
Ahmed Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512

NUMERICAL SOLUTION FOR VOLTERRA-FREDHOLM

INTEGRAL EQUATION OF THE SECOND KIND
BY USING LEAST SQUARES TECHNIQUE

Shazad Shawki Ahmed

Department of Mathematics, College of Science, University of Sulaimani, Sulaimani -Iraq.

Abstract
 In this paper we investigate the numerical solution of an important class of
mixed linear integral equations, called Volterra-Fredholm integral equations which
are used in technology, mechanics and mathematical physics.
The basic concepts are: First, approximates the unknown function by a tensor
product (Algebraic or Chebyshev)-surface and substituting it in the Volterra-
Fredholm integral equations. Second, apply least-square technique for minimizing
the error terms on the given domain. Third, obtain a system of linear algebra
equations which we solve for control points.
An algorithm is illustrated by several numerical examples with comparison tables
and written computer programs in MatLab (V 7.1) for the given algorithm.

 فريدهولم التكاملية من النوع الثاني - الحل العددي لمعادلة فولتيرا
 بأَستخدام تقنية المربعات الصغرى

 شازاد شوقي أحمد

 .العراق -السليمانية، السليمانيةقسم الرياضيات، كلية العلوم، جامعة

 الخلاصة

 -ت الخطية التي تدعى فولتيراالهدف في هذا البحث أَيجاد الحل العددي لصنف مهم من مزيج للمعادلا

 .الميكانيكية و الفيزياء الرياضية‘ فريدهولم التكاملية ، التي تستخدم في المجالات التكنولوجية

جبريـاً أو ((Tensor Product)تقريب الدالة بواسطة الضرب التنسري ‘ أولاً : الخطوات الاساسية هي

تطبيـق تقنيـة المربعـات ‘ ثانياً . فريدهولم التكاملية -سطوحياً و تعويضها في معادلة فولتيرا-)جبنشيف

و ثالثاً الحصول علي نظام للمعادلات الجبرية الخطية . الصغرى لتصغيير مربع الخطأ في المجال المعطاة

). نقاط السيطرة (و التي نحلها لايجاد قيم الثوابت

من الامثله العددية مع جداول المقارنة و وأخيراً أعطينا خوارزمية كفوئه و قمنا بتوضيحها بواسطة العديد

ــتخدام ــوبية باسـ ــرامج الحاسـ ــا البـ ــلاه) MatLab V 7.1(كتبنـ ــة أعـ .للخوارزميـ

Ahmed Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512

Introduction
 In this paper we consider linear two-
dimensional Volterra-Fredholm (V-F) integral
equation of second kind:

Where is the given function in domain

 (- a compact subset of
Euclidean space or compact manifold) and
is unknown function in . The given kernel
is defined in domain

. It will be assumed that the
functions and are
bounded and continuous. On virtue this property
the prove of existence and uniqueness of
solution for equation (1) in space are
given in [1].

The consider integral equation in mixed
type plays a very important role in mechanics
and technology, with special attention paid to
large sense of power engineering. Some initial-
boundary problems for a number of partial
differential equations in physics can be reduced
to consider integral equation [1].
 Numerical results for double integral
equation had been treated by many authors and
different methods are used by: H.Brunner
(Collocation method), Lechoslaw Hacia
(Galerkin method), Valise Carutasu (Spline
functions) and (Taylor’s expansion method)

using by Shazad Shawki Ahmed, [2, 1, 3, and
4].

In this paper we propose a new
procedure for solving the mixed integral
equation of type (V-F), using algebraic and
orthogonal (Chebyshev) polynomials with the
aid of least-squares techniques for two variables.

Preliminaries [5, 6]
 The Chebyshev polynomial of the first
kind and -th degree for interval
are even and odd functioning of defined by the
relation:

Or by series expansion as:

Where the bracket denotes the largest
integer not greater than the number it embraces.
The Chebyshev polynomials are an
important set of orthogonal functions over the
interval with weighting function

 , that is

Although the are defined only on the

interval , a simple change of variable
allows the expansion to be used to represent a
function between two arbitrary limits, :

 To shift the number in the interval
 into corresponding number in the

interval . Therefore use equation (2) to
find .
 At last, in this section, we defined also the
algebraic polynomial of -th degree for interval

 by the relation:

The Method
 The approximate solution of equation (1)
proposed in the form:

with basis functions , [7]. In practice, we
take , where

 and is a
linearly independent in , is a linearly
independent in .
 Then we seek an approximate solution
in the formula:

This equation shows a mathematical description
of the tensor product -surface, where the
control points are undermined constants
coefficients, which control the shape of the -
surface.

Ahmed Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512

The solution of the mixed integral equation
(1) will be approximated by an element as
in equation (4) submitted it, to obtain:

Where is the error involved which depends
on and on the way that control points
are chosen. Define:

Thus equation (5) becomes:

The main point here is how to find the
coefficients ’s of the approximate solution
(4) such that error is minimized.
 The general least-squares techniques
insist on minimizing the norm of the error
function on the domain . The least-
squares technique used to minimized is
equivalent to that used to minimized ,
using the definition of norm, [5], to get:

In order to find this minimum, we compute the
partial derivative of with respect to all
control points and setting each of these
derivatives to zero, i.e.

 At last putting the resulting equations as a
system of algebraic linear equations:

with:

Writing the resulting equations (7) in
matrix from yields:

where and are constant matrices with
dimensions and respectively. The
vector is an block-column vector whose
rows are the unknown control points for

 and , such that:

with and for each
. On the other hand, (as a

component) where .
Furthermore:

where

For more detail see Appendix (A). The system
of equations (8) can be partitioned as follows:

Ahmed Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512

where, for all ,

and

 Note that, the diagonal blocks in matrix

 are square of order and non-singular.
The block Jacobi-iterative method [8] for the
solution of the system (9) is given by:

Consequently, in the -th of the total
phases of the -th iteration of the block Jacobi-
iterative method, equation (11) for is
solved. These sub-systems can be solved using
Gauss-elimination procedure [8].

Finally, we will attempt to solve the
system of linear algebraic equations in (7) for
control points ’s by above technique,
substituting these values in (4) to get the
approximation solution of equation
(1) . Then the resulting method error

 satisfies, [2]:

 Because the calculation of error given in
above, is not easy so we use the norm of matrix
to study the quantitatively of the error in this
approximation method, and we use the relative
error which is , [5].The
method presented above was implemented in the
MatLab (V 7.1), (see Appendix B).

The Algorithm [LS (V-F) M]
Step 1: Input the number of terms for
 approximation the function .
Step 2: For all and

a. Evaluate , apply equation
(7b).

b. Compute and for each

using equa on (7a).

Step 3: Construct the block-matrices and ,
 which are represented in system (9).
Step 4: Solving the system (9) for control points
 and ,
 using block Jacobi-iterative as in (11)
 with Gauss- elimination method.
Step 5: Substituting all ’s into equation (4) to
 obtain the approximate solution
 of .
 By using the basic functions

 developed in section (3) we are
going to apply the least-square mixed to the
following cases:

(1) Algebraic polynomials.
(2) Orthogonal (Chebyshev) polynomials.

1. Algebraic Polynomials

In this section the solution of mixed
type (V-F) integral equations will be found
using algebraic polynomial (3) accompanied
with least-squares techniques.
 Here, the unknown function in
equation (1) is approximated by the form:

Doing the same stages described in section (3),
obtain the system (7) with their descriptions.
Here, change each and in (7b) by

 and respectively. At last,
applying the algorithm [LS (V-F) M] to
founding all control points ’s to get the
approximate solutions for mixed integral
equation (1).

2. Chebyshev Polynomials
 Here, the unknown function in
equation (1) is approximated by a tensor-product
Chebyshev polynomial expansion, that is, a
polynomial of the form:

with and

 are the Chebyshev polynomials
of the first kind with -th degree .
 Note that the primes on the
summation signs mean that the zeroth row and
column of the matrix of coefficients are each

Ahmed Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512

multiplied by , and hence that is multiplied

by [4].
 Substituting into equation (1)
and applying the same steps described in section
(3), we conclude the following system:

where and are as the same in equation
(7a), , with

 At last, applying the algorithm [LS (V-
F) M] to founding all control points ’s with
above properties of to get the approximate
solutions for mixed integral equation (1).

Numerical Experiment
 For numerical verification of the above
method we consider the following examples:

Example (1):
 Consider the following Volterra-
Fredholm integral equation:

Let us assume that is
approximated by:

• Algebraic polynomial:

• Chebyshev polynomial:

To process (V-F) integral equation (13) we
apply the algorithm [LS (V-F) M], here we take

 , so we obtain:

and

Next, we substitute these values in
equation (8) to construct the block-matrices in
linear system (9). Table (1) presents the control

points ‘s for Algebraic (14) and Chebyshev
(15) polynomials.

Table (1)

Ahmed Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512

 ijβ
Method

00β 01β 10β 11β 20β 21β

Algebraic
Chebyshev

Putting these values in approximation (14) and
(15) respectively, we obtain:

and

where the exact solution is . We
could all these manipulations in such the
program; see Appendix (B), which can find the
relative error for it with running time (R.T.). In
this example the error for algebraic and
Chebyshev approximations are:

 and
with running time: and

 respectively.

Example (2):
 Consider the following mixed (V-F)
integral equation:

whose exact solution is

Assume that the approximate solution is in the
forms:

• Algebraic polynomial:

• Chebyshev polynomial:

Take , then apply
algorithm [LS (V-F) M] to find the approximate
solution (16 and 17) of consider problem by
running the program (in appendix B). So, table
(2) present the control points ’s of equations
(16 and 17) for each , respectively.

Table (2)

 Method
ijβ Algebraic Polynomial Chebyshev Polynomial

00β

01β

02β

03β

10β

11β
12β
13β

Thus, we obtain the following approximate
formulas:

Ahmed Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512

and

Table (3), as well, exhibits the convergence of
the approximated solutions. It presents the
comparison between the exact solutions
and approximate solutions which
depends on relative error and running time with
different values of . The error values

 are also included by
applying the formula (6).

Table (3)

Algebraic

Error

R.T./sec

Chebyshev

Error

R.T./sec

Conclusion
 Algebraic and orthogonal polynomials with
aid of least-squares technique are introduced to
find the numerical solutions of linear Volterra-
Fredholm integral equations. The approximate
results are easily obtained by a few
computations. Several examples are included for
illustration. In practice, we conclude that:
• This method can be used even where

there is no information about the exact
solution (from the evaluation of error
function in equa on (6)).

• Numerical computations of this method,
compared to the numerical schemes are
simple and inexpensive.

• The solution is given by a function.

• We have shown that increasing the
number of the basis functions one obtains
better results.

• The choice algebraic polynomial is
unwise since for large it usually
leads to ill-conditioning and we favors the
choice Chebyshev polynomial, see last
column in table (3).

• The disadvantage of the new methods is
their dependence on a number of basis
functions which make the square
matrix in equation (8) with dimension

very
large, which need large memory of
computer with too much time to compute it.

References
1. Lechoslaw H. 2002. Computational Results

for Integral Equations in Space-Time.

Ahmed Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512

Computational Methods in Science And
Technology 8(1), 7-15.

2. Brunner,H. and Kautheu, J.P. 1989. The
Numerical Solution of Two-Dimensional
Volterra Integral Equations by Collocation
and Iterated Collocation. IMA Journal of
Numerical Analysis 9, 47-59.

3. Vasile C. 2001. Numerical Solution of Two-
dimensional non-Linear Fredholm Integral
Equations of the Second Kind by Splint
Functions. General Mathematics, Vol.9, No.
1.

4. Ahmed S.S. 2006. Expansion Method for
Solving Fredholm Integral Equations in
Space-Time. Journal of Kirkuk University,
Vol.1 No. 1.

5. JAMES F.E. 2002. An Introduction to
Numerical Methods and Analysis. John
Wiley and Sons; Inc; New York. pp. 20-60.

6. John H.M. and Kurtis D.F. 2004. Numerical
Methods Using MatLab; Fourth Edition;
Pearson Education, Inc. pp. 1-100.

7. Delves, L.M. and Walsh, J. 1974. Numerical
Solution of Integral Equations. Oxford. pp.
25-75.

8. Alfio Q.; Riccardo S. and Fausto S. 2007.
Numerical Mathematics; Second Edition.
Speringer Berlin Heidelberg. pp. 1-25.

Appendix (A):

 For instance, in equation (7) thus:

 Appendix (B):
 In this appendix we introduce a program in
MatLab (V 7.1) for the method which is given in
section-3 (i.e., algorithm [LS (V-F) M]):
clc
clear
format long g
syms x t y s
% [a1,b1];[a2,b2] is the boundary points of
integrals
a1=0 ; b1=1 ; a2=0 ; b2=1 ;
% (n,m) is the number of terms in power
function or Chebyshev expansion
n=2 ; m=1 ;
% To apply power function take (H=1) and
(H=2) for Chebyshev expansion
H=input('input 1: for using power function;
or 2: for Chebyshev expansion : ');
% tic & toc is using for determine the time
in program
tic
q=(n+1)*(m+1);

A=zeros(q);
B=zeros(q,1);T2=zeros(n+1,m+1);Tp=sym(zeros(
n+1,m+1,q));Q=zeros(q,1);
[Ker,Gg]=NG(x,t,y,s);
[xt,ys]=IJXY(x,t,y,s,n,m,a1,b1,a2,b2,H);
p=ys*Ker;
T2=xt-int(int(p,y,a1,b1),s,a2,t);
BB=int(int(T2*Gg,x,a1,b1),t,a2,b2);
B(:)=double(BB');
L=1;
for i=0:n
 for j=0:m
 TP(:,:,L)=T2(i+1,j+1)*T2 ;

Ahmed Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512

A=int(int(TP(:,:,L),x,a1,b1),t,a2,b2);
QQ=double(AA');
 Q(:)=QQ ; A(L,:)=Q ;
 L=L+1;
 end
end
switch H
 case 1
 A(:,:)=A(:,:);
 case 2
 A(:,1)=(1/4)*A(:,1);
 A(:,2:m+1)=(1/2)*A(:,2:m+1);
 for i=m+2:m+1:q
A(:,i)=(1/2)*A(:,i); end
 otherwise
end
%vpa(A,10),vpa(B,10)
cq=zeros(q,1);
c1=inv(A)*B; cq=vpa(c1,10); cq'
switch H
 case 1
 cq(:,1)=cq(:,1);
 case 2
 cq(1,1)=(1/4)*cq(1,1);
 cq(2:m+1,1)=(1/2)*cq(2:m+1,1);
 for i=m+2:m+1:q
cq(i,1)=(1/2)*cq(i,1); end
 otherwise
end
Ls=1;f1=0;Lc=1;fc=0;
for i=0:n
 for j=0:m
 f1=f1+cq(Ls,1)*xt(i+1,j+1);
 fc=fc+cq(Lc,1)*T2(i+1,j+1);
 Ls=Ls+1;Lc=Lc+1;
 end
end
toc

% The following steps using to find error's
for u and g by matrix-norm(2)
fv=vpa(f1,10);f=simplify(fv);
p1q=char(f);apq=inline(p1q,'x','t');
XT=char(fc-Gg);TX=inline(XT,'x','t');
exact=0.5-x^2+t
,ex=char(exact);exa=inline(ex,'x','t');
n0=100;m0=100; Erroru=0.0; Errorg=0.0;
DF=zeros(n0,m0);DG=zeros(n0,m0);DD=zeros(n0,
m0);
h0=(b1-a1)/(n0-1);k0=(b2-a2)/(m0-1);
for i0=1:n0
 xo=a1+(i0-1)*h0;
 for j0=1:m0
 t10=a2+(j0-1)*k0;
 DD(i0,j0)=exa(xo,t10);
DF(i0,j0)=apq(xo,t10);
 DG(i0,j0)=TX(xo,t10);
 end
end
Erroru=norm(DD-DF)/norm(DD);
Errorg=norm(DG);
pretty(simplify(f)),
[Erroru Errorg]

% the subroutine of algebraic and Chebyshev
polynomials
function
[JIx,JIy]=IJXY(x1,t1,y1,s1,n1,m1,a11,b11,a22
,b22,HH)
format long g
JIx=sym(zeros(n1,m1));JIy=sym(zeros(n1,m1));
syms xx tt yy ss
switch HH
 case 1
 for i1=0:n1
 for j1=0:m1

 Ix=(x1-a11)^i1; Jt=(t1-
a22)^j1;
 Iy=(y1-a11)^i1; Js=(s1-
a22)^j1;
 JIx(i1+1,j1+1)=Ix*Jt;
JIy(i1+1,j1+1)=Iy*Js;
 end
 end
 case 2
 for i1=0:n1
 for j1=0:m1
 sx=0;sy=0;z1=floor(i1/2);
 st=0;ss1=0;z2=floor(j1/2);
 xx=2*((x1-a11)/(b11-a11))-1;
tt=2*((t1-a22)/(b22-a22))-1;
 yy=2*((y1-a11)/(b11-a11))-1;
ss=2*((s1-a22)/(b22-a22))-1;
 if i1==0
 chebx=1; cheby=1;
 else
 for r1=0:z1

sj=1;si=1;skx=1;sky=1;sj=factorial(i1-r1-1);

si=factorial(r1)*factorial(i1-2*r1);
 sji=sj/si;si1=(-1);
 for i=0:r1
 si1=si1*(-1);
 end
 skx=(2*xx)^(i1-
2*r1); sky=(2*yy)^(i1-2*r1);
 sx=sx+sji*si1*skx;
sy=sy+sji*si1*sky;
 end
 chebx=sx*i1/2;
cheby=sy*i1/2;
 end
 if j1==0
 chebt=1; chebs=1;
 else
 for r2=0:z2

sj=1;si=1;skt=1;sks=1;sj=factorial(j1-r2-1);

si=factorial(r2)*factorial(j1-2*r2);
 sji=sj/si;sj1=(-1);
 for i=0:r2
 sj1=sj1*(-1);
 end
 skt=(2*tt)^(j1-
2*r2); sks=(2*ss)^(j1-2*r2);
 st=st+sji*sj1*skt;
ss1=ss1+sji*sj1*sks;
 end
 chebt=st*j1/2;
chebs=ss1*j1/2;
 end
 JIx(i1+1,j1+1)=chebx*chebt;
JIy(i1+1,j1+1)=cheby*chebs;
 end
 end
 otherwise
end

function [M,Z]=NG(x,t,y,s)
format long g
% input the kernel N(x,t,y,s)

M=x*cos(t)-s*y ;
%M=s*exp(-x) ;

% input the function f(x,t)

Z=0.5-x^2+t+(1/6)*t^3-(1/2)*x*cos(t)*t^2-
(1/6)*x*t*cos(t) ;
%Z=x-sin(t)-2*exp(-x)*(-sin(t)+t*cos(t)) ;

