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Abstract  

     In this paper, the algebraic characteristics of nonequivalent arcs of degree three 

in  𝑃𝐺(2,17) are discussed. An approach to construct these sets is introduced. The 

approach focuses on obtaining a large size of complete degree three arc in 

𝑃𝐺(2,17). This work starts by fixing a set, 𝓧= {𝑃1, 𝑃2, 𝑃3} that have three points lie 

on the same line Ɫ𝑥 of the projective space of order seventeen, 𝑃𝐺(2,17). This set is 

a (3;3)-Arc. Then, the process is continued to establish the sets of (ƙ;3)-Arcs by 

adding the points of the projective plane, 𝑃𝐺(2,17) that satisfied the condition 𝓧 ∩
 𝑙𝑖𝑛𝑒𝑠 Ɫ𝒾\ Ɫ𝑥 = 3, where Ɫ𝒾 ∈ 𝑃𝐺(2,17). So, the sets of (4;3)-Arcs, (5;3)-Arcs, (6;3)-

Arcs, (7;3)-Arcs, (8;3)-Arcs, (9;3)-Arcs, (10;3)-Arcs, (11;3)-Arcs, (12;3)-Arcs, 

(13;3)-arcs, (14;3)-Arcs, (15;3)-Arcs, (16;3)-Arcs, (17;3)-Arcs, (18;3)-Arcs, (19;3)-

Arcs, (20;3)-Arcs, (21;3)-Arcs, (22;3)-Arcs, (23;3)-Arcs, (24;3)-Arcs, (25;3)-Arcs, 

(26;3)-Arcs, (27;3)-Arcs, and (28;3)-Arcs are obtained. So that this approach gives 

the number of (ƙ;3)-Arcs in each construction for ƙ = 4,5,6,7,8,…28, and then the 

number of nonequivalent (ƙ;3)-Arcs for ƙ = 4,5,6,7,8,…,28 is given as well. This 

number is established according to the number of nonequivalent secant distributions 

of degree three arcs, (ƙ;3)-Arcs. Thus, the spectrum of nonequivalent arcs in each 

process is 2, 6, 16, 32, 49, 71, 97, 122, 149, 170, 192, 205, 220, 230, 233, 234, 229, 

218, 190, 160, 101, 34, 4, 3, 1, respectively. Also, the associated stabilizer group for 

each constructed nonequivalent arc is computed. In addition, the action of each 

stabilizer group on the corresponding nonequivalent arc is discussed. As a result of 

these actions, there are different sizes of orbits. These sizes are one, two, three, four, 

and six. The largest size of degree three arc established in this process is  ƙ = 28 .  
 

Keywords: (ƙ; 3)-Arc, Complete arc, Nonequivalent secants, 𝑃𝐺(2,17), Group. 
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تقديم طريقة لتصنيف مجموعات أقواس الدرجة الثالثة غير المكافئة في المستوى الإسقاطي من الرتبة السابعة  
عشرة . يركز النهج على الحصول على حجم كبير من الدرجة الثالثة التامة لهذا الفضاء.  يبدا هذا التصنيف  

( . بعد ذلك، تستمر  3;3)   -بتثبيت مجموعة من النقاط التي تقع على نفس الخط .هذه المجموعة هي قوس
العملية في إنشاء مجموعات الأقواس الاسقاطية الثلاثية الدرجة عن طريق اضافة النقاط المنتمية الى الفضاء  

             الاسقاطي 
Ɫه∈ PG(2,17).   حيث هذه الخطوط   𝑋 ∩  Ɫ𝑖\Ɫ𝑥 =   من الدر جة السابعة عشر والتي تحقق 3
  لذا المجموعات التالية تم الحصول عليها تباعا. هذه المجاميع هي اقواس الدرجة الثالثة لاحجام مختلفة وهي  

 (5;3)-Arcs, (6;3)-Arcs, (7;3)-Arcs, (8;3)-Arcs, (9;3)-Arcs, (10;3)-Arcs,(11;3)-
Arcs, (12;3)-Arcs, (13;3)-Arcs, (14;3)-Arcs, (15;3)-Arcs, (16;3)-Arcs,(17;3)- 
Arcs , (18;3)-Arcs,(19;3)-Arcs, (20;3)-Arcs, (21;3)-Arcs, (22;3)-Arcs, (23;3)-
Arcs, (24;3)-Arcs,  (25;3)-Arcs, (26;3)-Arcs, (27;3)-Arcs, (28;3)-Arcs,  for ƙ= 

4,5,6,7,8,...,28 . 
يتم  إنشاء هذا العدد الغير متكافئ وفقًا لعدد    . ايضا يعطي هذا النهج عدد الاقواس الثلاثية الغير متكافئ 
الثالثة والغير   الثالثة وبالتالي فإن نطاق ألاقواس من الدرجة  التوزيعات القاطعة غير المكافئة لأقواس الدرجة 

, 192,  170,  149,  122,  97,  71,  49,  32,  16,  6,  2متكافئة في كل عملية على التوالي هو كالاتي  
كما يتم  حساب مجموعة    34,4,3,1,  101,  160,  190,  218,  229,  234,   233,  230,  220,  205

مجموعة   كل   عمل  مناقشة  تمت  ذلك،  إلى  بالإضافة  إنشاؤه.  تم  مكافئ  غير  قوس  لكل  المرتبطة  التثبيت 
المدارات  هذه  استقرار على القوس غير المكافئ المقابل. ونتيجة له ذه الإجراءات، هناك أحجام مختلفة من 

        :الأحجام هي واحد ، اثنان، ثلاثة، أربعة، وستة. أكبر حجم لاقواس الدرجة الثالثة الذي تم ايجاده هو
                                                               ƙ=28  

 
1. Introduction 

     Finite field theory goes back to the 17th and 18th centuries. Many mathematicians 

contributed to its development. For instance, Pierre de Fermat (1601-1665) and Leonard 

Euler (1707-1783) when they presented the structural theory of particular finite fields. In 

contrast, the theory of finite fields began in (1811-1832) when the French scientist Everest 

gave the necessary and sufficient conditions for a polynomial to have an algebraic solution. 

Nowadays, finite field theory has become very important in applied mathematics, engineering 

science, and computer science due to its many applications in these fields [1], [2]. The history 

of projective geometry goes back to the Renaissance times in Italy through the advanced 

techniques used by painters and artists at that time, as they represented reality in scenes. 

These techniques were a method of interpreting ideas that were slowly formed, which later 

became a new branch of geometry called projective geometry. In the nineteenth century, 

projective geometry became an important branch of mathematics and one of the most 

important major achievements. For instance, non-Euclidean mathematics. For over fifty 

years, projective geometry has been set in a new direction by its communications. Describing 

classical geometric structure in terms of properties may seem at first glance, in-depth, but it 

has done a lot for finite geometry [3], [4]. Classical projective geometry structures are very 

suitable for modern communications. In particular, projective geometry is applied to theories 

of coding and cryptography [5], [6]. Projective geometry works with the properties of fixed 

shapes in projections. This appears clearly in the most important theory in projective 

geometry, which is Babus’ theory. This theory gave great attention to points and lines and the 

relationship of incidence between points and lines. This incident structure is the study of 

geometry structures that satisfy certain geometric axioms inspired by the properties of 

occurrence of points, lines, planes, etc [7], [8], and [9].The point 𝑃 in PG (2,𝑞) represents  in 

three coordinates of the forms {𝑃𝑜 , 𝑃1, 1}, {𝑃0, 1, 0}, and {1,0,0 }, the number of these forms is 
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𝑞2, 𝑞, and 1 respectively. In addition, each line Ɫ in PG (2,𝑞) satisfies the equation α𝑋1 +
𝛽𝑋2 + 𝛾𝑋3 = 0, when α,β,γ ∈ 𝐹𝑞 not all zero. So, the structure of the projective plane is 

obtained by the incidence relation of points and lines and it is satisfied if the following 

statements hold. 

1- For any two distinct points, there is one line containing them. 

2- For any two lines, there is only one point of intersection between them. 

3- For any four points, there is a quadrangle containing them. 

    So that the above structure pays more attention to studying one of the most fundamental 

and important problems in projective geometry which is the problem of establishing a large 

complete arc. In this problem, the subjects of arcs and complete arcs have seen considerable 

improvements in PG (2,𝑞). These sets of arcs of PG (2,𝑞) are constructed over the Galois 

field 𝐹𝑞 that is the field of a finite number of elements, where every element in this field 

satisfies the form 𝑦𝑞 − 𝑦 = 0. 

and when 𝑞 is a prime number, then  𝐹𝑝 = {0,1, … , 𝑝 − 1}. The number of points and lines in 

any geometric plane, PG (2,𝑞), is 𝑞2 + 𝑞 + 1 and each line has 𝑞 + 1 points and each point 

lies on 𝑞 + 1 lines [10-13]. Thus, the projective plane, PG (2,17) has 307 points and lines, 

where each line has 18 points. Also, there are 18 lines intersecting with a point. In addition, 

an arc, ƙ in the projective space is defined to be the set of zero dimensional subspaces which 

not contain three of these spaces on the same line. This set is named complete when ƙ does 

not belongs to another ƙ +1 set of arc [14], [15], and [16]. Also, one dimensional subspace Ɫ 

is j-secant of ƙ when the condition | Ɫ ∩ ƙ | = j holds. This study our aims to establish the sets 

of (ƙ;3)-Arcs in PG (2, 𝑞) for 𝑞=17, to establish the nonequivalent sets of (ƙ;3)-Arcs in PG 

(2,17), and to discuss the algebraic characteristics of nonequivalent (ƙ;3)-Arcs throughout 

calculate the stabilizer groups of the number of nonequivalent (ƙ;3)-Arcs, and then to 

introduce the stabilizer properties of these nonequivalent arcs. Some of these stabilizers are 

cyclic groups, where this group is the group in which each element is a power of fixed 

element that satisfies e = 𝑟𝑛,  [17]. 

 

2. Materials and methods 

     This section presents some materials for this work [18]. Also, the method used to 

construct the nonequivalent degree three arcs with the corresponding secants is the method 

given in [19]. The programming language used to implement the results in Section 3 is Gap 

[20] 

 

Corollary 2.1: An arc of degree d has an upper bound as 𝑚𝑑(2, 𝑞) ≤ (𝑑 − 1)𝑞 + 𝑑 . 

Theorem 2.2: Let K be a maximal (ƙ; 𝑑)-arc in PG (2,q), then one of the bellow statements 

satisfies: 

1. 𝑑 = 𝑞 + 1 and 𝐾 = 𝑃𝐺 (2, 𝑞). 

2. 𝑑 =  𝑞 𝑎𝑛𝑑 𝐾 = 𝐴𝐺(2, 𝑞) = 𝑃𝐺 (2, 𝑞)\  Ɫ for some line Ɫ. 

3. 2 ≤ 𝑑 < 𝑞, 𝑑|𝑞, and the dual of the external lines of K construct a (
(𝑞+1−𝑑)𝑞

𝑑
 , 

𝑞

𝑑
)-arc is 

maximal. 

Corollary 2.3: A (ƙ; 𝑑)-arc is a maximal if and only if each line in 𝑃𝐺(2, 𝑞) is either an 𝑑-

secant or an external line. 

 

Corollary 2.4: If 2 < 𝑑 < q and 𝑑 does not divide q, then 𝑚𝑑(2, 𝑞)  ≤  (𝑑 − 1)𝑞 +  𝑑 − 2. 

In addition, Barlotti [21] in 1956 indicated that 𝑚𝑑(2, 𝑞)≤ {
(𝑑 − 1)𝑞 + 𝑑  𝑓𝑜𝑟 (𝑑, 𝑞) = 1
(𝑑 − 1)𝑞 + 𝑑 − 2 𝑓𝑜𝑟 𝑑 > 2 

}, 

but Lunelli and Sce [22] in 1964 improved the bounds as below: 
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𝑚𝑑(2, 𝑞)≤ {
(𝑑 − 1)𝑞 + 𝑑 − 3  𝑓𝑜𝑟 4 ≤ 𝑑 ≤ 𝑞
(𝑑 − 1)𝑞 + 𝑑 − 4  𝑓𝑜𝑟 9 ≤ 𝑑 ≤ 𝑞 

}. 

 

3. Results and discussion 

3.1 (4;3)-Arcs 

The construction process of (4;3)-Arcs illustrated that there are 289 sets of (4; 3)-Arcs, 𝐴1 .  

While the sets of nonequivalent arcs are two each has a stabilizer group of the form 𝑍16 × 𝑆3 . 

 

Table 1: Nonequivalent secant distributions of (4; 3)-Arcs. 

       𝑨1
𝒊=1,2

                                            {𝜽3, 𝜽2, 𝜽1, 𝜽0} 

                  𝑨1                                                                
1  {1, 3, 62, 241} 

{1, 3, 63, 240}                   𝑨1
2 

 

Remark 3.1.1: 

     The stabilizer groups of the nonequivalent (4; 3)-Arcs divide the associated arcs into two 

orbits as follows: 

 𝑖-  Orbit (𝐴1
1) = {18, 304, 196}, {158}. 

𝑖𝑖- Orbit (𝐴1
2) = {18, 304, 196}, {24}. 

 

3.2 (5;3)-Arcs 

     The construction sets of (5;3)-Arcs, in this process, showed that there are 575 sets of 

(5; 3)-Arcs,  𝐴2 . While there are six nonequivalent sets of (5; 3)-Arcs. Also, the stabilizer 

groups of these arcs are  𝑍2 and  𝐷8 . 

 

Table 2: Nonequivalent secant distributions of (5; 3)-Arcs. 

        𝑨2
𝒊=1,..,6

                                       {𝜽3, 𝜽2, 𝜽1, 𝜽0} 

𝐴2
1  {1,7,73,226} 

𝐴2
2 {1, 6, 73, 227} 

𝐴2
3 {1, 6, 74, 226} 

𝐴2
4 {1, 7, 72, 227} 

𝐴2
5 {2, 4, 75, 226} 

𝐴2
6 {2, 4, 76, 225} 

 

Remark 3.2.1: 

     The stabilizer groups of the nonequivalent (5; 3)-Arcs split the associated arcs into a 

number of orbits as follows: 

𝑖- The (ƙ; 3)-Arcs  𝐴2
1 , 𝐴2

2,  𝐴2
3, 𝐴2

4,  each has a group  𝑍2 that divides the associated arc into 

two orbits of sizes 2 and 1. 

𝑖𝑖- The (ƙ; 3)-Arcs  𝐴2
5, 𝐴2

6, each has a dihedral group of order eight. This group partitions the 

associated arcs in two orbits of sizes 4 and 1.  

 

3.3 (6;3)-Arcs 

     The constructed sets of (6; 3)-Arcs, 𝐴3, are 1685. Among these arcs, there are sixteen 

nonequivalent (6; 3)-Arcs. The sixteen arcs have four types of stabilizer groups which are 

 𝐼, 𝑍2,  𝑍3,  and  𝑆4 . 

 

 

 

 



Hamed and Hirschfeld                                 Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 340-352  

 

344 

 

Table 3: Nonequivalent secant distributions of (6; 3)-Arcs. 

        𝑨3
𝒊=1,..,16

                                      {𝜽3, 𝜽2, 𝜽1, 𝜽0} 

𝐴3
1  {1, 9, 85, 212} 

𝐴3
2 {1, 10, 84, 212} 

𝐴3
3 {1, 11, 81, 214} 

𝐴3
4 {1, 11, 82, 213} 

𝐴3
5 {1, 12, 80, 214} 

𝐴3
6 {1, 12, 81, 213} 

𝐴3
7 {2, 8, 84, 213} 

𝐴3
8 {2, 8, 85, 212} 

𝐴3
9 {2, 9, 83, 213} 

𝐴3
10 {2, 9, 84, 212} 

𝐴3
11 {3, 5, 87, 212} 

𝐴3
12 {3, 5, 88, 211} 

𝐴3
13 {3, 6, 86, 212} 

𝐴3
14 {3, 6, 87, 211} 

𝐴3
15 {4, 3, 89, 211} 

𝐴3
16 {4, 3, 90, 210} 

 

Remark 3.3.1: 

     The stabilizers of the nonequivalent (6; 3)-Arcs divide the associated arcs into orbits as 

follows: 

𝑖- The (ƙ; 3)-Arcs  𝐴3
1 ,  𝐴3

3, 𝐴3
4, 𝐴3

5, 𝐴3
6,  𝐴3

7,  𝐴3
8,  𝐴3

9 ,  𝐴3
10 have the identity group that 

partitions the corresponding arc in a number of orbits of size 1. 

𝑖𝑖- The (ƙ; 3)-Arc 𝐴3
2 has the cyclic group of order two. This group splits the associated arc 

into five orbits of sizes 1, 1, 2, 1, 1.  

𝑖𝑖𝑖- The (ƙ; 3)-Arcs 𝐴3 ,   
11 𝐴3 ,   

12 𝐴3 ,   
13 𝐴3 ,   

14  each has the cyclic group of order three. This group 

divides the corresponding arc in two orbits of sizes 3, 3. 

𝑣- The (ƙ; 3)-Arcs 𝐴3 ,
15𝐴3 ,

16 each has a group 𝑆4 . This group permutes the corresponding arc in 

one orbit of size 6. 

 

3.4 (7;3)-Arcs 

     In this process, there are 4279 (7; 3)-Arcs, 𝐴4 and there are thirty two nonequivalent 

(7; 3)-Arcs. In addition, the 32 (7; 3)-Arcs have four types of stabilizer groups, which are 

 𝐼, 𝑍2,  𝑍4, and  𝑆4 .  
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Table 4: Nonequivalent secant distributions of (7; 3)-Arcs. 

                           𝑨4
𝒊=1,..,32

                    {𝜽3, 𝜽2, 𝜽1, 𝜽0} 

𝐴4
1  {1, 18, 87, 201} 

𝐴4
2 {1, 13, 95, 198} 

𝐴4
3 {1, 15, 91, 200} 

𝐴4
4 {1, 16, 90, 200} 

𝐴4
5 {1, 17, 87, 202} 

𝐴4
6 {1, 17, 88, 201} 

𝐴4
7 {1, 18, 86, 202} 

𝐴4
8 {2, 12, 94, 199} 

𝐴4
9 {2, 12, 95, 198} 

𝐴4
10 {2, 13, 93, 199} 

𝐴4
11 {2, 14, 90, 201} 

𝐴4
12 {2, 14, 91, 200} 

𝐴4
13 {2, 15, 89, 201} 

𝐴4
14 {2, 15, 90, 200} 

𝐴4
15 {3, 9, 97, 198} 

𝐴4
16 {3, 10, 96, 198} 

𝐴4
17 {3, 11, 93, 200} 

𝐴4
18 {3, 11, 94, 199} 

𝐴4
19 {3, 12, 92, 200} 

𝐴4
20 {3, 12, 93, 199} 

𝐴4
21 {4, 6, 100, 197} 

𝐴4
22 {4, 7, 99, 197} 

𝐴4
23 { 4, 8, 96, 199} 

𝐴4
24 {4, 8, 97, 198} 

𝐴4
25 {4, 9, 95, 199} 

𝐴4
26 {4, 9, 96, 198} 

𝐴4
27 {5, 5, 99, 198} 

𝐴4
28 {5, 5, 100, 197} 

𝐴4
29 {5, 6, 98, 198} 

𝐴4
30 {5, 6, 99, 197} 

𝐴4
31 {6, 3, 101, 197} 

𝐴4
32 {6, 3, 102, 196} 

 

Remark 3.4.1: 

     The stabiliser groups of the nonequivalent (7; 3)-Arcs split these arcs into a number of 

orbits as follows: 

𝑖-The (ƙ; 3)-Arcs 𝐴4
1 , … ,  𝐴4

20, 𝐴4
23, … , 𝐴4

26   have the identity group that partitions the 

corresponding arc in a number of orbits of size 1. 

𝑖𝑖- The (ƙ; 3)-Arcs 𝐴4
21, 𝐴4

22, 𝐴4
27, 𝐴4

28,  𝐴4
30have the cyclic group of order two. This group 

divides the associated arc into orbits of sizes 1 and 2.  

𝑖𝑖𝑖-The (ƙ; 3)-Arcs 𝐴4
29 has the cyclic group of order four. The group  𝑍4divides the 

corresponding arc into three orbits of sizes 4, 2, 1.  

𝑣- The (ƙ; 3)-Arcs 𝐴4  
31 , 𝐴4   

32  each has a group 𝑆4 . This group divides the corresponding arc 

into two orbits of size 3 and 4. 
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3.5 (8;3)-Arcs 

     The sets of (8; 3)-Arcs, 𝐴5  are 8135 where there are 49 nonequivalent (8; 3)-Arcs. Also, 

there are three types of stabilizer groups, which are  𝐼, 𝑍2,  𝑍4. 

Table 5: Nonequivalent secant distributions of (8; 3)-Arcs. 

                           𝑨5
𝒊=1,..,49

                    {𝜽3, 𝜽2, 𝜽1, 𝜽0} 

𝐴5
1  {2, 22, 94, 189} 

𝐴5
2 {1, 20, 99, 187} 

𝐴5
3 {1, 22, 95, 189} 

𝐴5
4 {1, 23, 94, 189} 

𝐴5
5 {1, 24, 91, 191} 

𝐴5
6 {1, 24, 92, 190} 

𝐴5
7 {1, 25, 90, 191} 

𝐴5
8 {1, 25, 91, 190} 

𝐴5
9 {2, 15, 106, 184} 

𝐴5
10 {2, 17, 102, 186} 

𝐴5
11 {2, 19, 98, 188} 

𝐴5
12 {2, 19, 99, 187} 

𝐴5
13 {2, 20, 97, 188} 

𝐴5
14 {2, 21, 94, 190} 

𝐴5
15 {2, 21, 95, 189} 

𝐴5
16 {2, 22, 93, 190} 

𝐴5
17 {3, 14, 105, 185} 

𝐴5
18 {3, 16, 101, 187} 

𝐴5
19 {3, 16, 102, 186} 

𝐴5
20 {3, 17, 100, 187} 

𝐴5
21 {3, 18, 97, 189} 

𝐴5
22 {3, 18, 98, 188} 

𝐴5
23 {3, 19, 96, 189} 

𝐴5
24 {3, 19, 97, 188} 

𝐴5
25 {4, 11, 108, 184} 

𝐴5
26 {4, 13, 104, 186} 

𝐴5
27 {4, 13, 105, 185} 

𝐴5
28 {4, 14, 103, 186} 

𝐴5
29 {4, 15, 100, 188} 

𝐴5
30 {4, 15, 101, 187} 

𝐴5
31 {4, 16, 99, 188} 

𝐴5
32 {4, 16, 100, 187} 

𝐴5
33 {5, 10, 107, 185} 

𝐴5
34 {5, 10, 108, 184} 

𝐴5
35 {5, 11, 106, 185} 

𝐴5
36 {5, 12, 103, 187} 

𝐴5
37 {5, 12, 104, 186} 

𝐴5
38 {5, 13, 102, 187} 

𝐴5
39 {5, 13, 103, 186} 

𝐴5
40 {6, 7, 110, 184} 
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𝐴5
41 {6, 8, 109, 184} 

𝐴5
42 {6, 9, 106, 186} 

𝐴5
43 {6, 9, 107, 185} 

𝐴5
44 {6, 10, 105, 186} 

𝐴5
45 {6, 10, 106, 185} 

𝐴5
46 {7, 6, 109, 185} 

𝐴5
47 {7, 6, 110, 184} 

𝐴5
48 {7, 7, 108, 185} 

𝐴5
49 {7, 7, 109, 184} 

 

Remark 3.5.1:  

     The stabilizer groups of the nonequivalent (8; 3)-Arcs divide the associated arcs into a 

number of orbits as below: 

𝑖- The (ƙ; 3)-Arcs 𝐴5
1 , … , 𝐴5

39, 𝐴5
41, … , 𝐴5

45  have the identity group that splits the associated arc 

in a number of orbits of size 1. 

𝑖𝑖- The (ƙ; 3)-Arcs 𝐴5
40,  𝐴5

46,   𝐴5
47, 𝐴5

49have the cyclic group of order two that  divide the 

associated arc into orbits of sizes 1 and 2.  

𝑖𝑖𝑖- The (ƙ; 3)-Arcs 𝐴4
48 has the cyclic group of order four. This group partitions the 

associated arc in four orbits of sizes 4, 2, 1, 1. 

 

3.6 (9;3)-Arcs 

The constructed sets of (9; 3)-Arcs, 𝐴6  are 11921. Here, The number of  nonequivalent 

(9; 3)-Arcs. is 71. These 71 arcs have the stabilizer groups  𝐼, 𝑆3,  𝑍2 × 𝑍2 . 

 

Table 6: Nonequivalent secant distributions of (9; 3)-Arcs. 

                           𝑨6
𝒊=1,..,71

                    {𝜽3, 𝜽2, 𝜽1, 𝜽0} 

𝐴6
1  {3, 27, 99, 178} 

𝐴6
2 {1, 28, 101, 177} 

𝐴6
3 {1, 30, 97, 179} 

𝐴6
4 {1, 31, 96, 179} 

𝐴6
5 {1, 32, 93, 181} 

𝐴6
6 {1, 32, 94, 180} 

𝐴6
7 {1, 33, 92, 181} 

𝐴6
8 {1, 33, 93, 180} 

𝐴6
9 { 2, 23, 108, 174} 

𝐴6
10 {2, 25, 104, 176} 

𝐴6
11 {2, 27, 100, 178} 

𝐴6
12 {2, 27, 101, 177} 

𝐴6
13 {2, 28, 99, 178} 

𝐴6
14 {2, 29, 96, 180} 

𝐴6
15 {2, 29, 97, 179} 

𝐴6
16 {2, 30, 95, 180} 

𝐴6
17 {2, 30, 96, 179} 

𝐴6
18 {3, 20, 111, 173} 

𝐴6
19 {3, 22, 107, 175} 

𝐴6
20 {3, 24, 103, 177} 

𝐴6
21 {3, 24, 104, 176} 

𝐴6
22 {3, 25, 102, 177} 

𝐴6
23 {3, 26, 99, 179} 
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𝐴6
24 {3, 26, 100, 178} 

𝐴6
25 {3, 27, 98, 179} 

𝐴6
26 {4, 17, 114, 172} 

𝐴6
27 {4, 19, 110, 174} 

𝐴6
28 {4, 21, 106, 176} 

𝐴6
29 {4, 21, 107, 175} 

𝐴6
30 {4, 22, 105, 176} 

𝐴6
31 {4, 23, 102, 178} 

𝐴6
32 {4, 23, 103, 177} 

𝐴6
33 {4, 24, 101, 178} 

𝐴6
34 {4, 24, 102, 177} 

𝐴6
35 {5, 14, 117, 171} 

𝐴6
36 {5, 16, 113, 173} 

𝐴6
37 {5, 18, 109, 175} 

𝐴6
38 {5, 18, 110, 174} 

𝐴6
39 {5, 19, 108, 175} 

𝐴6
40 {5, 20, 105, 177} 

𝐴6
41 {5, 20, 106, 176} 

𝐴6
42 {5, 21, 104, 177} 

𝐴6
43 {5, 21, 105, 176} 

𝐴6
44 {6, 13, 116, 172} 

𝐴6
45 {6, 15, 112, 174} 

𝐴6
46 {6, 15, 113, 173} 

𝐴6
47 {6, 16, 111, 174} 

𝐴6
48 {6, 17, 108, 176} 

𝐴6
49 {6, 17, 109, 175} 

𝐴6
50 {6, 18, 107, 176} 

𝐴6
51 {6, 18, 108, 175} 

𝐴6
52 {7, 10, 119, 171} 

𝐴6
53 {7, 12, 115, 173} 

𝐴6
54 {7, 12, 116, 172} 

𝐴6
55 {7, 13, 114, 173} 

𝐴6
56 {7, 14, 111, 175} 

𝐴6
57 {7, 14, 112, 174} 

𝐴6
58 {7, 15, 110, 175} 

𝐴6
59 {7, 15, 111, 174} 

𝐴6
60 {8, 9, 118, 172} 

𝐴6
61 {8, 9, 119, 171} 

𝐴6
62 {8, 10, 117, 172} 

𝐴6
63 {8, 11, 114, 174} 

𝐴6
64 {8, 11, 115, 173} 

𝐴6
65 {8, 12, 113, 174} 

𝐴6
66 {8, 12, 114, 173} 

𝐴6
67 { 9, 7, 120, 171} 

𝐴6
68 { 9, 8, 117, 173} 

𝐴6
69 { 9, 8, 118, 172} 

𝐴6
70 { 9, 9, 116, 173} 

𝐴6
71 {9, 9, 117, 172} 
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Remark 3.6.1: 

     The stabilizer groups of the nonequivalent (9; 3)-Arcs split the associated arcs into a 

number of orbits as follows: 

𝑖- The (ƙ; 3)-Arcs 𝐴6
1 , … , 𝐴6

66, 𝐴6
68 , 𝐴6

70,  𝐴6
71 have the identity group. This group partitions 

the associated arc in orbits of size 1. 

𝑖𝑖- The (ƙ; 3)-Arc  𝐴6
67 has the group   𝑆3 that split this arc into two orbits of sizes 6 and 3.  

𝑖𝑖𝑖- The (ƙ; 3)-Arcs 𝐴6
69 has the cyclic group  𝑍2 × 𝑍2 . This group partitions the associated 

arc into four orbits of sizes 1, 2, 4, 2. 

 

Note 3.6.2:  

Table 7 introduces the information of the sets of (ƙ; 3)-Arcs and the nonequivalent sets of 

(ƙ; 3)-Arcs,𝑨𝑚
𝒊=1,..,𝑛

, 𝑚=7,…,25 with their groups. 

 

Table 7: Number of (ƙ; 3)-Arcs for ƙ = 10,…,28. 

(ƙ; 3)-Arcs Number of (ƙ; 3)-Arcs 𝑨𝑚
𝒊=1,..,𝑛

, 𝑚=7,…,25 
Stabilizers of nonequivalent               

(ƙ; 3)-Arcs 

(10; 3)-Arcs 16169 𝑨7
𝒊=1,..,97

 𝐼 = 93,  𝑍2= 4 

(11; 3)-Arcs 20268   𝑨8
𝒊=1,..,122

 𝐼 = 120,  𝑍2= 2 

(12; 3)-Arcs 23440   𝑨9
𝒊=1,..,149

 𝐼 = 145,  𝑍2= 2,  𝑆3= 2 

(13; 3)-Arcs 25675   𝑨10
𝒊=1,..,170

 𝐼 = 169,  𝑍2= 1 

(14; 3)-Arcs 25649   𝑨11
𝒊=1,..,192

 𝐼 = 191,  𝑍2= 1 

(15; 3)-Arcs 24892   𝑨12
𝒊=1,..,205

 𝐼 = 205 

(16; 3)-Arcs 22055   𝑨13
𝒊=1,..,220

 𝐼 = 220 

(17; 3)-Arcs 18842   𝑨14
𝒊=1,..,230

 𝐼 = 230 

(18; 3)-Arcs 14604   𝑨15
𝒊=1,..,233

 𝐼 = 233 

(19; 3)-Arcs 10640   𝑨16
𝒊=1,..,234

 𝐼 = 234 

(20; 3)-Arcs 7076   𝑨17
𝒊=1,..,229

 𝐼 = 229 

(21; 3)-Arcs 4447   𝑨18
𝒊=1,..,218

 𝐼 = 218 

(22; 3)-Arcs 2419   𝑨19
𝒊=1,..,190

 𝐼 = 190 

(23; 3)-Arcs 1143   𝑨20
𝒊=1,..,160

 𝐼 = 160 

(24; 3)-Arcs 401   𝑨21
𝒊=1,..,101

 𝐼 = 101 

(25; 3)-Arcs 76   𝑨22
𝒊=1,..,34

 𝐼 = 34 

(26; 3)-Arcs 7   𝑨23
𝒊=1,..,4

 𝐼 = 4 

(27; 3)-Arcs 5   𝑨24
𝒊=1,..,3

 𝐼 = 3 

(28; 3)-Arcs 1   𝑨25
𝒊=1 𝑍3 

 

     The previous tables show that the major result that has been achieved in this study is a 

large complete (ƙ;3)-Arc. This complete arc is of size ƙ=28. The coordinates of complete 

(28;3)-Arc are given below. 

 

ƙ=  { 5, 8, 1 },{ 2, 0, 1 },{ 0, 6, 1 },{ 5, 7, 1 },{ 9, 1, 0 },{ 0, 9, 1 },{ 9, 8, 1 },{ 16, 10, 1 },{ 

2, 1, 1 },{ 16, 5, 1 },{ 5, 5, 1 },{ 9, 0, 1 },{ 12, 16, 1 },{ 3, 0, 1 },{ 1, 2, 1 },{ 7, 1, 1 },{ 1, 7, 

1 },{ 12, 5, 1 },{ 1, 1, 1 },{ 7, 16, 1 },{ 15, 16, 1 },{ 2, 1, 0 },{ 0, 2, 1 },{ 9, 9, 1 },{ 7, 10, 1 

},{ 15, 7, 1 },{ 16, 2, 1 },{ 6, 1, 0 }. 
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This complete (ƙ;3)-Arc has the group 𝑍3 that partitions this arc in ten orbits of sizes 

3,3,3,3,3,3,3,3,3,1, respectively. Also, the associated secant distribution of complete (28;3)-

Arc is  𝜃3=108, 𝜃2=54, 𝜃1=72, 𝜃0=73. 

 

Table 8: Data of  Nonequivelant (ƙ; 3)-Arcs for for ƙ = 4,…,28. 

(ƙ;3)-Arc   𝑫𝑖        𝒔𝒈: 𝒏 

(4:3)-Arcs 2  𝑍16 × 𝑆3 :2 

(5:3)-Arcs 6  𝑍2:4,  𝐷8 :2 

(6;3)-Arcs 16 𝐼 : 9,  𝑍2:1,  𝑍3:4, 𝑆4 :2 

(7;3)-Arcs 32 𝐼 :24 ,  𝑍2:5,  𝑍4:1, 𝑆4 :2 

(8;3)-Arcs 49 𝐼 ∶ 44,  𝑍2: 4, 𝑍4:1 

(9;3)-Arcs 71 𝐼 : 69, 𝑆3 :1,  𝑍2 ×  𝑍2:1 

(10; 3)-Arcs 97 𝐼 : 93,  𝑍2: 4 

(11; 3)-Arcs 122 𝐼 :120,  𝑍2: 2 

(12; 3)-Arcs 149 𝐼 : 145,  𝑍2: 2,  𝑆3:2 

(13; 3)-Arcs 170 𝐼 : 169,  𝑍2: 1 

(14; 3)-Arcs 192 𝐼 : 191,  𝑍2: 1 

(15; 3)-Arcs 205 𝐼 :205 

(16; 3)-Arcs 220 𝐼 :220 

(17; 3)-Arcs 230 𝐼 :230 

(18; 3)-Arcs 233 𝐼 :233 

(19; 3)-Arcs 234 𝐼 : 234 

(20; 3)-Arcs 229 𝐼 : 229 

(21; 3)-Arcs 218 𝐼 : 218 

(22; 3)-Arcs 190 𝐼 : 190 

(23; 3)-Arcs 160 𝐼 : 160 

(24; 3)-Arcs 101 𝐼 : 101 

(25; 3)-Arcs 34 𝐼 : 34 

(26; 3)-Arcs 4 𝐼 =: 4 

(27; 3)-Arcs 3 𝐼 : 3 

(28; 3)-Arcs 1  𝑍3 

      

The previous calculation constructed different sizes of (ƙ;3)-Arc for ƙ = 4, … ,28. 

Therefore, the bellow theorem is stated. 
 

Theorem 3.6.3: 

There is at least a complete (28, 3)-Arc in PG (2,17). 
 

4. Conclusions 

     This study introduces a certain calculation method to compute the sets of (ƙ; 3)-Arcs in 

𝑃𝐺(2,17) throughout establishing a maximum size of arc, and then establish the sets of 

nonequivalent (ƙ; 3)-Arcs in 𝑃𝐺(2,17). Then, discuss the most essential algebraic 

characteristics of each nonequivalent arc in terms of the secant distributions, the stabilizer 

groups, and the orbits. In this paper, the method used to classify these arcs is relies on the 

number of nonequivalent secants of arcs. Table 8 summarized all related details of 

nonequivalent  (ƙ; 3)-Arcs in 𝑃𝐺(2, 17), where the symbol  𝐷𝑖  indicates the number of 
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nonequivalent (ƙ; 3)-Arcs, the symbol 𝑠𝑔: 𝑛 indicates the form of stabilizer. Here,  𝑛 is the 

number of group. 
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