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Abstract 

     In this paper, an eco-epidemiolo-gical model consisting of prey-predator model 
with SIS disease is proposed and analyzed. The existence and the stability analysis 
of all possible equilibrium points are carried out. The persistent conditions of the 
proposed system are established. The global dynamics of the system is studied 
numerically.  

 

  في الفريسة(    ) أستقرارية نموذج الفريسة والمفترس مع المرض الوبائي 
  

  داليا خالد بهلول
  .قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

 
  الخلاصة

س مـع  في هذا البحــث، تم اقتراح ودراسة نموذج بيئي وبائي يتكون من نظـــام الفريسة والمفتـر 

شروط وجــــود واستقرارية النقـاط الثابتـه   . في الفريســة) SIS(وجود مرض مــن الـنوع 

  .واخيرا الديناميكية الشاملة للنظام درست عدديا. شروط الاصرار للنموذج المقترح وجدت. بحثت

  
  

Introduction 
Initially, models for ecological interactions 

and models for infectious diseases were 
developed separately. It has been observed that a 
strong interaction may arise between these 
factors. Indeed, the main aspects regarding 
population dynamics concern with the effects of 
infectious diseases in regulating natural 
populations, decreasing their population sizes, 
reducing their natural fluctuations, or causing 
destabilizations of equilibria into oscillations of 
the population states. The study of interacting 
species in which a disease spreads is known as 
eco-epidemiology. The study of eco-epidemio-
logy has important ecological significance as it 
involves persistence-extinction thre-shold of 
each population in systems of two or more 
interacting species subjected to disease [1-4]. 
It is well known that, when the infective 
individual still infective and the susceptible 
individual still susceptible for all the time, the  

 
disease is called SI disease. However, when the 
infection does not lead to immunity, so that 
infective becomes susceptible again after 
recovery, the disease is called an SIS disease. 
Finally, when infective has permanent immunity 
after recovery, the disease is called an SIR 
disease. SIS epidemic model is one of the most 
basic and most important models in describing 
the spread of many diseases and hence it 
attached many author’s attention, see [5] and the 
references therein. 
Recently, numbers of ecological models 
involving SI and SIR epidemic disease have 
been considered, see [6], [7] and the references 
therein. In this paper an eco-epidemiological 
model consisting of Beddington-DeAnglis prey-
predator model involving SIS epidemic disease 
has been proposed and analyzed. 
 
 

SIS 
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Model Formulation 
     In this section, a system consists of a 

prey with density )(tN , which may has disease, 
interacting with predator with density )(ty is 
proposed depending on the following 
assumptions. 
A1: In the absence of disease and predation, the 
prey population density grows according to a 
logistic curve with carrying capacity 

)0( >KK and an intrinsic birth rate 
constant )0( >rr . Hence the evolution of prey 
population can be described as: 

)1( K
N

dt
dN rN −=                                          (1) 

A2: In the presence of disease we assume that 
the total prey population N is composed of two 
population classes: one is the class of 
susceptible prey denoted by S , and the other is 
the class of the infected prey, denoted by 
I .Therefore, at any time t, the total density of 
prey population is 

)()()( tItStN +=                                      (2)                   
A3: It is assumed that only susceptible prey S  is 
capable of reproducing with logistic law Eq. (1), 
the infected prey I  is removed before having 
the possibility of reproducing. However, the 
infected prey population I  still contributes with 
S  to population growth toward the carrying 
capacity. 
A4: A susceptible prey S  becomes infected at a 
rate proportional to SI  and an infected prey can 
recover and becomes susceptible again at a rate 

Iγ . Moreover, the infected prey population 
faces the natural death due to the effect of 
disease at a rate Iµ . Therefore the evolution 
equations for the susceptible prey S  and 
infected prey I , according to Eq.(1), A3 and A4  
are 

    

)1(

IISI

ISIrS

dt
dI

K
N

dt
dN

µγλ

γλ

−−=

+−−=
                         (3) 

where ISN +=  and µγλ ,,  are the positive 
parameters, which stand for infection rate 
constant, recover rate constant and natural death 
rate constant respectively. 
A5: In the presence of predator both the prey 
populations (susceptible and infected) will be 
consumed, according to Beddington-DeAnglis 
type of functional response, due to the effect of 
predation. However, the predator population will 
be reproduced depending on the availability of 
food (i.e. prey populations). Finally, it is 
assumed that the predator population decaying  

 
due to either the natural death with constant rate 
β  ( 0>β ) or the amount of infected prey 
consumed with proportionality constant rate θ  
( 0>θ ). 
Therefore, by using the above assumptions, the 
dynamic of prey-predator model with SIS 
disease in the prey can be represented in the 
following set of equations. 

( ) YqISIrS K
IS

dt
dS

11 −+−−= + γλ             (4a) 

    2YqIISIdt
dI −−−= µγλ                       (4b) 

YqYYqeqedt
dY

22211 )( θβ −−+=          (4c) 

where cISbY
Saq +++= α

1
1  and cISbY

Iaq +++= α
2

2 , 
while  the parameters 121 ,,,,, ecbaa α  and 2e  
are positive constants represent respectively the 
attack rate of susceptible prey, attack rate of 
infected prey, the predator encounter rate, the 
predator’s preference rate, the half saturation 
constant, the predator’s conversion  rate from S  
and I  respectively. Since the density of any 
species can’t be negative, therefore we will 
solve system (4) with the following initial 
condition ,0)0( ≥S  0)0( ≥I  and 0)0( ≥Y . 
It is easy to verify that all the functions on the 
right hand side of Eq. (4)(a-c) are continuous 
and have continuous partial derivatives with 
respect to dependent variables  S , I andY . 
Accordingly they are Lipichitzian functions and 
hence system (4) has a unique solution for each 
non-negative initial condition. Further the 
boundedness of the system is shown in the 
following theorem.  
Theorem 1. All the solutions of system (4) 
which initiate in the  3

+R  are uniformly 
bounded. 
Proof: Since we have )()()( tItStN +=  0≥∀t  
and )1( K

N
dt
dN rN −= , hence we obtain:

 rteNKN
KNtN −−+

=
)( 00

0)(  

Where 000)0( ISNN +== . Hence it is easy to 
verify that 1)( MtN ≤ ,  0≥∀t  where 

{ }KNM ,max 01 = . Consequently, 
0,)( 1 ≥∀< tMtS . 

Assume that, YISW ++=  then we obtain 
 Wdt

dY
dt
dI

dt
dS

dt
dW δγ −≤++=  

Where 1)1( Mr+=γ  and },,1min{ βµδ =  then 
we have 
 γδ ≤+ Wdt

dW  
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Now by solving the above linear differential 
inequality [8], we get that 
 ( ) tewtW δ

γ
δ

δ
γ −−+≤ 0)(  

here 0)0( wW =  . Hence 2)( MtW ≤ , 0≥∀t  
where },max{ 02 γ

δwM = . 

Hence, all the solution of system (4) are 
uniformly bounded and the proof is complete.  
         
The stability analysis 
 In this section, we study the existence of 
equilibrium points of system (4) and their local 
stability. It is observed that, system (4) has at 
most five nonnegative equilibrium points. 
The equilibrium points )0,0,0(0 =E  and 

)0,0,(1 KE =  are always exist. 
The disease-free equilibrium point 

),0,(2 YSE = , where  
[

⎥⎦
⎤+−+−+

+−=

cKarbeaerbeKa

aerbeKaS arbe

ββ

β

2
11

2
111

2
1

11112
1

4)()(

)(
11

      

……….(5a) 

)(
))((

1 SKrbKa
SKcSrY
−−
−+=                   (5b) 

exists in the 2. +RInt  of −SY  plane provided that 
the following two conditions hold 
 KSrb

arbK <<− )( 1                                (6a) 

 11ae<β                (6b) 
The predator-free equilibrium point 

)0,~,~(3 ISE = , where  

λ
µγ +=S~       (7a) 

SrK
SSKrI ~
~)~(~

+
−=
µ

                              (7b) 

exists in the 2. +RInt  of −SI plane provided 
that  

KS <
~

                               (8) 
Finally, the positive equilibrium point 

),,( ***
4 YISE = , which is known as endemic 

point, exists in the 3. +RInt  if  and only if there is 
a positive solution to the following set of 
algebraic equations 

( ) 01),,( 11 =−+−−= +
S
Y

S
I

K
IS qIrYISf γλ                                                                                                                       

0   ),,( 22 =−−−= I
YqSYISf µγλ  

0),,( 222113 =−−+= qqeqeYISf θβ  
Straightforward computations give that  

][)(])[(
])[(][*

*
22222

*
112

**
11

µγλθαβθ
ββµγλ
−−−−−−

−−−−−=
Sebaaea

cSaeaSSabeI    (10a) 

])[(])[(
][]))(()[(*

*
22222

**
112222

µγλθαβθ
µγλαθθ

−−−−−−

−−−−+−=
Sebaaea

SSaeaecaeY  

……. (10b) 
while, *S  is the positive root for the equation 

0),,( **
1 =YISf              (10c)  

Obviously, 4E  exists uniquely in the 3. +RInt  
provided that there is a positive root for Eq. 
(10c) that is satisfy the following set of 
conditions: 

])[(
)(

][
])[(

*
2

22
**

11

*
112

µγλθ
αβθ

µγλ
ββ

−−−

−−

−−

−− <<
Se
ae

SSae
cSaea b      (11a) 

{ }ββ
λ
µγ

−
+>

11
,.max*

ae
cS             (11b) 

with { }β
θθα 22

11

22 )()( ,.min0 ae
ae

ae −−<<      (11c) 

Consequently, if β>11ae , the condition (11c) 
is replaced by  

11

22 )(0 ae
ae θα −<<              (11d) 

Now, the local stability analysis near the above 
equilibrium points of system (4) can be 
summarized as follows: 
The Jacobian matrix of system (4) at the 
equilibrium point 0E  is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−=

β
µ

00
0)(0
00

)( 0 r
r

EJ                                                         

Accordingly, the eigenvalues of )( 0EJ  are: 

0
,0)(,0

0

00

<−=
<+−=>=

βλ
µλλλ

Y

IS r
              (12) 

Where iuλ  represents the eigenvalue of 
4,3,2,1,0);( =iEJ i  that describe the dynamics 

in the u  -direction. Therefore, 0E  is a saddle 
point with locally stable manifold in the 

−IY plane and with locally unstable manifold in 
the −S direction. 
The Jacobian matrix of system (4) at the 
equilibrium point 1E  is given by 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−+−−
=

+

+

β
µγλ
λγ

cK
Kae

Kc
Ka

K
Krr

EJ
11

1

00
00)( 1   

Therefore, the eigenvalues of )( 1EJ can be 
written as  

βλ

λµγλλ

−=

++−=<−=

+cK
Kae

Y

IS Kr
11

1

11 ,)(,0
       (13a) 
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Clearly, if the following two conditions hold 
β<+cK

Kae 11               (13b) 

K
µγλ +<                (13c) 

then 1E  is the locally asymptotically stable. 
While, if at least one of conditions (13b) and 
(13c) violate then 1E  is a saddle point. 
Further, the local stability analyses near the 
equilibrium points 2E  and 3E  of system (4) are 
discussed in the following two theorems 
respectively. 
Theorem 2. Assume that, the disease-free 
equilibrium point ),0,(2 YSE = of system (4) 

exists in the 2. +RInt of −SY plane, so that the 
following condition holds 

2
1

11
2
1

1

N
Ybae

K
r

N
Ya <<               (14a) 

Then 2E  is locally asymptotically stable in the 
2. +RInt  of −SY plane. In addition to condition 

(14a), if the following condition holds 

1

2)( N
YaS ++< µγλ             (14b) 

Then 2E  is locally asymptotically stable in 3
+R . 

Finally, if at least one of conditions (14a), (14b) 
violates then 2E  is a saddle point. 
Proof. According to system (4), the Jacobian 
matrix of system (4) at the equilibrium point 2E  
can be written as: 332 )()( ×= ijbEJ ; where 

2
1

1
11 N

YSa
K
Srb +−= , Sb

N
YSa

K
Sr λγα −++= −

2
1

1
12 , 

2
1

1
2

1
13 N

ScaSab +−= , 02321 == bb , 

1

2)(22 N
YaSb −+−= µγλ , 

2
1

11
2

11
31 N

YcaeYbaeb += , 2
1

11221 )(
32 N

YSaeYaeNb αθ −−= , 

2
1

11
33 N

YSbaeb −=  with cSYbN ++=1 . 

Consequently, it is easy to verify that, the 
eigenvalues of )( 2EJ satisfy the following 
relations: 

2
1

11
2
1

1
22 N

YSbae
N

YSa
K
Sr

YS −+−=+ λλ          (15a) 

0)(. 1122 3
1

11 >+= cKaNSrb
N

YSbae
YS λλ   (15b) 

1

2)(2 N
Ya

I S −+−= µγλλ             (15c) 

Clearly, according to Eq. (15a), if condition 
(14a) holds, then both the eigenvalues S2λ  and 

Y2λ , which describe the dynamics in the  
−S and −Y direction respectively are negative. 

Hence 2E  is locally asymptotically stable in the 
2. +RInt  of −SY plane. 

Further more, depending on the Eq. (15c) if in 
addition to condition (14a) condition (14b) holds 
too, than all the eigenvalues of )( 2EJ  are 
negative and hence 2E  is locally asymptotically 

stable in  3
+R . 

Finally, if at least one of conditions (14a), (14b) 
violate then )( 2EJ  has at most two positive 
eigenvalues while the third one still negative and 
hence 2E  is a saddle point.    ■ 
Theorem 3. Assume that, the predator-free 
equilibrium point )0,~,~(3 ISE = of system (4) 

exists in the 2. +RInt   of SI -plane, so that the 
following condition holds 

)~(
)~(~

SKK
SrKS

−
+< µγ                            (16a) 

Then 3E  is locally asymptotically stable in the 
2. +RInt   of SI -plane. In addition to condition 

(16a), if the following condition holds 

βθ <−+

2

2211
~)(~

N
IaeSae             (16b) 

where cISN ++=
~~

2 α . Then 3E  is locally 

asymptotically stable in the 3
+R . Finally, if at 

least one of the conditions (16a), (16b) violates 
then 3E  is a saddle point. 
Proof. Straightforward computations show that, 
the eigenvalues of the Jacobian matrix at 3E , 
i.e. )( 3EJ , satisfy the following relations: 

S
I

K
Sr

IS ~
~~

33
γλλ +−=+                            (17a) 

0~)~(. 33 >−= SSKK
r

IS
λλλ            (17b) 

Which is positive under the existence condition 
(8). 

βλ θ −= −+

2

22211
~~~

3 N
IaIaeSae

Y             (17c) 

Then by using similar arguments as those in the 
proof of theorem, the proof follows directly.
                                            ■ 
Finally, in order to study the dynamical behavior 
near the positive equilibrium point 

),,( ***
4 YISE = of system (4) in the 3. +RInt , 

the Jacobain matrix )( 4EJ  is computed as 
follows: 

334 )()( ×= ijaEJ                                       (18) 
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Where *

*

2
3

**
1*

11 S
I

N
YSa

K
rSa γ−+−= ,  

*
12 2

3

**
1*

Sa
N

YSa
K

rS λγα −++−= , 

02
3

***
1 )(

13 <−= ++

N
ScISaa α , 

0*
21 2

3

**
2 >+= Ia
N

YIa λ , 02
3

**
2

22 >=
N

YIaa α , 

02
3

***
2 )(

23 <−= ++

N
IcISaa α , 

2
3

**
2211

*
11

* ])([)(
31 N

YIaeaeYaecbYa θα −−++= ,

2
3

**
1122

*
22

* ])[())((
32 N

YSaeaeYaecbYa αθθ −−+−+= ,

02
3

**
22

*
11 ])([

33 <−= −+

N
YIaeSaeba θ  with 

 cISbYN +++= ***
3 α . 

Consequently, the characteristic equation of 
( )4EJ , can be written as 

032
2

1
3 =+++ AAA λλλ                        (19) 

where the coefficients are given by: 
 ( )3322111 aaaA ++−=  

( ) ( )
32233322

311321123322112

aaaa
aaaaaaaA

−+
+−−=

 

( )
( )

( )3221312213

3123332121

33223223113

aaaaa
aaaaa

aaaaaA

−+
−+

−=
 

According to the above, the local stability 
conditions of the positive equilibrium point 

4E of system (4) can be derived easily as shown 
in the following theorem. 
Theorem 4. Suppose that the positive 
equilibrium point ),,( ***

4 YISE = of system 

(4) exists in the 3. +RInt  . Let the following 
conditions hold: 

( ) 2
3

**
2

*
1 *

**
NYIaSa

S
I

K
rS ⎟

⎠
⎞⎜

⎝
⎛ +<+ γα      (20a) 

( ) α
γ

αλ

θα
2
3

2
3

*

1

*
2 **

12 )]([

NNS
K
r

be
Ia YSaeb

−+<

<−−
        (20b) 

*
)(

)(
112

11
*

Iaee
aecbY <−−

+
αθ               (20c) 

98 BB >                (20d) 
where 8B  and 9B  are given below. Then 4E  is 
locally asymptotically stable point in the 

3. +RInt . 

Proof. According to Routh-Hurwitz criterion, all 
the eigenvalues of ( )4EJ  have negative real 
parts, and hence the proof follows, if and only if 

01 >A , 03 >A  and 0321 >−=∆ AAA . 
Therefore, by substituting the value of 
coefficients ija of ( )4EJ  and then simplifying 

the resulting terms, it is easy to verify that 1A , 

3A  and ∆  can be rewritten as follows: 
][ 21

1
1 2

3
BBA

N
+=  

)])((

)([

76
***

1

653413 5
3

**

BBcISSa

BBBBBA
N
YI

++++

++=

α
 

][ 88
1

6
3

BB
N

−=∆  

Where 
**

1
2
31 *

**
YSaNB

S
I

K
Sr −⎟

⎠
⎞⎜

⎝
⎛ += γ , 

]))(([ *
22

*
11

*
2 IbeabSaeYB θα −−−= , 

( ) ][ 2
3

**
1

2
3

*
3

*
NYSaNSB K

rS γαλ +−+= , 

2
*

1122
*

4 ]))([( aSaeaecSB αθ −−+= , 

2
*

11
*

225 )]()[( acIaeIaeB +−−= αθ  

]

))([(
*

11

22
**2

36

Sae

aecSbYNB

α

θλ

−

−++=
, 

*
211227 ])[( YaaeaeB αθ −−= , 

))(( **
21

2
3

*
23

*
42

**2
212

2
18

YIaBNYaBI

BBYIBBBBB

αλ −++

++=
 

( )[

( )⎥⎦
⎤++

+++

−++=

2
3

*
26

3
*

2
*

22
*

11
*

1

*
11

***
9

2
3

**
1

2

5

])([

)(

NYaB

BIaIaBSaBSa

YabecISYB

N
ISa

a
B

λ

α

α

λ

 

Note that, 1B  and 2B  are positive provided that 
conditions (20a) and (20b) are satisfied 
respectively . Hence we obtain 01 >A . 
Also, we have 03 >B  provided that condition 
(20b) holds, while 4B , 6B  and 7B  are positive 
under the existence condition of 4E . Further, 

05 >B  under condition (20c). Therefore we 
obtain 03 >A . 

Finally, since 0**
21 >− YIaB α  due to 

condition (20a) and 0*
112

5 >− Yabea
B  due to 

condition (20c). Hence 8B  and 9B  are positive 
too. 



Bahlool                                                           Iraqi Journal of Science, Vol.52, No.4, 2011, PP.484-493 
 

 

In addition, since we have 98 BB >  due to 
condition (20d). Then 0321 >−=∆ AAA  and 
all the eigenvalues of ( )4EJ  have negative real 
parts. Thus 4E  is locally asymptotically stable 

in the 3. +RInt .            ■ 
 Now, the persistent of system (4) is studied. 
A system is persistent if there exist a compact 
region Ω subset of the interior of the state space 
such that all solutions with positive initial 
conditions are attracted to Ω [9]. This is 
equivalent to that, the boundary of the positive 
cone in the state space where the solutions exist, 
act as repellers.  
Before go further to establish the persistent 
conditions of system (4) as shown in the next 
theorem the following two needed lemmas are 
proved.  
Lemma 5. Assume that the disease-free 
equilibrium point ),0,(2 YSE =  is locally 

asymptotically stable in the 2. +RInt  of SY -
plane, then it is a globally asymptotically stable 
in the 2. +RInt  of SY -plane. 

Proof. Obviously at any point in the 2. +RInt  of 
SY -plane system (4) reduces the following 
disease-free 2D subsystem 

( ) ),(1 1
1 YSgrS cSbY
SYa

K
S

dt
dS =−−= ++        (21a) 

),(2
11 YSgYcSbY
SYae

dt
dY =−= ++ β                 (21b) 

Now, define SYD 1
1 = . Clearly 1D  is a 

continuously differentiable function in 2. +RInt  
of SY -plane. Further, we have that 

2
112111

)(
)1()()(

1 cSbY
bea

KY
r

Y
gD

S
gD

++

−
∂

∂
∂

∂ −−=+=∇  

Since 11 >be , due to the local stability condition 
(14a). Thus )0(1 <∇  is not identically zero and 

does not change sign in 2. +RInt  of SY -plane. 
Then, according to Dulac criterion [10], system 
(21) does not have limit cycle in  2. +RInt  of SY -
plane. 
Now, since 2E  is the only equilibrium point in 

2. +RInt  of SY -plane, which is locally 
asymptotically stable. Hence, according to 
Poincare-Bendixson theorem 2E  is globally 

asymptotically stable in  2. +RInt  of SY -plane.                                                          
 

Lemma 6. Assume that the predator-free 
equilibrium point )0,~,~(3 ISE =  is locally 

asymptotically stable in the 2. +RInt  of SI -plane, 
then it is a globally asymptotically stable in the 

2. +RInt  of SI -plane. 
Proof. Similar to the proof of lemma (5) with 
the Dulac function SID 1

2 = . 
Theorem 7. Assume that the planer equilibrium 
points ),0,(2 YSE =  and )0,~,~(3 ISE =  exist 
and they are globally asymptotically stable in 
the 2. +RInt  of SY -plane and SI -plane 
respectively. In addition, let the following two 
conditions hold 

0)(
1

2
2 >−+−= N

Ya
I S µγλλ              (22a) 

0
2

22211
~~~

3 >−= −+ βλ θ
N

IaIaeSae
Y               (22b)  

Then system (4) is persistent. 
Proof. According to theorem (1) all solutions of 
system (4) are uniformly bounded in 3

+R  and the 
trajectories of system (4) belong to the region: 

{
}2

1
3

)()()(with 
)()(:),,(

MtYtItS
MtItSRYIS

≤++
≤+∈=Ω +   

where 1M  and 2M  are given in theorem (1). 
Also we have that; the equilibrium point 

)0,0,0(0 =E  exists and is unstable in the S -
direction. The axial equilibrium point 

)0,0,(1 KE =  exists and is unstable in I -
direction due to existence condition (8) of 
predator-free equilibrium point  3E . While 2E  
and 3E  are globally asymptotically stable in the 

2. +RInt  of SY -plane and SI -plane respectively. 
Further, from the conditions (22)(a-b) the 
equilibrium points 2E  and 3E  are unstable in 
the positive directions I  and Y  orthogonal to 
SY -plane and SI -plane respectively. 
Consequently, all the boundary equilibrium 
points of system (4) in 3

+R  act as a repellers. 
Hence all the solutions of system (4) with 
positive initial conditions are attracted to the 
interior of Ω. Thus system (4) is persistent.
                     
Numerical simulation 

In this section the global dynamics of 
system (4) in the 3. +RInt  is investigated 
numerically. In order to verify the results we 
have made throughout this paper and understand 
the effects of varying the parameters, system (4) 
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is solved numerically for different sets of 
parameters and different sets of initial 
conditions and then number of attracting sets 
along with their time series are drawn.  
For the following set of parameters: 

.05.0,1.0,5.0,5.0
,1,5.0,25,1,2.0

,1,1.0,4.0,100,5.3

21

2

1

====
=====
=====

θβ
µα
γλ

ee
acb

aKr
 (23) 

The trajectory of system (4) approaches 
asymptotically to global stable point in 3. +RInt  
as shown in Fig. 1(a-c). However for the 
parameters set (23) with 5.1=r  the trajectory of 
system (4) approaches asymptotically to (1.5, 
4.24, 0) in 2. +RInt  of SI -plane see Fig. 1(d-e). 
In addition to the above, it is observed that, for 

93.1≤r  the trajectory of system (4) approaches 
to predator-free equilibrium point in 2. +RInt  of 
SI -plane, while it has globally asymptotically 
stable point in 3. +RInt  for 93.1>r . Hence the 
system still persistent for all values of 93.1>r . 
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Figuer 1: The attractor sets of system (4) with 
their time series for parameters set (23). (a) 
Global stable point in  3. +RInt  for 5.3=r  . (b) 
Time series of the attractor in (a) starting at (8, 2, 
2). (c)  Time series of the attractor in (a) starting 
at (12, 15, 15). (d) Stable point in 2. +RInt  of SI -
plane for 5.1=r . (e) Time series of the attractor 
in (d) starting at (12, 15, 15). 

 
For the parameters set (23) with the infection 
rate 16.0≤λ , system (4) losses the persistent 
and the trajectory approaches asymptotically to 
disease-free equilibrium point in 2. +RInt  of SY -
plane, see for example Fig. 2(a-b) when 

1.0=λ . However, for 65.016.0 ≤< λ  system 
(4) persists and the trajectory approaches 
asymptotically to globally stable point in 3. +RInt  
as shown in Fig. 1(a-c). Finally, increasing the 
value of infected rate further, i.e. 65.0>λ , 
system (4) losses the persistent again and the 
trajectory approaches asymptotically to 
predator-free equilibrium point in 2. +RInt  of  
SI -plane see for example Fig.2(c-d) where 

75.0=λ . 
For the set of parameters (23) with the recover 
rate 07.0≤γ  system (4) has periodic attractor 

in 3. +RInt  see for example Fig. 3(a-b) when 
05.0=γ , while the trajectory of system (4) 
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approaches asymptotically to globally stable 
point in 3. +RInt  for γ  in the range (0.07, 4.92] 
as shown in Fig. 1(a-c). Finally increasing the 
recover rate further 92.4>γ  system (4) losses 
its persistent and the trajectory approaches to 
globally stable point in 2. +RInt  of SY -plane, see 
for example Fig. 3(c-d) when 5=γ . 
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Figure 2: The attractor sets of system (4) with 
their time series for parameters set (23). (a) Stable 
point in 2. +RInt  of SY -plane when 1.0=λ . (b) 
Time series of the attractor in (a) starting at (12, 
15, 15). (c)  Stable point in 2. +RInt  of  SI -plane 
when 75.0=λ . (d) Time series of the attractor in 
(c) starting at (12, 15, 15).  
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Figure 3: The attractor sets of system (4) with 
their time series for parameters set (23). (a) 
Periodic attractor in 3. +RInt  when 05.0=γ . (b) 
Time series of the attractor in (a). (c)  Stable point 
in 2. +RInt  of SY -plane when 5=γ .  (d) Time 
series of the attractor in (c) starting at (12, 15, 15).  
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For the parameters set (23) with the death rate of 
infected prey in the ranges 75.00 << µ , 

55.275.0 ≤≤ µ  and 555.2 ≤< µ  system (4) 
still persistent and the trajectory approaches 
asymptotically to globally stable point in  

3. +RInt , periodic attractor in 3. +RInt  and 

globally stable point in 3. +RInt  as shown in Fig. 
1(a-c), Fig. 4(a-b) and Fig. 4(c-d) respectively. 
Finally it is observed that increasing the death 
rate further 5>µ , system (4) losses the 
persistent and the trajectory approaches 
asymptotically to stable point in the  2. +RInt  of 
SY -plane. 
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Figure 4: The attractor sets of system (4) with 
their time series for parameters set (23). (a) 
Periodic attractor in 3. +RInt  when 1=µ . (b) Time 
series of the attractor in (a). (c)  Stable point in 

3. +RInt  when 75.2=µ .  (d) Time series of the 
attractor in (c) starting at (12, 15, 15).  

 
Now, for the parameters set (23) with the natural 
death rate of predator species in the ranges 

053.00 ≤< β , 096.0053.0 ≤< β , 
14.0096.0 << β  and 14.0≥β  the trajectory of 

system (4) approaches asymptotically to 
globally stable point in 2. +RInt  of SY -plane, 

periodic attractor in 3. +RInt , globally stable 

point in 3. +RInt  and globally stable point in 
2. +RInt  of  SI -plane respectively as shown in 

Fig. 5(a-f). 

0
5

10
15

0

10

20

30
0

100

200

300

Suscepitable preyInfected prey

P
re

da
to

r

 Initial point
(12, 15, 15) 

  Stable point
 (9.4, 0, 298.2)

(a) 

 

0 4000 8000
0

100

200

300

Time

P
op

ul
at

io
n

Predator 

Infected
   prey 

Suscepitable
      prey 

(b) 

 



Bahlool                                                           Iraqi Journal of Science, Vol.52, No.4, 2011, PP.484-493 
 

 

0
5

10
15

20
25

0
5

10
15

20
125

135

145

Suscepitable preyInfected prey

P
re

da
to

r
(c) 

 

2 2.1 2.2

x 104

0

50

100

150

Time

P
op

ul
at

io
n

Predator 

Suscepitable
      prey 

Infected 
   prey 

(d) 

 

0

5

10

0

10

20

30
0

5

10

15

20

Suscepitable preyInfected prey

P
re

da
to

r

Initia point
(12, 15, 15) 

 Stable point
 (1.5, 9.35, 0)

(e) 

 

0 4000 8000
0

5

10

15

20

25

Time

P
op

ul
at

io
n

(f) 

Infected
  prey  Suscepitable

       prey 

Predator 

 
Figure 5: The attractor sets of system (4) with 
their time series for parameters set (23). (a) Stable 
point in 3. +RInt  when 05.0=β .  (b) Time series of 
the attractor in (a) starting at (12, 15, 15). (c)  
Periodic attractor in 3. +RInt  when 07.0=β . (d) 
Time series of the attractor in (c). (e) Stable point 
in  2. +RInt  of  SI -plane when 2.0=β . (f) Time 
series of the attractor in (e). 
 
Conclusion and Discussion 

An eco-epidemiological system consisting 
of Biddington-DeAngils prey-predator 
interacting involving SIS epidemic disease in 

prey has been proposed and analyzed. 
Analytically, it is observed that the system has at 
most five nonnegative equilibrium points in 3

+R . 
The trajectory of system (4) approaches 
asymptotically to locally stable positive point 
(endemic point) under certain conditions. 
Further more, system (4) persists under 
conditions (22)(a-b). However, numerically it is 
observed that, system (4) has two type of 
attractors in 3. +RInt : approaches to globally 
stable point or to globally stable limit cycle. 
Moreover the system is very sensitive to varying 
in parameters set as shown in Figurers. (1-5). 
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