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Abstract
In this paper, an eco-epidemiolo-gical model consisting of prey-predator model
with SIS disease is proposed and analyzed. The existence and the stability analysis
of all possible equilibrium points are carried out. The persistent conditions of the
proposed system are established. The global dynamics of the system is studied

numerically.

GIS)

Introduction

Initially, models for ecological interactions
and models for infectious diseases were
developed separately. It has been observed that a
strong interaction may arise between these
factors. Indeed, the main aspects regarding
population dynamics concern with the effects of
infectious diseases in regulating natural
populations, decreasing their population sizes,
reducing their natural fluctuations, or causing
destabilizations of equilibria into oscillations of
the population states. The study of interacting
species in which a disease spreads is known as
eco-epidemiology. The study of eco-epidemio-
logy has important ecological significance as it
involves persistence-extinction thre-shold of
each population in systems of two or more
interacting species subjected to disease [1-4].
It is well known that, when the infective
individual still infective and the susceptible
individual still susceptible for all the time, the

(SIS)

disease is called SI disease. However, when the
infection does not lead to immunity, so that
infective becomes susceptible again after
recovery, the disease is called an SIS disease.
Finally, when infective has permanent immunity
after recovery, the disease is called an SIR
disease. SIS epidemic model is one of the most
basic and most important models in describing
the spread of many diseases and hence it
attached many author’s attention, see [5] and the
references therein.

Recently, numbers of ecological models
involving SI and SIR epidemic disease have
been considered, see [6], [7] and the references
therein. In this paper an eco-epidemiological
model consisting of Beddington-DeAnglis prey-
predator model involving SIS epidemic disease
has been proposed and analyzed.
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Model Formulation
In this section, a system consists of a
prey with density N(t), which may has disease,

interacting with predator with density y(t)is

proposed depending on the
assumptions.

Al: In the absence of disease and predation, the
prey population density grows according to a
logistic  curve with carrying  capacity
K(K>0)and an intrinsic  birth rate
constantr(r > 0). Hence the evolution of prey

following

population can be described as:

a=mNa- 3 M

A2: In the presence of disease we assume that
the total prey population N is composed of two
population classes: one is the class of
susceptible prey denoted by S, and the other is
the class of the infected prey, denoted by
| .Therefore, at any time t, the total density of
prey population is

N(t) = S(t)+ 1(t) (2)
A3: It is assumed that only susceptible prey S is
capable of reproducing with logistic law Eq. (1),
the infected prey | is removed before having
the possibility of reproducing. However, the
infected prey population | still contributes with
S to population growth toward the carrying
capacity.

A4: A susceptible prey S becomes infected at a
rate proportional to Sl and an infected prey can
recover and becomes susceptible again at a rate
y 1. Moreover, the infected prey population

faces the natural death due to the effect of
disease at a rate x| . Therefore the evolution

equations for the susceptible prey S and
infected prey |, according to Eq.(1), A3 and A4
are

W=rs-f) -1l + A o)
G= 28l - —

where N=S+1 and A,y,u are the positive

parameters, which stand for infection rate
constant, recover rate constant and natural death
rate constant respectively.

A5: In the presence of predator both the prey
populations (susceptible and infected) will be
consumed, according to Beddington-DeAnglis
type of functional response, due to the effect of
predation. However, the predator population will
be reproduced depending on the availability of
food (i.e. prey populations). Finally, it is
assumed that the predator population decaying
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due to either the natural death with constant rate
£ (B>0) or the amount of infected prey

consumed with proportionality constant rate &
(6>0).

Therefore, by using the above assumptions, the
dynamic of prey-predator model with SIS
disease in the prey can be represented in the
following set of equations.

9 _rs(1—S2L)- 2SI + 70 — Y (4a)
= 281 —p — ul —q,Y (4b)
%=(e1Q1 +€,0,)Y = Y —00q,Y (4c)

;S a,|
where 0 =gy and O =gyae

while the parameters a;,a,,b,a,c,e; and e,
are positive constants represent respectively the
attack rate of susceptible prey, attack rate of
infected prey, the predator encounter rate, the
predator’s preference rate, the half saturation
constant, the predator’s conversion rate from S
and | respectively. Since the density of any
species can’t be negative, therefore we will
solve system (4) with the following initial
condition S(0)>0, 1(0)>0 and Y(0)>0.

It is easy to verify that all the functions on the
right hand side of Eq. (4)(a-c) are continuous
and have continuous partial derivatives with
respect to dependent variables S,landY .
Accordingly they are Lipichitzian functions and
hence system (4) has a unique solution for each
non-negative initial condition. Further the
boundedness of the system is shown in the
following theorem.

Theorem 1. All the solutions of system (4)

which initiate in the R}

bounded.
Proof: Since we have N(t)=S(t)+ 1(t) Vt>0

and %—';‘ =rN( —%), hence we obtain:

are uniformly

NO = e
Where N(0) =N, =S, +1,. Hence it is easy to
verify that N(t)<M,, Vt>0 where
M, = max{N,,K}. Consequently,

St)<M,;, vt>0.
Assume that, W =S + | +Y then we obtain

aw _ dS | dI , dY _
dt_dt+dt+dtS7 oW

Where y =(1+r)M; and 6 =min{l, u, #} then
we have

dw

e + oW < V4
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Now by solving the above linear differential
inequality [8] we get that

W(t) < 5)e‘5‘
here W(0)=w, . Hence W(t)<M,, Vt=0

where M, = max {WO,%} .

+W0

Hence, all the solution of system (4) are
uniformly bounded and the proof is complete.

The stability analysis

In this section, we study the existence of
equilibrium points of system (4) and their local
stability. It is observed that, system (4) has at
most five nonnegative equilibrium points.
The equilibrium points E, =(0,0,0) and
E, =(K,0,0) are always exist.

The disease-free equilibrium point
E, = (S 0 Y) where
S= oA —L_[a,K(rbe, —e,a, + )

+\/(a1K) (-rbe, +e,a, — f)* +4rbe1a12ﬁcK}

7 _ r(S+c)(K-S) (5b)
a,K-rb(K-S)

=<

exists in the Int. Rf of SY — plane provided that
the following two conditions hold

K2 o5 <K (6a)
p< el a (6b)
The predator-free equilibrium point

E; =(5,1,0), where

A

S = 7 (73)
T _r(K-5)§

| = K,u-H’S (7b)

exists in the Int.R? of SI
that

S<K (®)
Finally, the positive equilibrium point
E,=(S",1

—plane provided

,Y ), which is known as endemic

point, exists in the Int. Ri if and only if there is

a positive solution to the following set of
algebraic equations

B LY =r(=S) - 21+ L—q L=
fz(S,I,Y):iS—y—,u—quT =

f3(S,1.Y)=e0, +€,0, -f-60, =0
Straightforward computations give that

Iragi Journal of Science, Vol.52, No.4, 2011, PP.484-493

|* = beas S yulaslea—fS o8l ()
a[(e;-0)ay—afl-bay (6,-0)AS —y—pu]
y* = [E-0)c+(r-0)ar-82c)S IS ~y—u]
a[(e,-0)ay—aff|-ha, (6, -O)[AS —y—u]

....... (10b)
while, S” is the positive root for the equation
f,(S,1,Y)=0 (10c)

Obviously, E, exists uniquely in the Int.R?

provided that there is a positive root for Eq.
(10c) that is satisfy the following set of
conditions:

al€a-$)S"-chl _ |y (©-0)a-af

Ea - (11a)

e&yS [4S —y-u] (e2-0)AS —y—u]

* r+u e
S >max.{7,e]aliﬁ} (11b)
with 0 <o <min. {(eze_lgl)az , (ez_ﬂg)az } (11c)
Consequently, if e;a; > £, the condition (11c)
is replaced by

-0

O<a< % (11d)

Now, the local stability analysis near the above
equilibrium points of system (4) can be
summarized as follows:
The Jacobian matrix of system (4) at the
equilibrium point E, is

r 0 0
J(Ep)=|0 —(r+u) O
0 0 -p

Accordingly, the eigenvalues of J(E) are:

Ags =1>0,4g =—(A+ 1) <0,
Aoy == <0

Where 4, represents the eigenvalue of

J(E;j); 1=0,1,2,3,4 that describe the dynamics

in the u -direction. Therefore, E, is a saddle

point with locally stable manifold in the
IY — plane and with locally unstable manifold in
the S — direction.

The Jacobian matrix of system (4) at the

(12)

equilibrium point E; is given by

a K
-r —r+y-AK —-%
JED=] 0 AK-y—u 0
g K
0 0 I1<J1rc -p
Therefore, the eigenvalues of J(E;) can be
written as
K (13a)
Ay = ekaic -p
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Clearly, if the following two conditions hold
“al < p (13b)
A<t (13¢)

then E; is the locally asymptotically stable.
While, if at least one of conditions (13b) and
(13c¢) violate then E, is a saddle point.

Further, the local stability analyses near the
equilibrium points E, and E; of system (4) are

discussed in the following two theorems
respectively.
Theorem 2. Assume that, the disease-free

equilibrium point E, =(§,0,V) of system (4)
exists in the Int.RZof SY —plane, so that the
following condition holds

Y cr &ay (14a)
1

Then E, is locally asymptotically stable in the

Int. Rf of SY —plane. In addition to condition
(14a), if the following condition holds

ﬂ.§<(7/+,u)+% (14b)

Then E, is locally asymptotically stable in Ri .
Finally, if at least one of conditions (14a), (14b)
violates then E, is a saddle point.

Proof. According to system (4), the Jacobian
matrix of system (4) at the equilibrium point E,
can be written as: J(E;)=(bjj)s.s; where

_ rg algv __rg a1a§? rs
bll——?'i'N—lz, b12—T+N—12+}/—iS,

5 _
_ &S +acs _ _
b13__ le ab21_b23_09

= Y
by, =AS - (y+u —a,f,—l,

by, = e,abY +eacy b, = N, (e,-0)a,Y —e;aaSY

N N

with N, =bY +S +c.

b

b33 - EIa,l:szY
Consequently, it is easy to verify that, the
eigenvalues of J(E,)satisfy the following
relations:

rs , &SY  eabSy

Adog + Ay ==+
25 T Aoy
KON

Ayg Ay = elag’;Y (rbSN, +a,cK)>0 (15b)

= Y
Ao =28 = (y+ ) -3

Clearly, according to Eq. (15a), if condition
(14a) holds, then both the eigenvalues A,g and

(15a)

(15¢)
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Ay, which describe the dynamics in the
S —and Y —direction respectively are negative.
Hence E, is locally asymptotically stable in the

Int.R? of SY —plane.

Further more, depending on the Eq. (15¢) if in
addition to condition (14a) condition (14b) holds
too, than all the eigenvalues of J(E,) are

negative and hence E, is locally asymptotically

stable in R’ .
Finally, if at least one of conditions (14a), (14b)
violate then J(E,) has at most two positive

eigenvalues while the third one still negative and
hence E, is a saddle point. =

Theorem 3. Assume that, the predator-free
equilibrium point E; =(S~ ,I~,0) of system (4)
exists in the Int. Rf of Sl -plane, so that the

following condition holds
S(Ku+rS)

K(K-S)
Then Ej; is locally asymptotically stable in the

y < (16a)

Int.R f of Sl -plane. In addition to condition
(16a), if the following condition holds

S+(e,—6)a,l
€S +(e;-0)a, <p

= (16b)

where N, = S+al +c. Then E; is locally

asymptotically stable in the Ri. Finally, if at

least one of the conditions (16a), (16b) violates
then Ej; is a saddle point.

Proof. Straightforward computations show that,
the eigenvalues of the Jacobian matrix at Ej;,

i.e. J(E;), satisfy the following relations:

-l
A3s + A3 ——%4‘? (17a)
s Az =2-(K =5)S >0 (17b)

Which is positive under the existence condition
(8).

_eaS+ea,l —0al
y=""—W, P

Then by using similar arguments as those in the
proof of theorem, the proof follows directly.

(17¢)

[
Finally, in order to study the dynamical behavior
near the  positive  equilibrium  point

E,=(S",17,Y")of system (4) in the Int.R>,
the Jacobain matrix J(E,) is computed as
follows:

J(E4) =(@jj) 33 (18)
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st asyY gyl

Where a;; =—+% Nz 5’
_ s, s’y *
alz——T'i‘ N32 +7/—/18 ,
a, (5" +al "+c)S”
a13 = ——1( zz ) < 0 N
3
a,l'Y” * a,1"Y”
8.212 22 +/’“ >0, a22:a22 >0,
N3 N3
a,(S"+al "+o)1”
a23 :_¥<0 ,
N3
_(bY +o)eaY +Heaa—(e,-0)a, 1Y
3
_(bY +c)(ey-B)a,Y "+H(e,-O)a, —e@ya]S 'Y
3
blea,S +(e,—)ay 1 Y .
a3y =— (&2 (&0l I ) with

N3

Ny =bY +S" +al” +c.
Consequently, the characteristic equation of
J(E,4), can be written as
PHAP+AA+A =0 (19)
where the coefficients are given by:

A =—(ay; +ay, +as3)

A =2y (ay —a5;)— (a8, + 1385

T 833 —dxas
As =ay (823, —ayas;)
+2y; (21833 —axay)
+ay3 (@ —ayas,)

According to the above, the local stability

conditions of the positive equilibrium point
E, of system (4) can be derived easily as shown

in the following theorem.

Theorem 4. Suppose that the positive
equilibrium point E, =(S*,I*,Y*)of system
(4) exists in the Int.R?
conditions hold:

(als* +aal *)Y* <(ﬁ+%jN§ (20a)

. Let the following

K

2y be, —0)]<a,S’Y

be .., (0b)
(a1

(bY “+c)ea *

& D)eaa (20¢)

Bg > By (20d)

where Bg and By are given below. Then E, is
locally asymptotically
Int.R? .

stable point in the
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Proof. According to Routh-Hurwitz criterion, all
the eigenvalues of J(E,) have negative real

parts, and hence the proof follows, if and only if
A >0, A;>0and A=AA -A; >0.
Therefore, by substituting the value of
coefficients a;; of J(E4) and then simplifying
the resulting terms, it is easy to verify that A,
A; and A can be rewritten as follows:

A ZN%Z[B1 +B,]

A = Izs [BiB4 + B3 (Bs + Bg)

N
+a,S (S" +al” +c)(Bg +B,)]
Az%[Bs - Bg]
N3

B, =Y [e;a;bS" ~a,(a—(e; ~O)b)1 '],

B, =(%+/18*)N32 ~[a,&S™Y " +yN27,

B, =[(S" +C)(e; —0)a, — 2,08 1a,

Bs =[(e, —0)a,| —ea,(al +0c)la,

By =ANZ[(bY +S” +c)(e, —6O)a,

~ea,05"] ’

B; =[(e, —0)a, —ejaalayY

By, =B?B, + B,B} +1°Y"B,B,
+17°B;(a,Y + ANZ)(B, —a,a I 'Y")

Bo=Y'(S"+al” +c)[(:—j—be1alY*)

[a,S"B, +a,S (B, +a,a |l )+a,l B;]

aS | * 2
+ ;Nf B6(a2Y +/1N3)}

Note that, B, and B, are positive provided that
conditions (20a) and (20b) are
respectively . Hence we obtain A; >0.

satisfied

Also, we have B; >0 provided that condition
(20b) holds, while B,, By and B, are positive
under the existence condition of E,. Further,
Bs >0 under condition (20c). Therefore we
obtain A; >0.

Finally, since B,—a,al’Y >0 due to

condition (20a) and S—j—belalY* >0 due to

condition (20c). Hence Bg and B, are positive
too.
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In addition, since we have Bg > B, due to
condition (20d). Then A=AA, —A; >0 and
all the eigenvalues of J(E,) have negative real

parts. Thus E, is locally asymptotically stable

in the Int.R?. .

Now, the persistent of system (4) is studied.
A system is persistent if there exist a compact
region Q) subset of the interior of the state space
such that all solutions with positive initial
conditions are attracted to Q [9]. This is
equivalent to that, the boundary of the positive
cone in the state space where the solutions exist,
act as repellers.
Before go further to establish the persistent
conditions of system (4) as shown in the next
theorem the following two needed lemmas are
proved.
Lemma 5. Assume

equilibrium point E, =(S,0,Y) s

that the disease-free
locally

asymptotically stable in the Int.R f of SY -
plane, then it is a globally asymptotically stable
in the Int.R? of SY -plane.

Proof. Obviously at any point in the Int. Rf of

SY -plane system (4) reduces the following
disease-free 2D subsystem

ds _ S sy _
W—I’S(l—?)— inS+C_g1(S’Y)
dy _ &aSY _

‘it =bvasse ~ A =025.Y)

=_L
D=5

(21a)

(21b)
Clearly D, is a

Now, define

continuously differentiable function in Int. Rf

of SY -plane. Further, we have that
Vv, _0Dg) , D) __ r a,(eb-1)

+ =
oS oY KY  (bY+S+c)?
Since €,b >1, due to the local stability condition

(14a). Thus V,(<0) is not identically zero and

does not change sign in Int. Rf of SY -plane.
Then, according to Dulac criterion [10], system
(21) does not have limit cycle in Int.R f of SY -
plane.

Now, since E, is the only equilibrium point in
Int.R?

asymptotically stable. Hence, according to
Poincare-Bendixson theorem E, is globally

of SY -plane, which is locally

asymptotically stable in Int. Rf of SY -plane.
|
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Lemma 6. Assume that the predator-free
equilibrium point E; = (§ , IN,O) is locally
asymptotically stable in the Int. Rf of Sl -plane,
then it is a globally asymptotically stable in the
Int.R? of SI -plane.

Proof. Similar to the proof of lemma (5) with
the Dulac function D, = é

Theorem 7. Assume that the planer equilibrium
points E, =(§,0,V) and E; =(S~,I~,0) exist
and they are globally asymptotically stable in
the Int.R?
respectively. In addition, let the following two
conditions hold

A =/15_—(7+#)—%>0

of SY -plane and Sl -plane

(22a)
/13Y _ 91315+ez§z| —Oa,l —ﬁ >0
Then system (4) is persistent.
Proof. According to theorem (1) all solutions of

(22b)

system (4) are uniformly bounded in R i and the
trajectories of system (4) belong to the region:
Q:{(S,I,Y)e Ri S+ 1) <M,

with S(t) + 1(D) + Y (1) <M, }
where M, and M, are given in theorem (1).
Also we have that; the equilibrium point
Ey =(0,0,0) exists and is unstable in the S -
direction. The axial equilibrium point
E, =(K,0,0) exists and is unstable in |-
direction due to existence condition (8) of
predator-free equilibrium point E;. While E,

and E; are globally asymptotically stable in the

Int. Rf of SY -plane and Sl -plane respectively.
Further, from the conditions (22)(a-b) the
equilibrium points E, and E; are unstable in
the positive directions | and Y orthogonal to
SY -plane  and Sl -plane  respectively.
Consequently, all the boundary equilibrium

points of system (4) in Ri act as a repellers.
Hence all the solutions of system (4) with
positive initial conditions are attracted to the

interior of Q. Thus system (4) is persistent.
|

Numerical simulation
In this section the global dynamics of

system (4) in the Int. Ri is investigated
numerically. In order to verify the results we
have made throughout this paper and understand

the effects of varying the parameters, system (4)
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is solved numerically for different sets of
parameters and different sets of initial
conditions and then number of attracting sets
along with their time series are drawn.
For the following set of parameters:
r=3.5K=100,A=04,y=0.1,a, =1,
b=02,a=1,c=25u=05a,=1, (23)
e, =0.5,e, =0.5,4=0.1,6 =0.05.
The trajectory of system (4) approaches
asymptotically to global stable point in Int. Ri

as shown in Fig. 1(a-c). However for the
parameters set (23) with r =1.5 the trajectory of
system (4) approaches asymptotically to (1.5,

424, 0) in Int.R? of Sl -plane see Fig. 1(d-e).
In addition to the above, it is observed that, for
r <1.93 the trajectory of system (4) approaches
to predator-free equilibrium point in Int. Rf of
Sl -plane, while it has globally asymptotically
stable point in Int. Ri for r >1.93. Hence the
system still persistent for all values of r >1.93.

(@)
60

Global Spable point

(4.54, 5.14, 55.85)
40

Predator

Initial point
(12, 15, 15)

Initial point
8,22 15

10

5

Infected prey 0o Susceptible prey
60
< Suscepitable T
240 rep Infected
5] prey Predator
= prey (b)
S 1
0
0 2000 4000 6000 8000
Time
60 T
j=4
S 40 . 7
® Suscepitable Infected
3 prey prey Predator (©
20 / ,
0 w ‘ ‘
0 2000 4000 6000 8000
Time
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(d)

Initial point
(12,15, 15)

Predator

Stable point
(1.5,4.24,0)

Infected prey 00

Suscepitable prey

25

20

Suscepitable
prey

N
3

Predator

/ Infected

prey

l

4000 6000 8000 10000
Time

Figuer 1: The attractor sets of system (4) with
their time series for parameters set (23). (a)
Global stable point in Int.R? for r=3.5 . (b)
Time series of the attractor in (a) starting at (8, 2,
2). (c) Time series of the attractor in (a) starting
at (12, 15, 15). (d) Stable point in Int.R? of SI -
plane for r=1.5. () Time series of the attractor
in (d) starting at (12, 15, 15).

Population

N
o

0 .
0 2000

For the parameters set (23) with the infection
rate 4<0.16, system (4) losses the persistent
and the trajectory approaches asymptotically to
disease-free equilibrium point in Int. Rf of SY -
plane, see for example Fig. 2(a-b) when
A=0.1. However, for 0.16 <4 <0.65 system
(4) persists and the trajectory approaches
asymptotically to globally stable point in Int. Ri
as shown in Fig. 1(a-c). Finally, increasing the
value of infected rate further, i.e. A4>0.65,
system (4) losses the persistent again and the
trajectory  approaches  asymptotically to
predator-free equilibrium point in Int. Rf of

Sl -plane see for example Fig.2(c-d) where
A1=0.75.

For the set of parameters (23) with the recover
rate y <0.07 system (4) has periodic attractor
in Int. Ri see for example Fig. 3(a-b) when
y =0.05, while the trajectory of system (4)
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approaches asymptotically to globally stable
point in Int. Rf for y in the range (0.07, 4.92]

as shown in Fig. 1(a-c). Finally increasing the
recover rate further y >4.92 system (4) losses

its persistent and the trajectory approaches to

globally stable point in Int. Rf of SY -plane, see
for example Fig. 3(c-d) when y =5.

(@)

Stable point
(20.52, 0, 285.42)

Initial point
(12, 15, 15)

30

20

15
10 10

Infected prey 0 s Suscepitable prey

<——— Predator

Population
=
a
o

Suscepitable
prey 1
Infected
prey

0] 1000 2000 3000
Time

©

Initial point
(12, 15, 15)

Predator
B
S)

Stable point
(0.8, 5.26, 0)

4

2 Suscepitable prey

20

(C)]

15
Predator

Infected
prey

l

Suscepitable
prey

Population
B
o

0

0] 2000 4000 6000 8000 10000
Time

Figure 2: The attractor sets of system (4) with
their time series for parameters set (23). (a) Stable

point in Int.R* of SY -plane when 1=0.1. (b)
Time series of the attractor in (a) starting at (12,
15, 15). (c) Stable point in Int. Rf of Sl -plane

when 1 =0.75. (d) Time series of the attractor in
(c) starting at (12, 15, 15).
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Figure 3: The attractor sets of system (4) with
their time series for parameters set (23). (a)

Periodic attractor in Int. Ri when y =0.05. (b)
Time series of the attractor in (a). (c) Stable point
in Int.R? of SY -plane when y=5. (d) Time
series of the attractor in (c) starting at (12, 15, 15).
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For the parameters set (23) with the death rate of
infected prey in the ranges 0< ux<0.75,
0.75< <255 and 2.55< u<5 system (4)
still persistent and the trajectory approaches
asymptotically to globally stable point in

Int.R}, periodic attractor in Int.R} and

globally stable point in Int. Ri as shown in Fig.
1(a-c), Fig. 4(a-b) and Fig. 4(c-d) respectively.
Finally it is observed that increasing the death
rate further p>5, system (4) losses the

persistent and the trajectory approaches
asymptotically to stable point in the Int. Rf of
SY -plane.
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Figure 4: The attractor sets of system (4) with
their time series for parameters set (23). (a)

Periodic attractor in Int.R? when x=1. (b) Time
series of the attractor in (a). (c) Stable point in
Int.R} when x=275. (d) Time series of the

attractor in (c) starting at (12, 15, 15).

Now, for the parameters set (23) with the natural
death rate of predator species in the ranges

0<3<0.053, 0.053< £<0.096,
0.096 < f<0.14 and S >0.14 the trajectory of
asymptotically to

system (4) approaches

globally stable point in Int. Rf of SY -plane,
periodic attractor in Int. Ri, globally stable
point in Int. Ri and globally stable point in
Int.R? of Sl -plane respectively as shown in

Fig. 5(a-f).
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Figure 5: The attractor sets of system (4) with
their time series for parameters set (23). (a) Stable

point in Int. Ri when £ =0.05. (b) Time series of
the attractor in (a) starting at (12, 15, 15). (c)
Periodic attractor in Int.Ri when £=0.07. (d)
Time series of the attractor in (c). (e) Stable point
in Int.R? of SI -plane when g=0.2. (f) Time
series of the attractor in (e).
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Conclusion and Discussion

An eco-epidemiological system consisting
of Biddington-DeAngils prey-predator
interacting involving SIS epidemic disease in

Iragi Journal of Science, Vol.52, No.4, 2011, PP.484-493

prey has been proposed and analyzed.
Analytically, it is observed that the system has at

most five nonnegative equilibrium points in Ri .

The trajectory of system (4) approaches
asymptotically to locally stable positive point
(endemic point) under certain conditions.
Further more, system (4) persists under
conditions (22)(a-b). However, numerically it is
observed that, system (4) has two type of

attractors in Int. Ri: approaches to globally

stable point or to globally stable limit cycle.

Moreover the system is very sensitive to varying

in parameters set as shown in Figurers. (1-5).

References

1. Hadeler, K.P. and Freedman, H.I. 1989.
Predator-prey population with parasite
infection. Journal of Mathematical Biology,
27:609-631.

2. Beltrami, E. and Carroll, T.O. 1994,
Modelling the role of viral disease in
recurrent phytoplankton blooms. Journal of
Mathematical Biology, 32:857-863.

3. Chattopadhyay, J. and Arino, O. 1999. A
predator-prey model with disease in the
prey. Nonlinear Analysis, 36:747-766.

4. Zhou, X.; Shi, X. and Song, X. 2009.
Analysis of a delay prey-predator model
with disease in the prey species only.
Journal of Korean Mathematical Society,
46:713-731.

5. Li, X.Z.; Li, W.S. and Ghosh, M. 2009.
Stability and bifurcation of an SIS epidemic
model with treatment. Chaos, Solitons and
Fractals, 42:2822-2832.

6. Bahlool, D.K. 2009. On the dynamical
behavior of a prey-predator model with
disease in prey. Proceeding of 3™ Scientific
Conference of the College of Science,
University of Baghdad. Iraq, 445-450.

7. Pathak, S.; Maiti, A. and Samanta, G.P. 2010.
Analysis of a delay nonautonomous
predator-prey system with disease in the
prey, Nonlinear Analysis: Modelling and
Control. 15(1):97-108.

8. Hall J. K. 1969. Ordinary differential
equation. Wiley-Interscience, New York.
pp. 30-32.

9. Hofbauer, J. and Sigmund, K. 1998.
Evolutionary games and population
dynamics. Cambridge University Press, UK.
pp. 60-75.

10. Wiggins, S. 1990. Introduction to applied
non-linear dynamical system and chaos.
Spring-Verlag, Inc., New York. pp. 25-28.



