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Abstract

In this paper, the algebraic characteristics of nonequivalent arcs of degree three
in PG(2,17) are discussed. An approach to construct these sets is introduced. The
approach focuses on obtaining a large size of complete degree three arc in
PG(2,17). This work starts by fixing a set, X= {P;, P,, P;} that have three points lie
on the same line L., of the projective space of order seventeen, PG(2,17). This set is
a (3;3)-Arc. Then, the process is continued to establish the sets of (k;3)-Arcs by
adding the points of the projective plane, PG(2,17) that satisfied the condition X N
lines t.;\ L, =3, where 1.; € PG(2,17). So, the sets of (4;3)-Arcs, (5;3)-Arcs, (6;3)-
Arcs, (7;3)-Arcs, (8;3)-Arcs, (9;3)-Arcs, (10;3)-Arcs, (11;3)-Arcs, (12;3)-Arcs,
(13;3)-arcs, (14;3)-Arcs, (15;3)-Arcs, (16;3)-Arcs, (17;3)-Arcs, (18;3)-Arcs, (19;3)-
Arcs, (20;3)-Arcs, (21;3)-Arcs, (22;3)-Arcs, (23;3)-Arcs, (24;3)-Arcs, (25;3)-Arcs,
(26;3)-Arcs, (27;3)-Arcs, and (28;3)-Arcs are obtained. So that this approach gives
the number of (K;3)-Arcs in each construction for kK = 4,5,6,7,8,...28, and then the
number of nonequivalent (k;3)-Arcs for kK = 4,5,6,7,8,...,28 is given as well. This
number is established according to the number of nonequivalent secant distributions
of degree three arcs, (K;3)-Arcs. Thus, the spectrum of nonequivalent arcs in each
process is 2, 6, 16, 32,49, 71, 97, 122, 149, 170, 192, 205, 220, 230, 233, 234, 229,
218, 190, 160, 101, 34, 4, 3, 1, respectively. Also, the associated stabilizer group for
each constructed nonequivalent arc is computed. In addition, the action of each
stabilizer group on the corresponding nonequivalent arc is discussed. As a result of
these actions, there are different sizes of orbits. These sizes are one, two, three, four,
and six. The largest size of degree three arc established in this process is kK = 28.

Keywords: (K; 3)-Arc, Complete arc, Nonequivalent secants, PG(2,17), Group.
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1. Introduction

Finite field theory goes back to the 17th and 18th centuries. Many mathematicians
contributed to its development. For instance, Pierre de Fermat (1601-1665) and Leonard
Euler (1707-1783) when they presented the structural theory of particular finite fields. In
contrast, the theory of finite fields began in (1811-1832) when the French scientist Everest
gave the necessary and sufficient conditions for a polynomial to have an algebraic solution.
Nowadays, finite field theory has become very important in applied mathematics, engineering
science, and computer science due to its many applications in these fields [1], [2]. The history
of projective geometry goes back to the Renaissance times in Italy through the advanced
techniques used by painters and artists at that time, as they represented reality in scenes.
These techniques were a method of interpreting ideas that were slowly formed, which later
became a new branch of geometry called projective geometry. In the nineteenth century,
projective geometry became an important branch of mathematics and one of the most
important major achievements. For instance, non-Euclidean mathematics. For over fifty
years, projective geometry has been set in a new direction by its communications. Describing
classical geometric structure in terms of properties may seem at first glance, in-depth, but it
has done a lot for finite geometry [3], [4]. Classical projective geometry structures are very
suitable for modern communications. In particular, projective geometry is applied to theories
of coding and cryptography [5], [6]. Projective geometry works with the properties of fixed
shapes in projections. This appears clearly in the most important theory in projective
geometry, which is Babus’ theory. This theory gave great attention to points and lines and the
relationship of incidence between points and lines. This incident structure is the study of
geometry structures that satisfy certain geometric axioms inspired by the properties of
occurrence of points, lines, planes, etc [7], [8], and [9].The point P in PG (2,q) represents in
three coordinates of the forms {P,, P;, 1}, {P,, 1,0}, and {1,0,0 }, the number of these forms is
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q?,q, and 1 respectively. In addition, each line L. in PG (2,q) satisfies the equation aX; +
X, +vyX; =0, when a,B,y € F; not all zero. So, the structure of the projective plane is
obtained by the incidence relation of points and lines and it is satisfied if the following
statements hold.

1- For any two distinct points, there is one line containing them.

2- For any two lines, there is only one point of intersection between them.

3- For any four points, there is a quadrangle containing them.

So that the above structure pays more attention to studying one of the most fundamental
and important problems in projective geometry which is the problem of establishing a large
complete arc. In this problem, the subjects of arcs and complete arcs have seen considerable
improvements in PG (2,q). These sets of arcs of PG (2,q) are constructed over the Galois
field F, that is the field of a finite number of elements, where every element in this field
satisfies the form y? —y = 0.
and when q is a prime number, then F, = {0,1, ...,p — 1}. The number of points and lines in
any geometric plane, PG (2,q), is g> + q + 1 and each line has g + 1 points and each point
lies on g + 1 lines [10-13]. Thus, the projective plane, PG (2,17) has 307 points and lines,
where each line has 18 points. Also, there are 18 lines intersecting with a point. In addition,
an arc, K in the projective space is defined to be the set of zero dimensional subspaces which
not contain three of these spaces on the same line. This set is named complete when k does
not belongs to another K +1 set of arc [14], [15], and [16]. Also, one dimensional subspace £
is j-secant of K when the condition | £ N kK | =j holds. This study our aims to establish the sets
of (k;3)-Arcs in PG (2,q) for g=17, to establish the nonequivalent sets of (K;3)-Arcs in PG
(2,17), and to discuss the algebraic characteristics of nonequivalent (k;3)-Arcs throughout
calculate the stabilizer groups of the number of nonequivalent (K;3)-Arcs, and then to
introduce the stabilizer properties of these nonequivalent arcs. Some of these stabilizers are
cyclic groups, where this group is the group in which each element is a power of fixed
clement that satisfies e = r™, [17].

2. Materials and methods

This section presents some materials for this work [18]. Also, the method used to
construct the nonequivalent degree three arcs with the corresponding secants is the method
given in [19]. The programming language used to implement the results in Section 3 is Gap
[20]

Corollary 2.1: An arc of degree d has an upper bound as m;(2,q) < (d —1)q +d .
Theorem 2.2: Let K be a maximal (K; d)-arc in PG (2,q), then one of the bellow statements
satisfies:

l.d=q+1and K = PG (2,q).

2.d = qand K = AG(2,q) = PG (2,q)\ £ for some line £.

3. 2<d <q,d|q, and the dual of the external lines of K construct a ((qﬂ—_d)q

, i)-arc is
d d
maximal.
Corollary 2.3: A (k; d)-arc is a maximal if and only if each line in PG (2, q) is either an d-

secant or an external line.

Corollary 2.4: If 2 <d < q and d does not divide q, then m;(2,q) < (d—1)q + d — 2.

(d—1)qg+d for(d,q) =1
(d—l)q+d—2f0rd>2}’
but Lunelli and Sce [22] in 1964 improved the bounds as below:

In addition, Barlotti [21] in 1956 indicated that m;(2, q)< {
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(d-—1)qg+d-3 for4SdSq}
<
md(z'q)_{(d—l)q+d—4 for9 <d<gq)

3. Results and discussion

3.1 (4;3)-Arcs

The construction process of (4;3)-Arcs illustrated that there are 289 sets of (4; 3)-Arcs, A; .
While the sets of nonequivalent arcs are two each has a stabilizer group of the form Z;4 X S5.

Table 1: Nonequivalent secant distributions of (4; 3)-Arcs.
AT {65,0,,01,0,)

Ai {1,3, 62,241}
A2 {1, 3, 63, 240}

Remark 3.1.1:
The stabilizer groups of the nonequivalent (4; 3)-Arcs divide the associated arcs into two
orbits as follows:
i- Orbit (A})= {18,304, 196}, {158}.
ii- Orbit (A%) = {18, 304, 196}, {24}.

3.2 (5;3)-Arcs

The construction sets of (5;3)-Arcs, in this process, showed that there are 575 sets of
(5;3)-Arcs, A, . While there are six nonequivalent sets of (5; 3)-Arcs. Also, the stabilizer
groups of these arcs are Z, and Dg .

Table 2: Nonequivalent secant distributions of (5; 3)-Arcs.

Ai=15 {65,6,,60,,0,}

e {1,7,73,226}
22 {1,6,73,227}
4 {1, 6,74,226}
41 {1,7,72,227}
p (2, 4,75,226}
p {2,4,76, 225}

Remark 3.2.1:

The stabilizer groups of the nonequivalent (5; 3)-Arcs split the associated arcs into a
number of orbits as follows:
i- The (k; 3)-Arcs A}, A2, A3, A%, each has a group Z, that divides the associated arc into
two orbits of sizes 2 and 1.
ii- The (K; 3)-Arcs A3, AS, each has a dihedral group of order eight. This group partitions the
associated arcs in two orbits of sizes 4 and 1.

3.3 (6;3)-Arcs

The constructed sets of (6; 3)-Arcs, A3, are 1685. Among these arcs, there are sixteen
nonequivalent (6; 3)-Arcs. The sixteen arcs have four types of stabilizer groups which are
I, Zy, Z3, and S, .
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Table 3: Nonequivalent secant distributions of (6; 3)-Arcs.

As {05,0,,0,,0,}

1 {1,9, 85,212}
e {1, 10, 84, 212}
e {1, 11, 81,214}
2t {1, 11, 82,213}
15 {1, 12, 80, 214}
A8 {1, 12, 81,213}
A {2,8,84,213}
8 {2, 8, 85,212}
e {2,9, 83,213}
AL {2,9, 84,212}
AL {3,5,87,212}
e {3,5, 88,211}
A {3, 6, 86,212}
AL {3,6,87,211}
e {4,3,89,211}
A6 {4, 3,90, 210}

Remark 3.3.1:

The stabilizers of the nonequivalent (6; 3)-Arcs divide the associated arcs into orbits as
follows:
i- The (k;3)-Arcs AL A3 A% A3, AS, A7, AS A2, A%O have the identity group that
partitions the corresponding arc in a number of orbits of size 1.
ii- The (K; 3)-Arc A3 has the cyclic group of order two. This group splits the associated arc
into five orbits of sizes 1, 1,2, 1, 1.
iii- The (k; 3)-Arcs A3' A3* A3 A3* each has the cyclic group of order three. This group
divides the corresponding arc in two orbits of sizes 3, 3.
v- The (k; 3)-Arcs A%S,Aéé each has a group S, . This group permutes the corresponding arc in
one orbit of size 6.

3.4 (7;3)-Arcs

In this process, there are 4279 (7;3)-Arcs, A, and there are thirty two nonequivalent
(7; 3)-Arcs. In addition, the 32 (7; 3)-Arcs have four types of stabilizer groups, which are
I, Z,, Z4,and S, .
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Table 4: Nonequivalent secant distributions of (7; 3)-Arcs.

Ai=132 {05,0,,0,,0,}

— {1, 18, 87,201}
p {1, 13,95, 198}
r {1, 15,91, 200}
p {1, 16, 90, 200}
o {1, 17, 87,202}
e {1, 17, 88,201}
. {1, 18, 86, 202}
; {2, 12, 94, 199}
. {2, 12,95, 198}
e {2, 13,93, 199}
i {2, 14,90, 201}
s {2, 14,91, 200}
il {2, 15, 89,201}
o {2, 15, 90, 200}
e {3,9,97, 198}
o {3, 10, 96, 198}
o {3, 11, 93, 200}
g {3, 11, 94, 199}
g {3, 12, 92, 200}
i {3, 12,93, 199}
pi {4, 6, 100, 197}
ol {4,7,99,197}
o {4,8,96, 199}
o {4,8,97, 198}
o {4,9,95,199}
e {4,9,96, 198}
p {5, 5,99, 198}
;- {5, 5, 100, 197}
g {5, 6,98, 198}
g {5, 6,99, 197}
. {6, 3,101, 197}
;e {6, 3, 102, 196}

Remark 3.4.1:

The stabiliser groups of the nonequivalent (7; 3)-Arcs split these arcs into a number of
orbits as follows:
i-The (K;3)-Arcs AL, ..., A3°,4%3, ..., A3% have the identity group that partitions the
corresponding arc in a number of orbits of size 1.
ii- The (K;3)-Arcs A3', A3%,A%7, A%8, A3°have the cyclic group of order two. This group
divides the associated arc into orbits of sizes 1 and 2.
iii-The (K;3)-Arcs A2° has the cyclic group of order four. The group Z,divides the
corresponding arc into three orbits of sizes 4, 2, 1.
v- The (K; 3)-Arcs A3', A3? each has a group S, . This group divides the corresponding arc
into two orbits of size 3 and 4.
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3.5 (8;3)-Arcs

The sets of (8; 3)-Arcs, As are 8135 where there are 49 nonequivalent (8; 3)-Arcs. Also,
there are three types of stabilizer groups, which are I, Z,, Z,.
Table 5: Nonequivalent secant distributions of (8; 3)-Arcs.

Aé=1,..,49 {05,0,,0,,0,}

i {2, 22, 94, 189}
p {1,20, 99, 187}
i {1, 22,95, 189}
" {1, 23, 94, 189}
i {1, 24,91, 191}
e {1, 24, 92, 190}
i {1,25,90, 191}
P {1,25,91, 190}
e {2, 15, 106, 184}
P {2,17,102, 186}
g {2, 19, 98, 188}
e {2, 19,99, 187}
e {2,20, 97, 188}
e {2,21, 94, 190}
o {2,21,95, 189}
o {2,22, 93, 190}
e {3, 14, 105, 185}
i {3, 16, 101, 187}
r {3, 16, 102, 186}
s {3,17, 100, 187}
= {3, 18,97, 189}
i {3, 18, 98, 188}
i {3, 19, 96, 189}
e {3, 19,97, 188}
il {4, 11, 108, 184}
! {4, 13, 104, 186}
i {4, 13,105, 185}
i {4, 14, 103, 186}
s {4, 15, 100, 188}
! {4,15, 101, 187}
! {4, 16,99, 188}
e {4, 16, 100, 187}
g {5, 10, 107, 185}
o {5, 10, 108, 184}
il {5, 11, 106, 185}
e {5, 12, 103, 187}
g {5, 12, 104, 186}
- {5, 13,102, 187}
o {5, 13, 103, 186}
o {6,7, 110, 184}
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AP {6, 8, 109, 184}
A% {6, 9, 106, 186}
A {6, 9, 107, 185}
A {6, 10, 105, 186}
A% {6, 10, 106, 185}
Alo {7, 6, 109, 185}
AY {7, 6, 110, 184}
Al {7,7, 108, 185}
A% {7,7, 109, 184}

Remark 3.5.1:

The stabilizer groups of the nonequivalent (8; 3)-Arcs divide the associated arcs into a
number of orbits as below:
i- The (K; 3)-Arcs AL .. A2 AF A§5 have the identity group that splits the associated arc
in a number of orbits of size 1.
ii- The (K; 3)-Arcs A2°, A%6, A7, A%°have the cyclic group of order two that divide the
associated arc into orbits of sizes 1 and 2.
iii- The (k;3)-Arcs A% has the cyclic group of order four. This group partitions the
associated arc in four orbits of sizes 4, 2, 1, 1.

3.6 (9;3)-Arcs
The constructed sets of (9; 3)-Arcs, Ay are 11921. Here, The number of nonequivalent

(9; 3)-Arcs. is 71. These 71 arcs have the stabilizer groups I, Sz, Z, X Z, .

Table 6: Nonequivalent secant distributions of (9; 3)-Arcs.

A2=1,..,71 {05,0,,0,,0,}

7 {3,27, 99, 178}
p {1, 28,101, 177}
;. {1, 30, 97, 179}
" {1,31, 96, 179}
" {1,32,93, 181}
- {1, 32, 94, 180}
g {1, 33,92, 181}
p: {1, 33,93, 180}
g {2,23,108, 174}
- {2, 25,104, 176}
. {2, 27, 100, 178}
o {2,27,101, 177}
- {2,28,99, 178}
o {2, 29, 96, 180}
i {2,29,97, 179}
. {2, 30, 95, 180}
i {2, 30, 96, 179}
;- {3,20, 111, 173}
" {3,22, 107, 175}
e {3,24, 103,177}
o {3, 24, 104, 176}
o {3,25,102, 177}
o {3, 26,99, 179}
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Azt {3, 26, 100, 178}
A% {3, 27,98, 179}
AZS 4,17, 114,172}
A% {4, 19, 110, 174}
AZ8 {4,21, 106, 176}
AZ° {4, 21,107, 175}
A% {4, 22,105, 176}
A% {4,23,102, 178}
A% {4,23, 103, 177}
AB {4, 24,101, 178}
A3t {4,24,102, 177}
A%S {5, 14, 117,171}
A%® {5, 16, 113, 173}
A% {5, 18, 109, 175}
A% {5, 18, 110, 174}
A% {5, 19, 108, 175}
A {5, 20, 105, 177}
Al {5, 20, 106, 176}
A%2 {5,21, 104, 177}
A% {5,21, 105, 176}
At {6, 13, 116, 172}
AE® {6, 15,112, 174}
Agt {6, 15, 113,173}
AY {6,16, 111, 174}
Ag® {6, 17, 108, 176}
Ag® {6, 17,109, 175}
A3° {6, 18,107, 176}
A3t {6, 18, 108, 175}
AZ? {7, 10, 119, 171}
AP {7,12, 115,173}
A {7,12, 116, 172}
A3® {7,13, 114,173}
A3° {7,14,111, 175}
AY {7,14,112, 174}
A38 {7, 15,110, 175}
AY {7, 15, 111, 174}
AS° {8,9, 118, 172}
A8 {8,9, 119, 171}
A8? {8,10, 117,172}
AS3 {8, 11, 114, 174}
A8 {8, 11, 115,173}
AS® {8,12, 113, 174}
A8® {8,12, 114,173}
AY7 {9,7,120, 171}
A {9,8,117, 173}
A {9,8, 118, 172}
A7° {9,9, 116, 173}
A7 {9,9, 117, 172}
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Remark 3.6.1:

The stabilizer groups of the nonequivalent (9; 3)-Arcs split the associated arcs into a
number of orbits as follows:
i- The (K; 3)-Arcs A%, ..., A%6, A%, A0, AZ! have the identity group. This group partitions
the associated arc in orbits of size 1.
ii- The (K; 3)-Arc A% has the group S; that split this arc into two orbits of sizes 6 and 3.
iii- The (k; 3)-Arcs AS° has the cyclic group Z, X Z, . This group partitions the associated
arc into four orbits of sizes 1, 2, 4, 2.

Note 3.6.2:
Table 7 introduces the information of the sets of (K; 3)-Arcs and the nonequivalent sets of
(K; 3)-Arcs, A", m=7,...,25 with their groups.

Table 7: Number of (K; 3)-Arcs for kK = 10,...,28.

Stabilizers of nonequivalent

-2 . ) i=1,.,n —
(k; 3)-Arcs Number of (K; 3)-Arcs A", m=1,...,25 (R: 3)-Arcs
(10; 3)-Arcs 16169 A7 1=93, Z,=4
(11; 3)-Arcs 20268 A2 1=120, Z,=2
(12; 3)-Arcs 23440 AL149 1=145, Z,=2, S;=2
(13; 3)-Arcs 25675 A0 1=169, Z,= 1
(14; 3)-Arcs 25649 AT =191, Z,=1
(15; 3)-Ares 24892 A28 =205
(16; 3)-Arcs 22055 A0 1=220
(17; 3)-Ares 18842 A0 1=230

; 3)-Arcs AL =
(18;3)-A 14604 11233 1=233

; 3)-Arcs A=t =
19;3)-A 10640 12l234 1=234

; 3)-Arcs At =
20; 3)-A 7076 1229 1=229

; 3)-Arcs AL =
21;3)-A 4447 Sree =218

; 3)-Arcs AL =
22;3)-A 2419 PR =190

; 3)-Arcs AL =
23;3)-A 1143 LoLteo 1=160

; 3)-Arcs AL =
(24;3)-A 401 =101 1=101

; 3)-Arcs (=1, =
(25; 3)-A 76 A3 =34
(26; 3)-Arcs 7 Vb 1=4
(27; 3)-Ares 5 V. Lot 1=3
(28; 3)-Arcs 1 At Zs

The previous tables show that the major result that has been achieved in this study is a
large complete (K;3)-Arc. This complete arc is of size k=28. The coordinates of complete
(28;3)-Arc are given below.

k= {58 11,{2,0,1,{0,6,1},{5,7,1:,{9,1,0}%,{0,9,1},{9,8,11,{16,10,11},{
2,1,13,{16,511,{5,51}3,{9,0,1},{12,16,1},{3,0,1},{1,2,1 },{7. 1,1 L,{ 1,7,
13,012,511, 1,1 ,{7,16,1},{15,16,1},{2,1,01,{0,2,1},{9,9,1},{7, 10, 1
V15,71 1,416,2,1},{6,1,0}.
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This complete (K;3)-Arc has the group Z; that partitions this arc in ten orbits of sizes
3,3,3,3,3,3,3,3,3,1, respectively. Also, the associated secant distribution of complete (28;3)-
Arc is 93=108, 92=54, 91=72, 90=73.

Table 8: Data of Nonequivelant (K; 3)-Arcs for for K = 4,...,28.

(ks;3)-Arc D; Sgim

(4:3)-Arcs 2 Zig X S3:2
(5:3)-Arcs 6 Zy:4, Dg:2
(6;3)-Arcs 16 1:9, Z,:1, Z3:4,5,:2
(7;3)-Arcs 32 124, Z,:5, Z4:1,5,:2
(8;3)-Arcs 49 [:44, Z,:4, Z,:1
(9;3)-Arcs 71 1:69,S8;5:1, Z, X Z,:1
(10; 3)-Arcs 97 1:93, Z,: 4
(11; 3)-Arcs 122 1:120, Z,:2
(12; 3)-Arcs 149 1:145, Z,:2, S3:2
(13; 3)-Arcs 170 1:169, Z,: 1
(14; 3)-Arcs 192 1:191, Z,: 1
(15; 3)-Arcs 205 1:205
(16; 3)-Arcs 220 1:220
(17; 3)-Arcs 230 1:230
(18; 3)-Arcs 233 1:233
(19; 3)-Arcs 234 1:234
(20; 3)-Arcs 229 1:229
(21; 3)-Arcs 218 1:218

(22; 3)-Arcs 190 1:190

(23; 3)-Arcs 160 1:160

(24; 3)-Arcs 101 1:101

(25; 3)-Arcs 34 1:34

(26; 3)-Arcs 4 I=:

(27; 3)-Arcs 3 I:3

(28; 3)-Arcs 1 Zs

The previous calculation constructed different sizes of (k;3)-Arc for k =4, ...,28.
Therefore, the bellow theorem is stated.

Theorem 3.6.3:
There is at least a complete (28, 3)-Arc in PG (2,17).

4. Conclusions

This study introduces a certain calculation method to compute the sets of (k; 3)-Arcs in
PG(2,17) throughout establishing a maximum size of arc, and then establish the sets of
nonequivalent (K; 3)-Arcs in PG(2,17). Then, discuss the most essential algebraic
characteristics of each nonequivalent arc in terms of the secant distributions, the stabilizer
groups, and the orbits. In this paper, the method used to classify these arcs is relies on the
number of nonequivalent secants of arcs. Table 8 summarized all related details of
nonequivalent (K; 3)-Arcs in PG(2,17), where the symbol D; indicates the number of
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nonequivalent (K; 3)-Arcs, the symbol s;:n indicates the form of stabilizer. Here, n is the
number of group.
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