);f=simplify(fv); 
p1q=char(f);apq=inline(p1q,'x','t'); 
XT=char(fc-Gg);TX=inline(XT,'x','t'); 
exact=0.5-x^2+t 
,ex=char(exact);exa=inline(ex,'x','t'); 
n0=100;m0=100; Erroru=0.0; Errorg=0.0; 
DF=zeros(n0,m0);DG=zeros(n0,m0);DD=zeros(n0,
m0); 
h0=(b1-a1)/(n0-1);k0=(b2-a2)/(m0-1); 
for i0=1:n0 
    xo=a1+(i0-1)*h0; 
    for j0=1:m0 
        t10=a2+(j0-1)*k0; 
        DD(i0,j0)=exa(xo,t10); 
DF(i0,j0)=apq(xo,t10); 
        DG(i0,j0)=TX(xo,t10); 
    end 
end 
Erroru=norm(DD-DF)/norm(DD); 
Errorg=norm(DG); 
pretty(simplify(f)), 
[Erroru   Errorg] 
 
% the subroutine of algebraic and Chebyshev 
polynomials 
function 
[JIx,JIy]=IJXY(x1,t1,y1,s1,n1,m1,a11,b11,a22
,b22,HH) 
format long g 
JIx=sym(zeros(n1,m1));JIy=sym(zeros(n1,m1)); 
syms xx tt yy ss  
switch HH 
    case 1 
        for i1=0:n1 
            for j1=0:m1 

                Ix=(x1-a11)^i1;  Jt=(t1-
a22)^j1; 
                Iy=(y1-a11)^i1;  Js=(s1-
a22)^j1; 
                JIx(i1+1,j1+1)=Ix*Jt;  
JIy(i1+1,j1+1)=Iy*Js; 
            end 
        end 
    case 2 
        for i1=0:n1 
            for j1=0:m1 
                sx=0;sy=0;z1=floor(i1/2);  
                st=0;ss1=0;z2=floor(j1/2); 
                xx=2*((x1-a11)/(b11-a11))-1; 
tt=2*((t1-a22)/(b22-a22))-1; 
                yy=2*((y1-a11)/(b11-a11))-1; 
ss=2*((s1-a22)/(b22-a22))-1; 
                if i1==0 
                    chebx=1; cheby=1; 
                else 
                    for r1=0:z1 
                        
sj=1;si=1;skx=1;sky=1;sj=factorial(i1-r1-1); 
                        
si=factorial(r1)*factorial(i1-2*r1); 
                        sji=sj/si;si1=(-1); 
                        for i=0:r1 
                            si1=si1*(-1); 
                        end 
                        skx=(2*xx)^(i1-
2*r1); sky=(2*yy)^(i1-2*r1); 
                        sx=sx+sji*si1*skx;    
sy=sy+sji*si1*sky; 
                    end 
                    chebx=sx*i1/2;  
cheby=sy*i1/2; 
                end 
                if j1==0 
                    chebt=1; chebs=1; 
                else 
                    for r2=0:z2 
                        
sj=1;si=1;skt=1;sks=1;sj=factorial(j1-r2-1); 
                        
si=factorial(r2)*factorial(j1-2*r2); 
                        sji=sj/si;sj1=(-1); 
                        for i=0:r2 
                            sj1=sj1*(-1); 
                        end 
                        skt=(2*tt)^(j1-
2*r2); sks=(2*ss)^(j1-2*r2); 
                        st=st+sji*sj1*skt;    
ss1=ss1+sji*sj1*sks; 
                    end 
                    chebt=st*j1/2;  
chebs=ss1*j1/2; 
                end 
                JIx(i1+1,j1+1)=chebx*chebt; 
JIy(i1+1,j1+1)=cheby*chebs; 
            end 
        end 
    otherwise 
end                   
 
function [M,Z]=NG(x,t,y,s) 
format long g 
% input the kernel N(x,t,y,s) 
  
M=x*cos(t)-s*y ; 
%M=s*exp(-x) ; 
  
% input the function f(x,t)  
  
Z=0.5-x^2+t+(1/6)*t^3-(1/2)*x*cos(t)*t^2-
(1/6)*x*t*cos(t)  ; 
%Z=x-sin(t)-2*exp(-x)*(-sin(t)+t*cos(t))  ; 


